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Abstract

Realistic and interactive traffic simulation is essential for training and evaluating
autonomous driving systems. However, most existing data-driven simulation
methods rely on static initialization or log-replay data, limiting their ability to
model dynamic, long-horizon scenarios with evolving agent populations. We
propose InfGen, a scenario generation framework that outputs agent states and
trajectories in a reactive manner. InfGen represents the entire scene as a sequence
of tokens—including traffic light signals, agent states, and motion vectors—and
uses a single autoregressive Transformer model to simulate traffic over time. A
unified tokenization scheme captures agent type, map location, and fine-grained
kinematic states. This design enables InfGen to continuously insert new agents into
traffic, supporting infinite scene generation. Experiments demonstrate that InfGen
produces realistic, diverse, and adaptive traffic behaviors, surpassing log-replay and
modular baselines. Furthermore, reinforcement learning policies trained in InfGen-
generated scenarios achieve superior robustness and generalization, validating its
utility as a high-fidelity simulation environment for autonomous driving. Code and
models will be made publicly available.

1 Introduction

Simulating realistic and diverse traffic scenarios is vital for the development and evaluation of
autonomous driving systems. Simulation enables safe, cost-effective, and repeatable testing of driving
policies without relying on real-world deployment. However, most existing frameworks use static
traffic generation methods, such as replaying logged trajectories from real-world datasets [21} 9} [13].
Although faithful to real driving behaviors, they lack interactivity as background agents do not
respond to the ego vehicle’s actions, limiting their utility for closed-loop evaluation.

Recently, data-driven generative models have emerged to learn to synthesize traffic scenarios from
real data, offering a path toward richer and more varied simulations [55} [37]]. Learning-based traffic
simulation is commonly framed as a motion prediction problem: given a history of agent states in a
scene, including map, signals, and initial state of agents, a policy generates the future trajectories
of all agents. However, most such models are trained with one-step behavior cloning on logged
data [28} 139/ 32] and do not explicitly model interactions between agents during the prediction
horizon, which leads to covariate shift when they are unrolled in the simulation. Small prediction
errors can compound, causing the simulator to visit out-of-distribution states and produce unrealistic
outcomes. Recently, the autoregressive models have been proposed to better fit into the driving
behavior modeling, especially in the context of closed-loop simulation [42, |57, 38, [17]]. However,
these models still rely on the provided initial states of traffic agents and miss the diversity that
emerges from the initial layout of traffic participants. Some other works propose generating the
initial conditions and then conducting motion prediction based on these conditions [10, 1} 46]. This
separation can be inefficient and inflexible, as it prevents the model from sharing context between the
initial and motion phases. It also means the number of agents is fixed at initialization, disallowing
new traffic participants to enter the scene over time—but in reality, new traffic participants enter the
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Figure 1: InfGen enables unified scenario generation via autoregressive token prediction. We
represent a dynamic driving scene using a structured sequence of discrete tokens grouped into traffic
light, agent state, and agent motion tokens. InfGen generates these tokens step-by-step on top
of static map tokens, allowing flexible and fine-grained simulation. Our unified model supports
diverse downstream applications: motion prediction, full-scenario generation from scratch, scenario
densification by injecting new agents, and closed-loop simulation with interactive planning.

scene while old ones leave. These limitations hinder the simulator’s ability to model open-world,
long-horizon interactions where new agents may appear and leave (e.g., vehicles turning into/from
the road from/into a side street) and influence the ego vehicle’s behavior.

To address these gaps, we propose InfGen, a generative traffic simulation framework that models
the entire scenario, including agent states and motions, as a single sequence of tokens. InfGen
uses a unified autoregressive model to generate both the agent state and agent motion at every step.
We tokenize different categories of agents, such as vehicle, pedestrian and cyclist, the same way,
with different category embeddings added to their tokens. Notably, InfGen is flexible to adapt to
different tasks, including motion prediction, state initialization, scenario generation, and scene editing
like adding new agents and desification, by choosing different tokens to be teacher-forced while
others to be sampled. We implement a carefully designed agent state tokenization pipeline so that
the model can effectively handle heterogeneous agent types and map context when adding new
agents. Finally, we demonstrate that using InfGen to generate training scenarios leads to significant
improvements in downstream planner performance. Reinforcement Learning-based planners trained
on InfGen-generated scenarios exhibit greater robustness to rare events and better generalization to
novel environments. We summarize our contributions belows:

1) Unified State & Trajectory Tokenization: InfGen is the first framework to employ a single
autoregressive model that produces both agents’ initial states and their motion trajectories as part
of one continuous token sequence over long horizons. This unified approach ensures consistent
conditioning between where an agent starts and how it moves, addressing the inflexibility of prior
two-stage models.

2) Agent State Autoregressive Generation: We design a novel generation scheme for agent states
by autoregressively rolling out the agent state tokens and generating the map-based relative states
of agents, i.e., the agent’s type, its map location, and its detailed kinematic state. This allows the
model to accurately place agents on specific map segments (e.g., lanes) and generate realistic state
details (position, heading, velocity, etc.) in a compact, learnable representation.

3) Versatile Capabilities: By dynamically teacher-forcing different token groups, InfGen is versatile
and applicable to various tasks, including motion prediction, traffic flow simulation, scenario
generation, and scene editing. We demonstrate that training autonomous driving planners in
InfGen-generated scenarios yields more robust and generalizable policies, indicating that InfGen
can serve not only as a content generator but also as an effective data augmentation tool for
reinforcement learning in autonomous driving.
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Figure 2: The tokenization and attention mechanism of InfGen. (A) InfGen autoregressively
generates a sequence of tokens representing a full traffic scenario. Each simulation step consists of
traffic light tokens (purple), agent state tokens (blue), and motion tokens (green), conditioned on
static map tokens (red). This structured tokenization enables step-wise rollout of the dynamic scene
and allows new agents to be introduced at any timestep. (B) Grouped causal attention governs how
tokens interact: each token attends densely within its group and to logically preceding groups, while
also incorporating cross-timestep context (e.g., agents attend to their own history). This attention
design encodes semantic causality (e.g., agent motion depends on agent state, which depends on
map), enabling fine-grained closed-loop simulation with coherent agent behaviors.

2 Method

Scenario Generation. A driving scenario comprises (1) static map context M (vectorized lane seg-

ments, crosswalks, etc.) and (2) dynamic entities including traffic-lights {1§’“> gj? and traffic agents

{ati) }5\21 that evolve with time ¢. Here Np, denotes the number of traffic lights and /V; denotes the

number of agents at step ¢. Each traffic-light state 1§’“) = (x,y, s) contains 2-D position and discrete

signal s € {green, yellow, red, unknown} while each agent state ail) = (2, Y, Vs, Vy, ¥, ¢, L, w, h)
encodes pose, velocity, heading, category ¢ € {vehicle, pedestrian, cyclist} and length, width and
height of the 3D bounding box of the agent. Compared to conventional motion prediction task, which

assumes a fixed agent set Z = {1, ..., N}, and forecasts future trajectories {ainzT}iez, scenario
generation task must create the initial agent set and continually inject new agents, traffic-light changes,

and motions over a horizon T": py(Si,...,Sp| M) with S; = ({lgk)}7 {agi)}).

2.1 Scenario as a Token Sequence

We cast scenario generation as a next-token prediction task: map tokens <MAP> are followed each step
by traffic-light tokens <TL>, agent-state tokens <AS>, and agent-motion tokens <MO> and form a single
autoregressive token sequence: Xi.7 = [<MAP>; (<TL>, <AS>, <M0>)1; (KTL>, <AS>, <M0>)s; . . ]
Given all tokens x.; generated so far, the model predicts the next token or next set of tokens
po(z: | X<¢) and samples x;. Following this idea, we develop InfGen, a unified transformer that
sees the whole history and rolls out the scenario step-by-step, enabling fine-grained, closed-loop
generation and smoother downstream simulation integration.

