
1

UniMM: Technical Report for Waymo Open
Sim Agents Challenge 2025

Longzhong Lin, Xuewu Lin, Kechun Xu, Haojian Lu, Lichao Huang, Rong Xiong, Yue Wang

Abstract—Simulation plays a crucial role in assessing au-
tonomous driving systems, where the generation of realistic
multi-agent behaviors is a key aspect. In multi-agent simulation,
the primary challenges include behavioral multimodality and
closed-loop distributional shifts. This technical report presents
UniMM, a unified mixture model framework for generating
multimodal agent behaviors. Crucially, we propose a closed-
loop sample generation approach tailored for mixture models to
mitigate distributional shifts. To extend the benefits of closed-
loop samples across a broader range of mixture models, we
further address the shortcut learning and off-policy learning
issues. UniMM achieves top-tier performance in the Waymo Open
Sim Agents Challenge (WOSAC) 2025. Complete details and
full experimental results can be found on the project webpage:
https://longzhong-lin.github.io/unimm-webpage.

I. INTRODUCTION

Simulation facilitates the assessment of autonomous driving
systems in a safe, controllable, and cost-effective manner. One
key to narrowing the gap between simulated and real-world
environments is the generation of human-like multi-agent
behaviors. The main challenges in achieving such realism
involve capturing the multimodality of agent behaviors and
addressing distributional shifts in closed-loop rollouts.

Recovering the multimodality of agent behaviors has been
extensively studied in motion prediction, where state-of-the-
art methods [1]–[5] predominantly employ mixture models.
Consequently, analogous models have been adopted for multi-
agent simulation [6]–[8], typically incorporating a winner-
takes-all continuous regression loss combined with a classifica-
tion term. More recently, inspired by GPTs [9], [10], a growing
number of studies [11]–[14] discretize agent trajectories into
motion tokens and apply a next-token prediction task. We
observe that GPT-like models can also be interpreted as
mixture models, where each mixture component represents a
discrete category. Therefore, we propose the unified mixture
model (UniMM) framework for multimodal behavior genera-
tion, which covers the mainstream continuous mixture models
and GPT-like discrete models.

In addition to behavioral multimodality, another major chal-
lenge of multi-agent simulation lies in distributional shifts dur-
ing closed-loop rollouts. To address this, we propose a closed-
loop sample generation approach for general mixture models,
drawing on the philosophy of DaD [15] and TrafficSim [16].
In an effort to enable closed-loop samples to benefit a wide

Longzhong Lin, Kechun Xu, Haojian Lu, Rong Xiong, and Yue Wang are
with Zhejiang University, China (e-mail: {linlongzhong2000, kcxu, luhaojian,
rxiong, ywang24}@zju.edu.cn).

Xuewu Lin, and Lichao Huang are with Horizon Robotics, China (e-
mail: {xuewu.lin, lichao.huang}@horizon.auto). This work was done during
Longzhong Lin’s internship at Horizon Robotics.

spectrum of mixture models, we further identify and address
the shortcut learning and off-policy learning issues.

UniMM achieves a high ranking on the Waymo Open Sim
Agents Challenge (WOSAC) benchmark [17]. This report
focuses primarily on the technical implementation of the pro-
posed method. A systematic investigation and comprehensive
results can be found in our full paper, which extends the
findings on mixture models and provides deeper empirical
insights into multi-agent simulation.

II. UNIFIED MIXTURE MODEL (UNIMM)
A. Problem Formulation

Multi-agent simulation is generally factorized into an
autoregressive sequential process:

p(S0:T |C0) =
∏

t∈{0,τ,2τ,...,T−τ}

p(St:t+τ |S0:t, C0), (1)

where S0:T represents the simulated scenario, specifically
the state sequence of all agents from time 0 to T , and C0

denotes the initial scenario context, including map information
and historical agent states before time 0. With a sufficiently
small update interval τ , each agent can be considered to
independently take actions [11], [18]:

p(St:t+τ |S0:t, C0) =

N∏
n=1

p(Sn
t:t+τ |S0:t, C0, n), (2)

where Sn
t:t+τ represents the state sequence of the n-th agent

from time t to t+ τ , and N denotes the number of agents in
the scenario. In practice, we adopt the widely used setting of
τ = 0.5s [13], [14], which aligns with real-world driving [19].

