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ABSTRACT

Transformer-based trajectory predictors such as SMART(-tiny) and its fine-tuned variant SMART-tiny-
CLSFT reproduce well represented routine traffic with high realism, yet they degrade in sparsely
represented high-speed highway scenes. In the Waymo Open Dataset, fewer than one percent of
validation and test scenarios involve speed limits above 65mph; in precisely these situations both
transformers drift beyond lane boundaries and even leave the roadway. We therefore pair them with
cogniBOT - a mechanistic cognitive architecture model - in a simple scene-based ensemble dubbed
comBOT. Whenever all actors in a scene occupy lanes faster than 65mph, comBOT delegates the
rollout to cogniBOT; otherwise it relies on SMART. This hybrid reduces off-road and collision errors,
illustrating how mechanistic cognitive models can systematically correct the longtail problem in large
data-driven models.

1 Introduction

A currently popular approach to model human behavior in traffic is to implement purely data-driven models using
machine learning techniques, such as transformer networks. These methods can reproduce traffic behavior in a realistic
way, however, due to the complexity of human behavior in traffic, a very large amount of data is required to train the
networks. While large amounts of traffic data for standard driving situations are available, it is questionable whether
sufficiently large amounts of data will be available for all driving scenarios, especially critical driving situations such
as accidents and near-accidents, as these kinds of situations are extremely rare. However, valid simulation of critical
driving situations is of the utmost relevance for safeguarding autonomous vehicles.

To understand these data-driven models better we analyzed two prominent examples of transformer models used in the
Waymo Open Sim Agents Challenge, SMART (Wu et al.|[2024) and SMART-tiny-CLSFT (Zhang et al. 2024}, which
combines SMART with a CAT-K rollout fine-tuning strategy. We compared both models to our mechanistic cogniBOT
cognitive architecture model which implements general principles of human sensorimotor information processing tuned
to fit behavioral data (Brostek et al. [2024]).

Unexpectedly, we found that both SMART models showed large lane overshoots and offroad driving (Figure[l] B) for
highway scenarios with speed limits of 65 mph and larger. These scenarios are rather sparsely represented in the dataset
with about only 1% in the validation and testing dataset. Our cogniBOT model, on the contrary, is working with an
intrinsic representation of lane boundaries and capable of keeping the lane also at higher speed (Figure[I] A).

Within the ’comBOT” project we tested whether the combination of a SMART model with our cogniBOT could improve
the overall metrics performance in the Sim Agents Challenge.
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Figure 1: Comparison between trajectories of cogniBOT (A) and SMART-tiny-CLSFT (B) for scenario
a428e7a7676c2b52. Dashed gray and black lines represent lane and road edges, respectively. Stars represent the

positions of sim agents during the 1 second history. Dotted lines represent the 32 8-second rollouts. Colored lines
represent sim agents that are directly evaluated, gray agents are not directly evaluated.

2 Methods

Both SMART implementations are publicly available. For SMART we trained the weights ourselves for 13 epochs. For
SMART-tiny-CLSFT a version of the weights (dated 05.02.25), graciously provided by Zhang et al. 2024, was used.

In both cases the ensemble model ’comBOT’ was constructed in the following way: If all agents in a scene were placed
on lanes with speed limits larger than 29 m/s it was classified as a highway scenario and the cogniBOT model was used
for the whole scenario. In all other scenarios SMART-tiny-CLSFT was used. This was done for testing and validation
datasets. We also combined cogniBOT with the classic SMART model for the validation set only (identified as comBOT
(SMART)).

The cogniBOT model integrates the strengths of rule-based and purely data-driven techniques to model road user
behavior. Our core idea is to embed established knowledge of human information processing within a cognitive
architecture. This architecture is composed of distinct yet interconnected models for perceptive, cognitive, and motor
sub-processes. By explicitly modeling these known sensorimotor and cognitive stages, we drastically reduce the
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Figure 2: The cogniBOT system architecture

number of free model parameters. This, in turn, lessens the dependency on large training datasets and enables our
models to generalize from common traffic situations to rare and critical events. Our behavior models are built upon this
neuro-cognitive framework, which explicitly simulates the sequential sub-processes transforming sensory input into
situation-aware actions. As depicted in Figure 2] these processes are organized into three primary functional groups.

The first functional group, visual perception, simulates the intake of environmental information by incorporating key
limitations of human vision. For example, the agent has a restricted field of view, which it compensates for with
simulated eye movements. These eye movements are governed by a sophisticated attention mechanism that balances
top-down influences (e.g., the driver’s current intent) and bottom-up signals (e.g., the sudden appearance of a vehicle
in the periphery). To realistically model the inherent inaccuracies of human perception, we introduce stochasticity.
For instance, noise is added to processed signals to simulate the natural decrease in visual acuity in peripheral vision,
ensuring the model captures a range of perceptual successes and failures.

Following perception, the cognitive processing modules interpret this information. The agent first constructs an internal
world model from the perceptual data - a representation containing only the objects and information it has actually
perceived and recognized. Explicitly modeling this stage allows us to capture characteristic human misjudgments, such
as the common overestimation of distance to vehicles in a rear-view mirror.

Drawing upon this internal model, the agent anticipates the future development of the traffic situation, predicting the
behavior of all other road users from its unique assessment. Another stage in cognitive processing where stochastic
variation and ’errors’ frequently occur are cognitive judgments and predictions of all kinds, such as when judging the
suitability of a gap when performing a lane change maneuver.