Map Tokens <MAP>. A map segment, e.g., a 10m road line, a stop sign, or a crosswalk, is represented
as a polyline, consisting of maximally V,, ordered 2D points with semantic attributes. We denote
the set of M map segments in the scene as a tensor Sy, € RM*NeXC where C is the per-point
feature dimension, e.g., 2D position, road type one-hot. We adopt the PointNet-like [33] polyline

encoder yielding map segment features {m; = PolyEnc(Sggp)}fil. These are then passed into
the InfGen Encoder, a full attention transformer, and output a set of vectors for each map segment:
m’ = InfGenEnc(m). To support cross-attention in the decoder, we assign each map segment a
unique discrete index ¢ (its MaplID), and embed it into the map token that used in the InfGen Decoder:

<MAP>; = m’[i] + EmbMapID(i) ® g;,i = 1,..., M. 1

where EmbMaplD is a learned embedding table. ® denotes we will record the geometric information
g; of map segment ¢, which includes its center position and heading, and use it to participate the
relative attention. We defer the discussion of relative attention to Section These map tokens
{<MAP>,} are provided by the InfGen Encoder and are kept fixed during simulation, serving as static
cross-attention keys/values for all decoder layers.



Traffic light Tokens <TL>. Each traffic light is represented by a single token per step. We encode the
traffic light’s discrete state (green, yellow, red, or unknown), its unique identifier, and the ID \j, of
the map segment it resides in. Formally, the traffic light token for light k at step ¢ is constructed as:

<TL>j ; = EmbState(sy ;) + EmbTLID(k) + EmbMapID(\) ® gx, k =1, ..., N1, 2)

where s € {G,Y,R, U} is the signal state, A, is the discrete map segment ID the light is attached
to, and gy, is its temporal-geometric context (position, orientation and current timestep). As with map
tokens, ® indicates that g, participates in relative attention (Section[2.3)).

Agent state Tokens <AS>. For every active agent, including newly injected agents at step ¢, In-
fGen uses a set of four agent state tokens that collectively encode the agent’s dynamic and se-
mantic state. These states include positions, headings, velocities, shapes and agent categories.
As shown in Figure [3| (A), each agent ¢ present at step ¢ is represented by four ordered tokens:
(<S0A>;, <TYPE>;, <MS>;, <RS>;);. Here <SOA> is the start-of-agent flag, <TYPE> is the categorical
token in {vehicle, pedestrian, cyclist}, <MS> is the index of the map segment where the agent resides
(Figure 3| B), <RS> is the relative states of agent w.r.t. to the selected map segment. We defer the
detailed composition of each token in the Appendix.

The most interesting token is the relative state token. Specifically, relative state r; is a 8D vector, each
dimension representing a field in the agent’s relative state vector: r; = (I,w, h, u, v, 09, vy, vy),
where (I, w, h) is the agent’s physical dimensions (length, width, height), (v, v) is the longitudinal
and lateral offset from the centerline of map segment \;, 61} is the heading residual relative to the
map segment’s orientation, (v, v, ) is the velocity vector whose direction is in the frame of the map
segment. The relative states r; can be autoregressively generated by the relative state head (see

Section[2.2)).

Motion Tokens <M0>. To model agent motion, InfGen predicts a motion label for each agent,
parameterized as a pair of acceleration and yaw rate: (a,w) € A x £, where 4 and (2 are discretized
into dozens of uniform bins respectively, covering acceleration and yaw rate ranges observed in
training data. Each motion label corresponds to a (a,w) pair. Given an agent’s current state at time,
the next-step state is predicted using a first-order bicycle model. To obtain the ground-truth (GT)
motion token, we enumerate all candidate motion labels (a,w) combinations and search for the
best candidate with least Average Corner Error (ACE), the mean {5 distance between predicted and
ground-truth corners of the 2D bounding boxes of the agents. This strategy ensures that both position
and heading are tightly aligned to GT during supervision. The details of motion tokenization can be
found in the appendix.

Each motion token <MO> corresponds to one agent at a timestep and encodes both its motion label
and identity-related context. Formally, given an agent ¢ at step ¢, the motion token is computed as:

<M0>; ; = EmbMotion(u;) +EmbType(c;) + EmbAID(7) + EmbVel(v;) + EmbShape(s;) ®g; (3)
where p; is the motion label, ¢; is the type of agent, ¢ is agent’s ID, v; is a 2D vector representing the
agent velocity in local frame, and s; is a 3D vector of agent’s shpae (length, width, height). g; is a
4D vector encodes the temporal-geometric information (agent’s current global position, heading and
time step). Note that the embedding tables EmbType and EmbAID are shared with <AS>.

2.2 Autoregressive Scenario Generation

InfGen is an encoder-decoder model. The InfGen Encoder processes the information of map segments
and output {<MAP>;}. The InfGen Decoder, denoted by InfGenDec, autoregressively generates tokens
in a step-by-step manner. As demonstrated in Figure 2] (A), in each step, InfGen first generates a set
of traffic lights tokens <TL> predicting the next state of traffic light signals, then it generate the agent
state tokens <AS> one-by-one. Finally, the motion tokens <MO> of all agents are generated together in
batch. In this section, we will go over the generation process for each token group.

Traffic light Tokens <TL>. All traffic light tokens are generated in a single batch at each step, with
the output obtained via the traffic light head, a MLP layer HeadTL(-) maps the decoder output to the
probabilities four discrete states: {green, yellow, red, unknown}:

HeadTL(InfGenDec({<TL>; ; ; }\1)) € RVn>x4, )
Agent State Tokens <AS>. As shown in Figure [3| (A), for one agent, there are four tokens used

to generate the agent state. In the test time, we will first sample an agent type from the distri-
bution produced by the agent type head: ¢ ~ HeadType(InfGenDec(<S0A>)). Then, as shown
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Figure 3: The design of agent state generation. (A) Agent State Tokens for an agent has 4 tokens.
We first predict the agent type, then select a map ID where the agent resides on, then predict the
detailed states. (B) We predict the ID of the map segment, which usually is a lane segment with 10m
long, where the agent resides on. (C) Feeding in the Map ID, we use the output token as the condition
and call the Relative State Head, which is a tiny transformer, to autoregressively generate the relative
agent states, including shape, position, heading and velocity.

in Figure [3| (B), the model will select one of the map segment \; seeing the input <TYPE>:
A; ~ HeadMapID(InfGenDec(<TYPE>)). After selecting a map segment \; and generating the
associated <MS> token, we condition on the decoder output of <MS> to generate the agent’s full
kinematic and shape attributes. As illustrated in Figure[3|(C), a dedicated module called the Relative
State Head, a small Transformer decoder with AdaLLN [30] normalization, is used to autoregressively
generate a sequence of 9 tokens, each representing a field in the agent’s relative state vector:

(<80S>,l,w, h,u,v, 69, vg, vy) ~ HeadRS(:[InfGenDec(<MS>)). 5)

We additionally append a <S0S> as the start-of-sequence indicator. For existing agents that persist
from the previous timestep, InfGen bypasses the relative state prediction head and instead determinis-
tically teacher-forces their agent state token using the ground-truth map segment and relative states.
This allows InfGen to seamlessly unify dynamic agent injection (via sampling) and agent motion con-
tinuation (via teacher-forcing), ensuring closed-loop autoregressive simulation across variable-length
agent sets. Unlike prior methods such as TrafficGen [10], which generate all agent state attributes
simultaneously in a flat and unstructured output head, InfGen decomposes the generation into an
causally constrained sequence and thus can better ensure semantic and physical consistency.

Motion Tokens <M0>. The motion head predicts each agent’s motion label as a single categorical
token from a 2D discretized space of acceleration and yaw rate. Specifically, we define a flat
vocabulary, where each token corresponds to a unique pair (a,w) drawn from uniformly quantized
grids A and 2. A motion prediction head is used to obtain the probability distribution over motion
labels. At inference time, we apply top-p (nucleus) sampling to select the motion labels while all
motion labels at a step are generated in a single batch:

{1, }; ~ HeadMotion(InfGenDec({<M0>; ;—1};)). 6)

The sampled token (i, is then mapped back to its corresponding (a,w) pair via a deterministic
lookup table, and passed through a first-order kinematic update rule to compute the next state (see
Appendix). At an agent’s first appearance, a special label pig,y is used to get <MO>. For continuing
agents, the input motion token is simply the previously predicted token f4; 1—1.

Each prediction head operates only on its associated tokens, enabled by a token-type embedding and
mask within the decoder. This modular structure allows InfGen to handle heterogeneous outputs
while maintaining unified sequence modeling.

2.3 Model Details

Token Group Attention. We design a token group attention mechanism, ensuring the causality while
allow effective information communication. As shown in Figure 2] (B), the rules are (1) tokens within
the same group can attend to each other freely (e.g., motion tokens attend to other motion tokens
at the same step); (2) the tokens belong to the same object (agent or traffic light) in later step can
attend to the tokens belonging to the same object earlier; and (3) every group of token can attend to



the existing contexts at current or last step. For example, <MO> can attend to current <TL>. <TL> can
attend to <M0O> at last step, etc.