To generate realistic multi-agent simulations, data-driven
approaches typically learn a behavior model:

πθ(Y |X), where

{
X := (S0:t, C0, n)

Y := Sn
t:t+Tpred

. (3)

The behavior model πθ predicts Y , the state trajectory of
the n-th agent over the prediction horizon Tpred, given X
which includes the historical agent states, the initial scenario
context, and the agent identifier. For modeling multimodal
agent behaviors, mixture models are a suitable choice [5]:

πθ(Y |X) =

K∑
k=1

qθ(Z = k|X)mθ(Y |Z = k,X), (4)

where K is the number of mixture components, and Z is the
latent variable indicating the component selection. qθ(Z|X)
predicts the probabilities of selecting each component, while
mθ(Y |Z,X) represents the distribution of the future trajectory
conditioned on the selected component.

https://longzhong-lin.github.io/unimm-webpage
mailto:linlongzhong2000@zju.edu.cn
mailto:kcxu@zju.edu.cn
mailto:luhaojian@zju.edu.cn
mailto:rxiong@zju.edu.cn
mailto:ywang24@zju.edu.cn
mailto:xuewu.lin@horizon.auto
mailto:lichao.huang@horizon.auto
https://arxiv.org/abs/2501.17015

2

Given the dataset D of real-world driving scenarios, the
mixture model πθ is optimized through imitation learning:

max
θ

E(x,y)∼D[log πθ(y|x)], where

{
x := (s0:t, c0, n)

y := snt:t+Tpred

, (5)

where c0, s0:t, snt:t+Tpred
are respectively the sampled values

of C0, S0:t, and Sn
t:t+Tpred

from the dataset D. Following
the EM algorithm [20] and adopting a hard-assignment strat-
egy [21], [22], the optimization objective can be reformulated
to incorporate a winner-takes-all regression loss along with a
classification term:

max
θ

E(x,y)∼D

[
logmθ(y|z∗, x)︸ ︷︷ ︸

regression

−KL[q̂∗(z)∥qθ(z|x)]︸ ︷︷ ︸
classification

]
,

where q̂∗(z) := 1(z = z∗).

(6)

Here, 1(·) denotes the indicator function, and z∗ represents the
positive component of the mixture model πθ that best matches
the ground truth (x, y).

B. Model Configurations

1) Positive Component Matching: For selecting the posi-
tive component z∗ in Eq. 6, mixture models can be categorized
into two primary paradigms: anchor-free and anchor-based.

In anchor-free methods [2], [8], the component z∗, whose
predicted trajectory µz∗(x; θ) is closest to the ground truth y,
is designated as positive:

z∗ = argmin
k

d
(
µk(x; θ), y

)
, (7)

where d(·, ·) computes the distance between two trajectories,
and µk(x; θ) := EY∼mθ(Y |Z=k,X=x)[Y] represents the pre-
dicted trajectory corresponding to component k.

In anchor-based models [5], [6], [11], the state anchors
{Ak(x)}Kk=1 are each associated with a specific component.
The positive component is determined as the one correspond-
ing to the anchor closest to ground truth:

z∗ = argmin
k

d
(
Ak(x), y

)
. (8)

2) Continuous Regression: For anchor-based models, if
the component distribution mθ is chosen as:

mθ(Y |Z = k,X = x) = 1(Y = Ak(x)), (9)

which means the state anchor Ak(x) is directly used as the
predicted trajectory for component k. Hence, the regression
term in the training objective (Eq. 6) is redundant, leaving
only the classification loss, which fully aligns with GPT-
like models [11]–[14]. Thus, GPT-like discrete models are
essentially anchor-based mixture models, devoid of the train-
able component distribution and its corresponding continuous
regression term.

3) Prediction Horizon: Training behavior models with a
longer prediction horizon, Tpred (Eq. 3), may enhance spatio-
temporal interaction reasoning, helping agents become more
robust to distributional shifts and generate realistic behav-
iors [8], [12], [16].