These predictions then form the basis for the agent’s decision-making, which is guided by a cost function that evaluates
potential actions by weighing competing goals, such as maintaining speed, ensuring a safe distance, and minimizing
accident risk. To account for the full spectrum of human driving behavior, the model also incorporates emotional states,
which allows us to simulate a wide range of driver archetypes, from relaxed “cruisers” to aggressive ’speeders.”

The final functional group is motor control, which simulates the physical execution of the chosen action (e.g., steering,
braking). This component is crucial for representing individual differences in motor performance, thereby capturing
characteristic behavioral variations between, for example, older and younger drivers.

The implementation of these modules leverages a range of technical approaches from theoretical neuroscience, control
engineering, and machine learning. For specific tasks like scene classification or trajectory prediction, we employ
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compact neural networks (e.g., MLPs, LSTMs). In contrast to monolithic systems, we favor smaller models with
approximately 1,000 parameters, which significantly reduces the complexity and allows them to be trained effectively
on synthetically generated data.

Consequently, the number of free parameters in the complete cogniBOT model is on the order of 100, substantially
lower than in purely data-driven approaches. The parameterization process leverages existing scientific knowledge:
physiological parameters, such as the field of view size or eye movement dynamics, are determined from established
findings in the academic literature, while behavioral parameters defining decision-making, such as preferred following
distance (see Fig. [3), are calibrated using data from traffic science research.

It is crucial to note that while the baseline SMART models were trained on the training dataset, the cogniBOT model
was not fitted to any data from the Waymo Open Dataset. Its parameters are based entirely on the external knowledge
sources described above (Brostek et al. 2024).

1.0+ 7y —— Filzek, 2002
= driveBOT

|

0.8

0.6 -

%

0.2 4

0.0 T T r T T
0.0 0.5 10 15 2.0 25

THW [s]

Figure 3: Distributions of time headway observed on German Autobahn (from Filzek 2003) and simulated by driveBOT
v1.3 (the car driver model based on the cogniBOT system architecture)

3 Results and Discussion

In the following we compare the metrics of the comBOT and comBOT (SMART) models to the SMART-tiny-CLSFT,
SMART and cogniBOT models. We start our comparison with the validation set (Table([I). Here we notice that both
comBOT models show a slight increase in realism meta-metric over the respective SMART models. This increase is in
both cases mostly accounted for by the improvement in offroad- and collision-likelihood. Both of these metrics are
greatly affected by trajectories that disregard lane boundaries.

When comparing comBOT to the official testing set (Table[2) performance of the latest SMART-tiny-CLSFT model
(Sim Agent Challenge Leaderboard, submission 11.04.2025), we see that there still is an improvement in offroad- and
collision- likelihood, however this does not carry forward to the overall realism meta-metric. Since cogniBOT itself is a
general model and not trained to the specific kinematics of the Waymo dataset, it shows a lower performance especially
in these aspects.

Even though the performance of comBOT is not able to outperform the results of SMART-tiny-CLSFT in the testing
dataset, it clearly shows a possible disadvantage of purely data-driven models. When a specific scenario type is
underrepresented in the dataset, this type of algorithm may produce highly unrealistic behavior for these scenarios.
These kind of overtraining effects are most likely to occur not only in the high-speed scenarios focused on in this study,
but must also be expected for other underrepresented types of traffic scenarios in the Waymo dataset,

The results of our comBOT study highlight how a hybrid approach can be used to advance the modeling of human
behavior in traffic. Further research will analyze how purely data-driven methods can be combined with mechanistic
models of cognitive processes to capture behavior in standard and underrepresented driving scenarios.
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Validation

. SMART-tiny-CLSFT SMART comBOT
Metric name (05.02.25) comBOT || ;3 0ochs) | (SMART)
Realism meta-metric 0.7845 0.7847 0.7571 0.7574
Linear Speed Likelihood 0.3858 0.3840 0.3362 0.3351
Linear Acceleration Likelihood 0.4064 0.4054 0.2740 0.2749
Angular Speed Likelihood 0.5182 0.5177 0.4691 0.4692
Angular Acceleration Likelihood 0.6596 0.6587 0.6137 0.6133
Distance To Nearest Object Likelihood 0.3912 0.3911 0.3652 0.3652
Collision Likelihood 0.9702 0.9706 0.9534 0.9538
Time To Collision Likelihood 0.8323 0.8321 0.8217 0.8216
Distance To Road Edge Likelihood 0.6825 0.6823 0.6484 0.6482
Offroad Likelihood 0.9516 0.9528 0.9360 0.9371
minADE 1.3215 1.3388 1.7700 1.7812

Table 1: Metrics for validation

Testing
Metric name SMART-tiny-CLSFT | comBOT | cogniBOT
Realism meta-metric 0.7846 0.7837 0.7015
Linear Speed Likelihood 0.3868 0.3802 0.1939
Linear Acceleration Likelihood 0.4066 0.4033 0.2610
Angular Speed Likelihood 0.5203 0.5181 0.3539
Angular Acceleration Likelihood 0.6588 0.6580 0.5278
Distance To Nearest Object Likelihood 0.3922 0.3906 0.2806
Collision Likelihood 0.9702 0.9703 0.9401
Time To Collision Likelihood 0.8302 0.8297 0.7888
Distance To Road Edge Likelihood 0.6814 0.6789 0.4903
Offroad Likelihood 0.9524 0.9525 0.8801
minADE 1.3065 1.3687 4.2599

Table 2: Metrics for testing

4 Attribution

This work was made using the Waymo Open Dataset, provided by Waymo LLC under the Waymo Dataset License
Agreement for Non-Commercial Use, available at waymo.com/open/terms. (Waymo Open Dataset: An autonomous
driving dataset|2019-2025)
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