Relative Attention. We use relative attention biases between tokens, computed from
(Az, Ay, Ay, At), to modulate attention weights, following previous work on query-centric at-
tention [64} 140, 51]]. This make the input token sequences unaware of the global temporal-geometric
information of the object, which eases model’s training. A KNN mask restricts attention to spatial
neighbors for scalability.

Model Architecture. InfGen adopts an encoder-decoder architecture. The encoder embeds infor-
mation of all map segment to a sequence of map tokens, which are cross-attended by the dynamic
tokens in the decoder. The decoder generates heterogeneous output via different prediction head
as we discussed in Section[2.2] Within each decoder layer, InfGen performs two types of attention
operations. First, cross-attention is computed between dynamic tokens and the static map tokens.
Then, self-attention is applied among all dynamic tokens using a structured group-causal attention
mask, as illustrated in Figure[2|(B), to enforce semantic and temporal dependencies across token types.
The entire model is trained end-to-end using cross-entropy loss, as each head outputs a categorical
distribution to match the ground-truth labels. These include discrete agent attributes (e.g., type,
shape), map IDs, relative state components, and motion labels.

3 Experiments

We evaluate InfGen on a suite of tasks to assess the quality of its generated scenarios and its utility for
downstream applications, particularly reinforcement learning (RL) planner training. Our experiments
aim to answer the following questions:

* Does InfGen generate realistic and diverse agent states comparable to real-world logged data?
* Can InfGen serve as a versatile simulation platform for motion prediction and scene generation?

* Does training an RL planner in InfGen-generated scenarios lead to improved performance and
robustness compared to log-replay traffic flows?

We conduct experiments on the Waymo Open Motion Dataset (WOMD) [23]], a large-scale benchmark
for motion forecasting and simulation. WOMD contains scenarios captured at 10Hz, providing 1
second of historical data and 8 seconds of future trajectories per scene. Each scenario includes up to
128 traffic participants (vehicles, cyclists, pedestrians) along with high-definition maps. To reduce
computational cost, we downsample each scenario to 2Hz, yielding 19 discrete steps per scene. We
use ScenarioNet [21] to manage data. InfGen is trained to predict all three types of agents and all
agents in the scenario. We use 8§ NVIDIA RTX A6000 GPUs (48GB GPU memory each) to train the
model. Details of hyperparameters, training and testing can be found in the Appendix.

3.1 [Initial State Quality

To quantitatively assess the realism of InfGen-generated initial states, we adopt the Maximum Mean
Discrepancy (MMD) metric, widely used in generative modeling and scenario synthesis [27} [10].
MMD measures the distributional divergence between generated and ground-truth agents across key
attributes. A lower MMD indicates that generated distributions are closer to the real data. We evaluate
under two protocols: (1) a strict setting that follows TrafficGen [10], evaluating only vehicle agents
within 50 meters of the ego vehicle, and (2) a relaxed setting that includes all agents of any type
(vehicle, cyclist, pedestrian), offering a more comprehensive view of realism across full-scene.

We compare InfGen to several recent scenario generation methods: (1) TrafficGen [10]: a two-
stage framework generating initial states then predicting motions. (2) LCTGen [44]]: a language-
conditioned scenario generator trained on natural language captions. (3) MotionCLIP [47]: a
diffusion-based trajectory generator guided by CLIP-style embeddings, implemented in LCTGen
paper. (4) UniGen [27]: a joint model for initial state and trajectory generation using diffusion.
(5) InfGen w/o AR decoding: To evaluate the importance of InfGen’s autoregressive agent state
decoding, we implement a simplified ablation where all agent attributes are predicted independently
in parallel using separate MLP heads. Each attribute is treated as a categorical variable with its own
discrite space and no conditioning is performed between attributes. This resembles flat decoding
strategies used in prior work [10} |44]], and removes the structured token sequencing that enables
causally consistent agent state generation in full InfGen.



Table 1: Initial state MMD metrics. T These methods have access to future agent trajectories and
use them to assist in generating initial states, making them incomparable to our setting, where the
model performs state initialization without any future information. * We relax the standard evaluation
protocol by computing MMD over all logged agents with arbitrary category (instead of only vehicle
agents within 50m of the ego vehicle).

Method Position Heading Size Velocity
MotionCLIP 0.1236 0.1446  0.1234  0.1958
TrafficGen 0.1451 0.1325  0.0926  0.1733
LCTGen 0.1319 0.1418  0.1092  0.1948
UniGen Joint 0.1323 0.2251  0.0831  0.1915
UniGen w/ Agent-Centric Road ~ 0.1217 0.1095  0.0817  0.1679
UniGen w/ Traj. Inputs’ 0.1197 0.1897  0.0826  0.1657
UniGen Combined* 0.1208 0.1104  0.0815  0.1591
InfGen w/o AR Decoding 0.1603 0.1646  0.1172  0.2114
InfGen 0.1291 0.1270  0.0743  0.1970
InfGen w/o AR Decoding? 0.3237 0.1203  0.0630  0.1183
InfGen? 0.2198 0.0665  0.0279  0.0730

Table 2: Motion prediction metrics on held-out Waymo validation set. We evaluate InfGen using
standard forecasting metrics for all agents and the designated object of interest (OOI). Both models
use only motion tokens with fixed initial states.

All Agents OOI Agents
ADDT FDD?T ADE.g| ADEq,] FDEy,| FDEu,| ADD FDD  ADE.; ADEn, FDEy, FDEni

InfGen-Motion ~ 2.2115  0.2459 1.2100 0.8730 3.5336 2.4129 58517 0.5521 33084  2.1905  9.7568  6.0963
InfGen-Full 2.6486  0.2567 1.3382 0.9339 3.8740 2.5379 6.9229 0.5773  3.5842 23008  10.4477  6.3302

Model

Table [T] compares InfGen with recent baselines across position, heading, size, and velocity dis-
tributions. InfGen achieves competitive performance, especially when using autoregressive (AR)
decoding, under the strict evaluation protocol (vehicles only and within 50m). Under the relaxed
evaluation setting (*), InfGen continues to produce realistic agents beyond vehicles, demonstrating
generalization to pedestrians and cyclists. Note that trajectory-informed baselines are not directly
comparable. Methods marked  use future information to refine initial states, giving them an unfair
advantage over our fully predictive model. We find that InfGen’s performance drops notably when
AR decoding is disabled, showing the importance of ordered token generation. Without this ordered
structure, flat decoding often produces invalid combinations, e.g., a pedestrian on a highway lane
or a vehicle with inconsistent orientation and lateral velocity. Our sequential decoding mirrors the
causal structure of how agents are realistically introduced into traffic scenes, improving robustness
and realism in downstream simulation.

3.2 Motion Prediction Quality

We next evaluate InfGen as a motion predictor under a supervised setting. Given the initial traffic
state, we autoregressively predict future trajectories of all agents over a 8-second horizon. During
evaluation, we teacher-force all agent state tokens and the first two steps of motion tokens (i.e., at
t = 0 and ¢ = 0.5 seconds) and then let the model roll out the remaining steps autoregressively.
We compare two versions of InfGen: (1) InfGen-Motion: The base version of InfGen that only
training to predict motion tokens and traffic light tokens; (2) InfGen-Full: The finetuned version of
InfGen-Motion that tasked to predict all dynamic tokens. We evaluate performance on the Waymo
validation set using six standard metrics: Average Displacement Error (ADE), Final Displacement
Error (FDE), Average Displacement Diversity (ADD), and Final Displacement Diversity (FDD),
reported for both all agents and the designated Object of Interest (OOI) defined by the WOMD.

As shown in Table 2] InfGen achieves reasonable motion prediction performance. InfGen-Motion
provides accurate predictions with lower ADE/FDE, while InfGen-Full performs slightly worse in
accuracy. We hypothesis this is because some attentions from the motion tokens need to be paid to
the agent state tokens. Also the capability of the model might be limited due to small parameter size.
However, InfGen-Full demonstrates higher ADD and FDD, indicating greater diversity.
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Figure 4: Qualitative results of InfGen in different tasks.

3.3 Qualitative Visualization

Figure []illustrates sample scenes generated by InfGen, including motion prediction, full-scenario
generation, and scenario densification. In the densification task, we teacher-force the states of existing
agents and ask InfGen to generate new agents until 128 agents are reached. We observe that generated
agents are well-aligned with map lanes, exhibit coherent motion patterns, and maintain diversity over
long horizons. More visualization and qualitative demonstrations can be found in the Appendix.

3.4 Planner Learning with InfGen

To further assess the utility of InfGen in downstream autonomous driving (AD) tasks, we train
reinforcement learning (RL) agents to control the self-driving car (SDC) in scenarios modified by
InfGen and evaluate its policy against one trained on unaltered, log-replay scenarios. This experiment
tests whether InfGen can act as a generative simulator that improves planner robustness through
exposure to diverse, reactive traffic patterns.

We select 500 scenarios from the WOMD training set. For each original scenario, we generate an
augmented variant using InfGen by replacing the background traffic flow with InfGen-generated
agents while keeping the ego vehicle’s goal and initial state fixed. Training is conducted in the
MetaDrive simulator [20]], which supports importing vectorized scenarios from ScenarioNet [21]] via
a unified scenario description format. We convert InfGen outputs into this format, enabling seamless
integration with the RL training pipeline. We train the policy using Twin Delayed Deep Deterministic
Policy Gradient (TD3) [[L1], with a replay buffer size of 1M, target smoothing coefficient of 0.005,
and action noise standard deviation of 0.2. Training is performed for 2 million environment steps.
Full RL environment details are provided in the Appendix.

Policies are evaluated on a held-out validation set of 100 real-world scenarios from the WOMD
validation set. We report: (1) Average Episodic Reward: Total accumulated reward. (2) Episode
Success Rate: Fraction of episodes that terminate successfully (i.e., reaching goal without major
violation). (3) Route Completion Rate: Fraction of the predefined route (from GT SDC trajectory)
completed per episode. (4) Off-Road Rate: Fraction of episodes in which the agent deviates off-road.
(5) Collision Rate: Fraction of the episodes that have collisions. (6) Average Cost: Combined penalty
for collisions and off-road violations.

We evaluate several training regimes to assess the impact of different generation strategies. Log-
Replay is the baseline trained with unmodified real-world traffic agents. InfGen-Motion means agents’
motion tokens are generated autoregressively, while the agent state tokens are teacher-forced. In
contrast, InfGen-Full gerantes the layout of all agents except SDC and keeps adding new agents if
existing agents leave scene. The variant “adaptive” (w/ Ada) means we teacher-force SDC’s trajectory



Table 3: RL policy performance trained with different traffic simulation sources.

Training Source Reward?T  SuccessT  Completion T Off-Road | Collision | Cost |

Log-Replay 32244323 0.7244+0.06 0.6726-0.04 0.2872+001  0.0308+002  0.2852+0.07
InfGen-Motion (No Ada) 37.98+250  0.7355+005 0.6783+0.04 0.2940+002  0.0270+001  0.2795+0.02
InfGen-Motion (w/ Ada) 39.231+254  0.7475+0.04 0.7032+0.03 0.2987+002  0.0187+001  0.2637+0.04

InfGen-Full (No RS, No Ada) 38.18+301  0.7339+0.05 0.7052+0.03 0.2932+003  0.0194+001  0.2697+0.04
InfGen-Full (No RS, w/ Ada)  38.81+230 0.7385+0.05 0.7230=+0.01 0.3010+003  0.0290+003  0.2880+0.07
InfGen-Full (w/ RS, w/ Ada) 39.07+246  0.7620-+0.04 0.7345+0.02 0.2830+002  0.0260+001  0.2610+0.03

using the latest RL planner’s own rollout, othwersie (No Ada) SDC follows ground-truth trajectory.
For InfGen-Full, Reject Sampling (RS) means we regenerate an agent if it collids with existing agents.

Table 3] shows that InfGen-generated scenarios consistently improve planner performance across all
metrics. Even without full scenario generation, motion-only variants outperform the log-replay base-
line. Adaptive training—where the SDC follows the planner’s rollout—further improves robustness
and reward. The best-performing setup uses full scenario generation with reject sampling, achiev-
ing the highest route completion and lowest cost, demonstrating InfGen’s utility as a high-fidelity
simulation platform for RL policy training.

4 Related Work

Motion Prediction and Simulation Agents. Motion prediction models aim to forecast future
trajectories of traffic participants given their initial states, maps, and signal inputs. Classical ap-
proaches model agents independently [4} 40] or with joint interaction modeling [26,50]. More recent
transformer-based models learn to autoregressively predict motions in an open-loop or semi-closed
loop fashion [[17, 138} 157,131, [15, 163} 159]. These models assume a fixed agent set and focus only on
forward rollout, without modifying the initial scene layout. InfGen complements this line of work by
modeling both the motion and the generative process of agent state creation, enabling adaptive and
evolving agent populations during simulation.

Scenario Generation. Scenario generation aims to produce both the initial agent states and their
future trajectories. Early methods adopt a two-stage design: generating static snapshots [[10, 46, 45]
followed by motion forecasting using a separate module. While effective, such disjoint designs lack
shared context and restrict dynamic updates to the agent set. Diffusion-based approaches [25) 41, [7]
generate initial states or trajectories via denoising processes but often still separate static and dynamic
phases. UniGen [27] improves this by jointly modeling initial states and motions. However, it
generates only once at initialization and cannot inject new agents mid-simulation. In contrast, InfGen
unifies the full generation process into a single token sequence that includes agent type, position, and
motion at every timestep, supporting dynamic scenario growth.

A more comprehensive review of related literature is provided in the Appendix.

5 Conclusion

We introduced InfGen, a unified generative traffic simulation framework that models agent state
and behavior using a single autoregressive token sequence. By representing heterogeneous traffic
elements such as vehicles, cyclists, pedestrians, and traffic lights as discrete tokens and leveraging a
transformer-based decoder, InfGen enables flexible, step-wise simulation of complex traffic scenes.
Unlike prior methods that rely on fixed initial conditions or log-replay agents, InfGen supports
dynamic agent injection and closed-loop rollout, facilitating long-horizon and reactive simulations.
Through extensive experiments, we show that InfGen generates high-fidelity initial states (as measured
by MMD metrics), maintains coherent and diverse traffic behaviors over time, and improves the
robustness and generalization of downstream RL planners trained in its generated scenarios. Its
unified token-based design enables a wide range of use cases, including motion prediction, scenario
densification, and synthetic scene generation—without modifying the core architecture.

Limitations. InfGen relies on long token sequences to represent dense multi-agent traffic scenes.
This leads to high memory demand and compute. Another challenge lies in compounding errors
during test-time generation. We can opt for recent advances in closed-loop fine-tuning a behavior
model to address this issue [[56} 129, 16].
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A Broader Impact and Societal Considerations

InfGen is a generative simulation framework for modeling dynamic traffic scenarios using autore-
gressive token prediction. By enabling realistic, reactive, and scalable traffic simulation, InfGen has
the potential to significantly advance the development and validation of autonomous driving (AD)
systems. This includes improving the robustness of motion planning policies, facilitating rare event
training, and supporting data augmentation in reinforcement learning pipelines.

Positive Societal Impacts. InfGen’s ability to generate diverse and reactive traffic scenes can
accelerate the safe deployment of AD systems. More robust planners may reduce traffic accidents,
improve traffic efficiency, and enhance accessibility for populations with limited mobility. Further-
more, open-sourcing our model and implementation encourages broader research into safety-critical
domains without requiring access to expensive real-world data collection or proprietary platforms.

Potential Negative Impacts and Misuse. As a scenario generation tool, InfGen could be misused
to simulate rare or malicious driving scenarios for purposes such as adversarial testing without
disclosure or crafting unfair benchmarks. Additionally, if used to train agents without proper safety
constraints, generated scenarios might lead to overfitting to synthetic patterns or unsafe generalization
in deployment. There is also a potential for use in generating deceptive traffic scenes in virtual testing
or regulatory submissions.

Mitigations. We emphasize that InfGen is not a closed-loop SDC driving policy and does not dictate
real-world behavior. However, we encourage the community to adopt responsible use practices. This
includes transparent reporting of synthetic data usage, gating scenario difficulty and validity when
used in planner evaluation, and coupling InfGen with validation on real-world data. Our open-source
release will include documentation clarifying its intended research uses and limitations.
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B Extended Related Work

B.1 Motion Prediction and Simulation Agents

Motion prediction models aim to forecast future trajectories of traffic participants given their past
states, road maps, and traffic signals. Classical approaches often treat agents independently [39, 4,
401 1491, while more recent models incorporate joint interaction modeling [26} 50} (8} 42} 154} |57, 58]].
Transformer-based models have further advanced this field by learning to autoregressively predict
motions in open-loop or semi-closed-loop setups [[17} 138} 31,115,163} 15922, 156]]. In parallel, diffusion
models have been introduced as an alternative generative paradigm, including MotionDiffuser [16]
and SceneDM [[14} 15]]. Despite impressive progress, these methods operate under the assumption that
agents set is fixed and focus solely on trajectory rollout. They do not modify or expand the initial scene
configuration, limiting their use in dynamic simulation. InfGen addresses this limitation by jointly
modeling both agent state generation and motion rollout, supporting dynamic agent populations
during long-horizon simulation. Furthermore, because they require full access to past and current
states for all agents, these motion models are not directly applicable to the scenario generation setting.

B.2 Scenario Generation

Scenario generation involves synthesizing both initial conditions and future evolutions of traffic
scenes. Procedural approaches [20} 24} 9} 162, 19, 2| rely on hand-coded rules or templates, which
limits realism and diversity. Many learning-based works adopt a two-stage pipeline: static scene
generation followed by motion forecasting [[10, {46} 45,3} 132, [1]]. For example, SceneGen [46]] and
TrafficGen [[10] autoregressively add agents based on map anchors, followed by state refinement.
InfGen builds on this idea but unifies state and trajectory generation into a single model, promoting
global consistency and flexible editing. Diffusion-based methods have also been proposed for full-
scene generation [25} 41} [7,137], including CTG [61] and CTG++ [60] which generate dense scenes
under language guidance. However, these models still separate static and dynamic phases, or generate
entire scenes in a single forward pass, limiting interactivity. UniGen [27] improves on prior work by
jointly generating initial states and motion trajectories. However, it generates scenes in a fixed order
(e.g., agent A’s initial state and trajectory before agent B’s state), breaking temporal causality and
making realistic interaction modeling difficult. Moreover, its agent-centric representation requires
expensive replanning to maintain closed-loop consistency. In contrast, InfGen generates agent states
and motions in a unified token sequence using a single autoregressive model. This enables realistic,
causal interactions and allows agents to enter or leave the scene dynamically.

B.3 Data-Driven Simulation

Data-driven simulation environments such as Nocturne [48]], Waymax [13]], MetaDrive [20]], Sce-
narioNet [21], and GPUDrive [18]] enable scalable simulation by replaying real-world logs. While
preserving behavioral realism, the traffic flows in these environments are non-reactive: deviations
from the logged trajectory, e.g., when the ego vehicle brakes earlier, can result in implausible inter-
actions like rear-end collisions. Recent advances integrate generative models to create reactive and
closed-loop simulation environments. Vista [[12] predicts future high-resolution images and supports
interactive control, while DriveArena [S2] combines a neural renderer with a physics-based simulator,
forming a tight perception-action loop. These approaches focus on photorealistic sensor simulation,
helping bridge the sim-to-real gap for perception modules.

In terms of interaction-level simulation, works like STRIVE [35] and CAT [53] generate safety-critical
scenarios for safety validation. MixSim [43]] uses a goal conditioned policy and actively resimulate
different possible goals to enable closed-loop simulation, but its computational cost scales poorly
with the number of agents, limiting real-time use. CtRL-Sim [36] applies offline RL to train reactive
agents for use in Nocturne, enabling goal-directed, controllable traffic behavior. InfGen complements
these works by acting as a fast, flexible scenario generation model that not only generates trajectory
but also initializes new agents.
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C Model Architecture Details

This section presents the details of InfGen: a unified transformer framework that jointly generates
traffic-light states, agent initial states, and agent motions in a single autoregressive token sequence.

Our Insights. We cast scenario generation as a next-token prediction task: map tokens (<MAP>) are
followed each step by traffic-light tokens <TL>, agent-state tokens <AS>, and agent-motion tokens
<MO> and form a single autoregressive token sequence:

Xy = [<MAP>; (<TL>, <AS>, <M0>)y; (<TL>, <AS>, <MO>)s;. . |.

Given all tokens x; generated so far, the model predicts the categorical distribution of the next token
po(z: | Xx<¢) and samples x;. Following this idea, we develop InfGen learning one transformer that
sees the whole history, enabling fine-grained, closed-loop generation and smoother downstream RL
integration.
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Figure 5: InfGen model architecture.

C.1 Encoder-Decoder Structure

InfGen adopts the encoder-decoder architecture. A lightweight encoder embeds up to 3000
map-segment tokens—produced by slicing each lane-centerline into < 10 m segments—into a
set of key/value vectors H™¥. The output map tokens are later used for cross attention. A decoder
autoregressively generates all non-map tokens. In every layer of the decoder, we first conduct self-
attention within the input token sequence, where a group attention causal mask illustrated in Figure 6]
is applied. Then we conduct cross-attention between the dynamic tokens and the map tokens.

Prediction Heads. As shown in Figure[3] InfGen uses a shared decoder trunk followed by distinct
output heads for each token group. Each head projects the decoder hidden state to a task-specific
vocabulary or output space.

(1) Traffic light head is A MLP layer Head TL({<TL>; ; } ') € RVm**4 maps the decoder output to
one of four discrete states: {green, yellow, red, unknown}.

(2) Agent state Head is a nested module with several sub-heads and a agent state transformer. We will
discuss this in appendix D] Overall, in the agent state generation, two MLPs the agent type prediction
head HeadType and the map ID predictor HeadMapID as well as a tiny transformer the Relative State
Head are involved.

(3) Motion Head: The motion head predicts each agent’s control input as a single categorical token
from a 2D discretized space of acceleration and yaw rate. Specifically, we define a flat vocabulary,
where each token corresponds to a unique pair (a,w) drawn from uniformly quantized grids .A and
. We apply a single linear classifier: HeadMO(<M0>; ;) € R"%%9  followed by a softmax layer to
obtain the probability distribution over control tokens. At inference time, we decode the token index
using nucleus sampling and map it back to the corresponding (a,w) pair via a deterministic lookup
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table. The predicted control input is then passed through the kinematic update rule to compute the
agent’s new state.

Each prediction head operates only on its associated tokens, enabled by a token-type embedding and
mask within the decoder. This modular structure allows InfGen to handle heterogeneous outputs
while maintaining unified sequence modeling.

C.2 Token Embeddings and Types

Map Tokens <MAP>. A map region is represented as a polyline, consisting of NV, ordered 2D
points with semantic attributes. We denote the set of A/ map regions in the scene as a tensor Spp €
RM>*nxC \where C is the per-point feature dimension (e.g., 2D position, road type one-hot). We adopt
the PointNet-like [33] polyline encoder yielding map region features {p; = PolyEnc(S,ﬁgp) M.
These are then passed into the InfGen decoder with full self-attention across map regions:

H™ = InfGeneye([p1;. .. ;par]) € RM*4, 7

To support cross-attention in the decoder, we assign each map region a unique discrete index ¢ (its
MaplD), and embed it into the map token.

<MAP>; = H™[{] 4+ EmbMapID(i) ® g;,i = 1,..., M. 8)

where EmbMaplD is a learned embedding table. ® denotes we will record the geometric information
g; of map region 7, which includes its center position and heading, and use it to participate the relative
attention. We defer the discussion of relative attention to appendix [C.3]

These enriched map tokens {<MAP>;} are kept fixed during simulation and serve as static cross-
attention keys/values for all decoder layers. Each dynamic token (e.g., <TL>, <AS>, <M0>) performs
cross-attention to the map encoder output to incorporate geometric context.

Traffic light Tokens <TL>. Each traffic light is represented by a single token per step. We encode
the traffic light’s discrete state (green, yellow, red, or unknown), its unique identifier, and the map
region it resides in \;. Formally, the traffic light token for light k at step ¢ is constructed as:

<TL>j ; = EmbState(sy ;) + EmbTLID(k) + EmbMapID(\) ® g,k =1, ..., N1, 9)

where s, ; € {G,Y,R, U} is the signal state, )\, is the discrete map region ID the light is attached
to, and gy, is its temporal-geometric context (position, orientation and current timestep). As with
map tokens, ® indicates that g, participates in relative attention (see appendix [C.3). All traffic light
tokens are generated in a single batch at each step, with the output obtained via a 4-way classification
head.

Agent-state Tokens <AS>. For every active agent—including newly injected agents at step
t—InfGen generates a set of four agent-state tokens that collectively encode the agent’s dynamic and
semantic state. These states include positions, headings, velocities, shapes and agent categories. We
defer the detailed tokenization and inference process of agent-state tokens to appendix

Motion Tokens <MO>. To model agent motion, InfGen predicts a tokenized instantaneous control
input for each agent, parameterized as a pair of acceleration and yaw rate: (a,w) € A x Q, where A
and () are discretized into 33 uniform bins respectively, covering acceleration and yaw rate ranges
observed in training data. This results in a total of 33 x 33 = 1,089 motion classes. Given an agent’s
current state at time ¢: position (z;, y:), heading v;, and speed vy, the next-step state is predicted
using a first-order bicycle-model update over a small timestep At (we use At = 0.5s):

Vi1 =P +w- AL, (10)
Vep1 = U + a - At (11)
Tyl = Ty + Vg1 - cos(Py1) - At (12)
Yer1 = Ye + Vegr - sin(hygr) - At (13)

We assume zero lateral slip and no wheelbase constraint (i.e., velocity direction aligns with heading).

To obtain the ground-truth motion token for agent 7 at step ¢, we enumerate all 1,089 candidate
(a,w) combinations, apply the above update rule to generate candidate next poses, and evaluate them
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against the true bounding box at ¢ + 1. Specifically: (1) For each candidate motion, compute the
predicted pose (z¢+1, Yt+1,Wi+1)- (2) Generate the 4 corners of the agent’s oriented bounding box
based on its shape and predicted pose. (3) Compute the Average Corner Error (ACE) as the mean
¢4 distance between predicted and ground-truth corners. (4) Select the (a,w) pair minimizing ACE
as the ground-truth label ;.

This strategy ensures that both position and heading are tightly aligned during supervision. Compared
to velocity- or displacement-based tokenization schemes [51} 131], our control-based formulation
provides a smoother interpolation of motion intent and better supports maneuver modeling such as
lane changes and turns. It also enables compact tokenization with high spatial precision.

Each motion token <MO> corresponds to one agent at a specific timestep and encodes both its control
input and identity-related context. Formally, given an agent ¢ at step ¢, we define its motion token
embedding as:

<M0>; ; = EmbMotion(u;)+EmbType(c;)+EmbAID(7)+EmbVel(v;)+EmbShape(s;) ®g; (14)

where ; is the GT motion label selected from 1,089 candidates, c; is the categorical for agent type
(e.g., vehicle, pedestrian, cyclist), ¢ is agent’s ID, v; is a 2D vector representing the agent velocity
in local frame, and s; is a 3D vector of agent’s shpae (length, width, height). g; is a 4D vector
encodes temporal-geometric information (agent’s current global position, heading and time step).
At an agent’s first appearance, a special label g, is used to get <M0>. For continuing agents, the
input motion token is simply the token with previously predicted motion label ; ;1. This enriched
representation ensures that motion tokens carry sufficient context for the decoder to generate informed
predictions—capturing both semantic (who the agent is) and physical (how it moves) characteristics.
The geometric context g; also enables relative attention with map and agent tokens, as discussed in

appendix
C.3 Relative Positional Attention

Let z;, x; € R? be two input tokens in a Transformer layer, where token z; attends to token ;. Let
their geometric or temporal relation be denoted as (Ax;;, Ay;;, Ay , At;;), computed from their
respective spatial anchors and time indices.

In the attention mechanism, we compute the following projections:
¢ = MLPq(z;), kj =MLPk(z;), wv; =MLPy(z;), (15)
¢i = MLPq/ (;), 1ij = MLPw(Azij, Ayij, Avij, Atij), (16)

where ¢;/q}, kj,v; € R are standard content-based query, key, and value vectors, while r;; € R~
encodes the relation-aware components.

The final attention score is computed as:

1 T T
Qg = ﬁ (Qi kj + q’i Tij) + mij, a7
where m;; € {—o00,0} is an attention mask determined by causal constraints and group-level
attention rules (see Figure[6). This formulation introduces spatial-temporal awareness by allowing
each query to attend differently depending on its learned relation to the key, improving inductive bias

and facilitating structured interactions in traffic scenes.

KNN pruning for scalable attention. To improve scalability in large scenes, we optionally apply
K-nearest neighbor (KNN) masking on attention if both query and key tokens carry relative positional
information. Specifically, when both tokens are equipped with geometric anchors g; and g;, we
compute Euclidean distance in their x-y position and retain only the top-k closest keys for each
query. This reduces the attention cost from O(N?) to O(Nk), while still preserving local interactions
that matter for driving behavior. For tokens lacking spatial grounding (e.g., <S0S> or <TYPE>), full
attention is retained.

C.4 Token Group Attention Mechanism

As shown in Figure[6] we enforce structured inter-step attention via a causal group mask: (1) Tokens
within the same group can attend to each other freely (e.g., motion tokens attend to other motion
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Figure 6: The attention mechanism in InfGen. Tokens at each step are grouped into traffic-light
(purple), agent-state (blue), and motion (green) tokens. Within a timestep, attention flows from earlier
groups to later groups, enforcing semantic causality. Cross-timestep attention allows history tokens
to influence current predictions. Empty regions represent masked attention.
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Figure 7: The design of agent state generation. (A) Agent State Tokens for an agent has 4 tokens.
We first predict the agent type, then select a map ID where the agent resides on, then predict the
detailed states. (B) We predict the ID of the map region, which usually is a lane segment with 10m
long, where the agent resides on. (C) Feeding in the Map ID, we use the output token as the condition
and call the Relative State Head, which is a tiny transformer, to autoregressively generate the relative
agent states, including shape, position, heading and velocity.

tokens at the same step). (2) The tokens belong to the same object (agent or traffic light) in later
step can attend to the tokens belonging to the same object eailier. (3) Every group of token can
attend to some existing contexts, for example <MO>can attend to current <TL>. Figure [6]illustrates
the structured attention mask applied in the decoder. Each quadrant corresponds to a token group at
timestep ¢ = 0 or t = 1 attending to other tokens. The diagonal blocks represent full self-attention
within each group, while the off-diagonal regions encode allowed causal flows across groups. For
example, at ¢ = 1, motion tokens can attend to agent-state and traffic-light tokens from both t = 0
and t = 1, but not vice versa. This reflects the natural temporal and semantic ordering in generative
traffic scenes and helps enforce proper dependency structure during autoregressive decoding.
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D Agent State Tokenization

As shown in Figure[7] (A), each agent i present at step ¢ is represented by four ordered tokens
(<S0A>;, <TYPE>;, <MS>;, <RS>;);.

Here <S0OA> is the start-of-agent flag, <TYPE> is the categorical token in {veh, cyc, ped}, <MS> is the
index of a map segment, <RS> is the relative states of agent w.r.t. to the selected map segment.

Concretely,
<S0A> = Emblntra(47) + EmbAID(i) + EmbSOA, (18)
<TYPE> = Emblntra(4i + 1) + EmbAID(7) + EmbType(c;), (19)
<MS> = Emblntra(4i + 2) + EmbAID(%) + EmbType(c;) + EmbMapID(\;) ® g(<MAP>},),
(20)
<RS> = Emblntra(4i + 3) + EmbAID(%) + EmbType(c;) + EmbMapID()\;) + EmbRS(r;) ® g;,
2D

Emblntra(4i + j) encodes the intra-step offset of the j-th token within agent ’s group, EmbAID(i)
provides a consistent agent identity embedding reused across steps, EmbType(c;) represents the
agent’s semantic class, EmbMapID(\;) embeds the discrete map region index \;, EmbRS(r;) embeds
the agent’s relative state r;, including position, heading and velocity offsets with respect to the selected
map region and the agent’s shape, g(<MAP>),) retrieves the geometric anchor (position, heading
and current step) of the selected map region, which participates in relative attention, g; denotes the
generated agent’s current temporal-geometric information.

As shown in Figure 7| (B), by reading <TYPE>, the model will select one of the map segment A;. This
is done by applying a map ID head on the output token and conduct softmax sampling on the output
logits:

A; ~ Softmax(HeadMapID (InfGenDec(<TYPE>))). (22)

As illustrated in Figure[7](C), after selecting a map region \; and generating the associated <MS>
token, we condition on the decoder output of <MS> to generate the agent’s full kinematic and shape
attributes. Specifically, a dedicated module called the relative state head—a small Transformer
decoder with AdaLN [30] normalization—is used to autoregressively generate a sequence of 9 tokens,
each representing a field in the agent’s relative state vector:

r; = (SOSJ,wJL,u,v,6@[1,vx7vy), (23)

where SOS is the start-of-sequence indicator, (I, w, h) is the agent’s physical dimensions (length,
width, height), (u, v) is the longitudinal and lateral offset from the centerline of map region \;, §1)
is the heading residual relative to the region orientation, (v, vy ) is the velocity whose direction is
in the frame of the map segment. Each field is discretized into 81 uniform bins and modeled as a
classification problem.

We should mention that there are two special tokens as shown in Figure[5] the “agent state generation
starts” and “agent state generation ends” token, before and after the agent state generation of all
agents.

During training, teacher forcing is used to feed ground-truth relative state tokens, while at inference,
we apply softmax sampling to decode each dimension sequentially. Within the relative state head, the
input at each decoding step consists of the embedding of last selected action out of the vocabulary,
added to a learned positional embedding that encodes its index in the sequence. This structure enables
fully autoregressive decoding over the 9-token relative state sequence. Unlike prior methods such as
TrafficGen [10], which generate all agent state attributes simultaneously in a flat and unstructured
output head, InfGen decomposes the generation into an ordered, interpretable sequence. This is
critical for ensuring semantic and physical consistency. Specifically: Agent type must be sampled
first, as it determines downstream constraints on map region validity, shape bounds, and behavior
priors. Map region selection follows, as it anchors the agent in the environment and defines the
frame for relative offset decoding. Relative position (u, v) is then generated in the local frame of the
selected lane segment. Heading and velocity are decoded last, conditioned on the selected geometry
and pose to avoid implausible combinations. Without this ordered structure, flat decoding often
produces invalid combinations—e.g., a pedestrian on a highway lane or a vehicle with inconsistent
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orientation and lateral velocity. Our sequential decoding mirrors the causal structure of how agents
are realistically introduced into traffic scenes, improving robustness and realism in downstream
simulation. This compact, conditioned decoding ensures that agents are initialized in contextually
appropriate map regions with semantically valid shapes, poses, and velocities. The output relative
state tokens are then concatenated and passed back to the main decoder to form the final <RS> token.

Real-world conversion. The tokenized agent state is decoded into a global pose and velocity using
the geometry of the selected map region. Given the region pose (xx, Y, ¥» ) and the predicted relative
offset (u, v, 89, v, vy) in the local frame of the segment, the agent’s global state is computed as:

T =Ty + ucosyy —vsinyy, 24
Y =yx+usingy +vcosiy, (25)
=1y + 6, (26)
velobal — 4y cos iy — vy siny, (27
v%lObal = Vg Sin Yy + Uy COS Y. (28)

At inference time, new agent-state token groups are generated via autoregressive sampling. If the
resulting (z,y) position lies within an occupied region or causes overlap with existing bounding
boxes, the sampled <MS> or <RS> tokens are rejected and resampled up to a fixed number of retries.
A maximum of N,y agents can be injected per step.

For existing agents that persist from the previous timestep, InfGen bypasses the relative state predic-
tion head and instead deterministically generates their agent-state token group using their observed
global state. Specifically, we first identify the most likely map segment \;. Then we compute the
relative state (u, v, 9, v,, v,) by transforming the agent’s global pose and velocity into the local
frame of \;. These values are used to obtain the corresponding <RS> token. The four agent-state
tokens—<S0A>, <TYPE>, <MS>, and <RS>—can then be constructed directly via embedding lookup
and teacher forcing. This allows InfGen to seamlessly unify dynamic agent injection (via sampling)
and agent motion continuation (via projection), ensuring closed-loop autoregressive simulation across
variable-length agent sets.

E Training and Inference Details

E.1 Dataset and Preprocessing

Map Preprocessing. We preprocess the vectorized HD map into a fixed-length token representation
by segmenting the raw polylines into discrete map segments. Each polyline is split into segments of
approximately 10 meters in length. To limit memory and computational cost, we cap the total number
of segments to 3000 per scene. If the number of segments exceeds 3000, we sort all segments by
their Euclidean distance to the SDC’s current position and retain the closest 3000 segments.

Each segment consists of up to 30 points and is represented by a 27-dimensional feature vector per
point. The segment-level position and heading are computed by averaging the position and heading of
all points in the segment. The point-level features include geometric information, heading encoding,
and semantic labels derived from MetaDrive map types. Specifically, each point feature contains:

* Start and end coordinates: 6 dimensions (Zs, Ys, Zs, Te, Ye, Ze)

* Direction vector: 3 dimensions (dz, dy, dz)

* Heading: raw heading, sine, cosine (3 dimensions)

* Point length (1 dimension)

* Binary map type indicators (12 dimensions): is_lane, is_sidewalk,
is_road_boundary_line, is_road_line, is_broken_line, is_solid_line,
is_yellow_line, is_white_line, is_driveway, is_crosswalk, is_speed_bump,
is_stop_sign

* Segment length (1 dimension)

¢ Valid mask (1 dimension)

21



Formally, the full feature vector for each map point is a 27-dimensional vector:
f - ['rsv yS? Zsa Jje, y€7 267 dl‘, dy7 dZ7 97 Sin(e)? 008(9)7 la tl? ] t127 L7 mL (29)

where [ is the segment length, ¢; are binary indicators for map semantics, L is total road length,
and m is a binary mask indicating validity. The processed segments are stored as a tensor of shape
[M, 30, 27] accompanied by a binary mask of shape [M, 30] for downstream consumption in the
Transformer encoder.

Traffic Light Preprocessing. We preprocess traffic light tokens from the raw data by extracting
their spatial and semantic states over time and aligning them with the map representation. As we
discussed in appendix for each traffic light, we will prepare this information:

¢ the traffic light ID (index),

* the map segment index it is attached to,

* the traffic light state (semantic),

* the position of its stop point (spatial),

* and its heading aligned with the associated map segment.

The ground truth prediction for a traffic light token at each timestep is its state in the next step,
formulated as a 4-way classification problem (unknown, green, yellow, red).

Agent and Motion Preprocessing. We only select agents that are valid at ¢ = 10, which is
designated as the “current” step in Waymo Open Motion Dataset (WOMD).

Agents are reordered based on type so that vehicles appear first, followed by pedestrians and then
cyclists.

To improve training efficiency, we introduce a configurable maximum agent count N. If a scene
contains more than N agents, we rank all agents by their cumulative movement distance and retain
the top-/NV most dynamic ones. The remaining agents are masked out at all timesteps, reducing the
number of tokens processed per scene.

For each agent, we extract the following attributes:

» Agent ID (used for a dedicated ID embedding),

» Agent type (vehicle, pedestrian, or cyclist),

 Agent shape (length, width, height) at the current timestep,

* Agent position and heading at each timestep (used to locate tokens spatially),
* A 2D velocity vector in the agent’s local frame.

* The motion label in 33 x 33 + 1 = 1090 candidates (one of them is fisart)-

This information is sufficient for constructing motion tokens as described in the model architecture.
Agent motion labels are generated following the tokenization scheme in appendix [C.2] At the first
timestep when an agent becomes valid, a special start label pig, is used to generate its first motion
token <MO>. For subsequent steps, the model uses the previous token p; ;1 as autoregressive input.
The ground truth motion label is defined as the motion label at the next step. We skip loss computation
for any motion token if the agent is invalid at the current step or if the next-step label is unavailable
due to the agent becoming invalid at the following timestep.

Agent State Ground Truth Preprocessing. Agent state tokens are used to autoregressively generate
new agents into the scene during scenario generation. These tokens encode where, what, and how to
instantiate an agent within the current simulation state.

At each sparse timestep (sampled every 5 steps in WOMD), we iterate over all valid agents and
compute token values and features as follows:

* Closest Map ID: For each agent, we identify the nearest valid map segment based on Euclidean
distance and relative heading difference. Only map features with angular deviation less than 90°
are considered valid.

» Relative Feature Encoding: The agent’s state is expressed as a 8D vector relative to the closest
map segment:
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2D position offset rotated into the local map frame,

heading difference relative to the segment heading,

velocity vector rotated into the map frame,

agent shape (length, width, height).
» Agent ID: Each agent is assigned a unique ID from 0 to N — 1, where NV is the number of agents
in the scene.

* Intra-step Index: We assign each token a unique intra-step index in {0,..., N x 4 + 1} to support
position embeddings for agent state autoregressive generation.

» Agent Type: The semantic category of each agent (e.g., vehicle, pedestrian, cyclist) is included as
a discrete token input.

The relative feature of the agents are also discretized into 81 uniform bins and serve as the input as
well as the GT for the Relative State Head. These components are later embedded and combined via
additive token fusion as described in appendix [D]to form the final agent state token representation.

E.2 Tokenization Hyperparameters

All dynamic tokens in InfGen are represented as discrete entries in their respective vocabularies, akin
to words in a language model. Each token type has a dedicated tokenization scheme with different
vocabulary sizes and resolution bounds.

Traffic Light Token. Traffic light tokens represent the current state of a traffic signal. They are
selected from a fixed vocabulary of 4 discrete states:

¢ 0 — Unknown,

e 1 — Green,

e 2 — Yellow,

* 3—Red.

Motion Token. Motion tokens discretize the space of continuous action commands. Each motion
token corresponds to a tuple (a,w) where a is acceleration and w is yaw rate. Both are quantized into
33 bins linearly spanning their respective ranges:

* Acceleration a € [—10,10] m/s?,

* Yaw rate w € [~ 3, 7] rad/s.
This results in a vocabulary of 33 x 33 = 1089 regular motion tokens, plus one special L token,

yielding a total vocabulary size of 1090.

Agent State Token. Agent state tokens are composed of three tokens:

» Agent Type: chosen from 3 categories:

— 0 — Vehicle,
— 1 — Pedestrian,
— 2 — Cyclist.

* Map ID: selected from up to 3000 valid candidate map segments per scene.

» Relative State Feature: an §-dimensional vector. Each bin is indexed into a shared vocabulary
of size 81 per dimension, and all attributes are tokenized independently. The binning bounds are:

position_x, position_y € [—10,10] m
velocity_x € [0,30] m/s
velocity_y € [—10, 10] m/s
heading €[-5, 5] rad
length € [0.5,10] m
vidth € [0.5,3] m
height € [0.5,4] m
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E.3 Model Training and Inference Details

Loss Function. All prediction heads in InfGen are trained using the standard cross-entropy loss.
For motion and agent state tokens, loss is only applied to valid entries. Specifically, we exclude tokens
if the agent is invalid at the current timestep or if the corresponding ground truth (e.g., next-step
motion) is undefined.

Training Schedule. InfGen is trained in two stages:

* Pretraining: We first train a base model using only traffic light and motion tokens. The agent state
decoder is disabled during this phase.

¢ Finetuning: We then finetune the pretrained model with the agent state decoder enabled, jointly
predicting agent state, traffic light, and motion tokens.

Pretraining runs for 30 epochs with a batch size of 4, while finetuning runs for 5 epochs with a batch
size of 1. Early stopping is applied in the finetuning phase if the minJADE motion metric begins to
degrade. We use the AdamW optimizer with a learning rate of 0.0003, cosine decay schedule, 2000
warmup steps, no weight decay, and gradient clipping with a max norm of 1.0. During training, we
allow maximally 36 (pretraining) or 28 (finetuning) agents in a scenario to avoid GPU running out of
memory. During inference of course we allow maximally 128 agents.

Hardware. All models are trained using 8 NVIDIA RTX A6000 GPUs. Pretraining takes ap-
proximately 5 hours per epoch, while finetuning takes about 12 hours per epoch due to the added
complexity and reduced batch size.

Inference. At inference time, we sample motion tokens using nucleus sampling with topp = 0.95.
For all other token types (e.g., traffic light, agent state), we use softmax sampling.

Model Architecture. The encoder consists of 2 layers and the decoder has 4 layers. The model
uses a hidden dimension dpoqe = 128 with 4 attention heads. The full model has approximately
4.6 million parameters, while the base model (excluding agent state components) has 3.3 million
parameters.

E.4 Reinforcement Learning Setup

MetaDrive RL Environment. We use MetaDrive [20] ScenarioEnv, which supports loading
scenario descriptions (SD) generated by ScenarioNet [21]. Since InfGen also takes SD as input, it is
straightforward to implement a bidirectional converter to integrate InfGen outputs into MetaDrive’s
simulation environment.

To enable closed-loop training, we implement a pipeline that converts predicted agent states from
InfGen into ScenarioNet SD format. MetaDrive APIs are then used to set the simulation scenario
dynamically. During training, we maintain a buffer that stores the ego agent’s past trajectory when
it previously encountered the same scenario. This trajectory is embedded into the SD before being
passed to InfGen. During InfGen inference, we teacher-force the ego agent’s states and actions,
generating a scenario that reflects the most recent policy behavior. The resulting SD is then sent back
to MetaDrive for simulation and policy training.

Task Setting. The task is defined as following the trajectory of the self-driving car (SDC) while
driving as fast as possible and avoiding collisions. In the SD sending to MetaDrive, we always
overwrite the SDC’s trajectory by the original trajectory, thus the reward and route completion are
always computed against the GT SDC trajectory.

Observation Space. The RL agent receives the following observation at each timestep:

1. A 120-dimensional vector representing lidar-like point clouds within a 50 m radius around the
agent. Each value lies in [0, 1] and encodes the normalized distance to the nearest obstacle in a
specific direction, with added Gaussian noise.

2. A vector summarizing the agent’s internal state, including steering, heading, velocity, and deviation
from the reference trajectory.
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3. Navigation guidance in the form of 10 future waypoints sampled every 2 m along the reference
trajectory, transformed into the agent’s coordinate frame.

4. A 12-dimensional vector for detecting boundaries of drivable areas (e.g., solid lines, sidewalks)
using similar lidar-based point clouds.

The ultimate observation is a 161-dimensional vector. The setting follows the original ScenarioEnv
setting [21].

Action Space The policy is an end-to-end controller producing a continuous two-dimensional
action vector a € [—1,1]2, which is scaled and clipped into throttle/brake force and steering angle
commands.

Reward Function The total reward is composed of four terms:
R= C1 Rdisp +c2 Psmooth + CB-Pcollision + Rterm' (30)
* Displacement reward: Rgis, = d; — d;—1, where d; denotes the longitudinal progress along the
reference trajectory in Frenet coordinates.

* Smoothness penalty: Pynoon = min(0, 1/v; — |a[0]|) penalizes sudden steering at high velocity vy,
where a[0] is the steering control.

* Collision penalty: Peopiision = 2 for collisions with vehicles/humans, and 0.5 for static objects (e.g.,
cones, barriers).

* Terminal reward: Ry, = +5 for successful arrival, —5 if the agent ends > 2.5m from the
reference trajectory.

We set c; = 1, co = 0.5, and c3 = 1 in all experiments.

Termination Conditions and Evaluation Episodes terminate under the following conditions:

1. The agent deviates >4m from the reference trajectory (out of road).

2. The agent reaches its destination (success).

3. The agent fails to complete the episode within 100 steps (the Waymo scenario typically has 91
steps).

Evaluation Metrics: Policies are evaluated on a held-out validation set of 100 real-world scenarios
from the WOMD validation set. We report:

1. Average Episodic Reward: Total accumulated reward.

2. Episode Success Rate: Fraction of episodes that terminate successfully (i.e., reaching goal without
major violation).

3. Route Completion Rate: Fraction of the predefined route (from GT SDC trajectory) completed per
episode.

4. Off-Road Rate: Fraction of episodes in which the agent deviates off-road.
5. Collision Rate: Fraction of the episodes that have collisions.
6. Average Cost: Combined penalty for collisions and off-road violations.

RL Training. We adopt the TD3 algorithm [11]] implemented in Stable-Baselines3 [34]. The
training is performed in a continuous control setting using the following hyperparameters:

* learning_rate: 1 x 107*

* learning_starts: 200 steps

* batch_size: 1024

* tau: 0.005 (for soft target updates)

* gamma: (.99 (discount factor)

* train_freq: 1 (update after every step)

» gradient_steps: 1 (one gradient update per environment step)

* action_noise: None
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F Additional Results

Table 4: Waymo Sim Agents Challenge (WOSAC) results on the 2025 test set leaderboard. For all
metrics except minADE, higher is better.

Model Realism LinSpd LinAcc AngSpd AngAcc DistObj CollLik TTC  DistEdge Offroad minADE

UniMM [22]  0.7829  0.3836  0.4160  0.5168  0.6491  0.3910 0.9680 0.8293  0.6791 0.9505 1.2949
CAT-K [56] 0.7846 03868 0.4066  0.5203  0.6588  0.3922  0.9702 0.8302  0.6814 0.9524 1.3065
InfGen 0.7731  0.3778 0.4030 0.4232 05930 03873  0.9694 0.8272  0.6730 0.9467 1.4252

Table[dreports performance on the 2025 Waymo Sim Agents Challenge test set. InfG<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>