Ground Truth Input Ground Truth Output

Posterior Plan Executed Posterior Plan
Ground Truth over the Posterior Planning Horizon

𝒔𝒔𝟎𝟎

𝒔𝒔𝟎𝟎𝐜𝐜𝐜𝐜

𝒔𝒔𝒕𝒕

𝒔𝒔𝒕𝒕𝐜𝐜𝐜𝐜

(d)

𝒔𝒔𝟎𝟎

𝒔𝒔𝟎𝟎𝐜𝐜𝐜𝐜

𝒔𝒔𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩

𝒔𝒔𝝉𝝉𝐜𝐜𝐜𝐜

(a)

𝒉𝒉 = 𝟎𝟎

𝒔𝒔𝝉𝝉

𝒔𝒔𝝉𝝉+𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩

𝒔𝒔𝝉𝝉𝐜𝐜𝐜𝐜
𝒔𝒔𝟐𝟐𝝉𝝉𝐜𝐜𝐜𝐜

(b)

𝒉𝒉 = 𝝉𝝉

𝒔𝒔𝟐𝟐𝝉𝝉𝐜𝐜𝐜𝐜

𝒔𝒔𝟐𝟐𝝉𝝉

𝒔𝒔𝟐𝟐𝝉𝝉+𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩

𝒔𝒔𝟑𝟑𝝉𝝉𝐜𝐜𝐜𝐜

(c)

𝒉𝒉 = 𝟐𝟐𝝉𝝉

Fig. 1. The illustration of closed-loop sample generation. (a), (b), (c), and
(d) sequentially represent the steps of the process.

4) Number of Components: Intuitively, the number of
components, K (Eq. 4), reflects the mixture model’s ability to
represent complex distributions. Through the related network
architecture design (Section II-D2), we enable anchor-based
mixture models with continuous regression to scale up the
number of components K as efficiently as GPT-like discrete
models [11], [13].

C. Data Configuration
1) Closed-Loop Sample Generation: Inspired by DaD [15]

and TrafficSim [16], we propose a closed-loop sample gener-
ation method tailored for mixture models to mitigate distribu-
tional shifts. Given an open-loop sample (x = (s0:t, c0, n), y)
from the dataset D (Eq. 5), the behavior model πθ is unrolled
to transform the ground truth input states s0:t into the closed-
loop input states scl

0:t, thereby obtaining a closed-loop sample
that incorporates the predicted behaviors of πθ:

(xcl := (scl
0:t, c0, n), y) ∼ Dcl. (10)

The specific closed-loop sample generation process is illus-
trated in Fig. 1. Starting from the initial ground truth states
scl
0 = s0, a posterior policy πpost is autoregressively applied:

πpost(xcl
:h, s

n
h:h+Tpost

; θ) := µzpost(xcl
:h; θ), (11)

where the posterior plan µzpost(xcl
:h; θ) for time h is the pre-

dicted trajectory corresponding to the component zpost of πθ,
based on the previously generated closed-loop input states in
xcl
:h = (scl

0:h, c0, n). The posterior component zpost is the one
that best matches the ground truth snh:h+Tpost

over the posterior
planning horizon Tpost:

zpost=argmin
k

{
dTpost

(
µk(x

cl
:h; θ), s

n
h:h+Tpost

)
, anchor-free

dTpost

(
Ak(x

cl
:h), s

n
h:h+Tpost

)
, anchor-based

.

(12)
Here, the subscript of dTpost highlights the distance is computed
over the shared time interval Tpost, which may be shorter than
Tpred in subsequent discussions.

3

Map Embedding
···

Context Encoder

Agent Embedding

···

···

···

Map Encoder

Agent
Encoder

Agent Embedding

···

···

···

Scorer

Component Anchor

Anchor-Based

Cont.
Reg.

Component Query

Anchor-Free

Fusion
Scorer

Cont.
Reg.

0.1

0.3

0.6 select 0.1

0.3

0.6

0.3

0.3
0.4

Motion Decoder

Factorized Attention × 𝐿𝐿

Temporal

Agent-Map

Agent-Agent

Fig. 2. The demonstration of the network architecture, including the context encoder and motion decoder. The motion decoders of anchor-based and anchor-
free models are designed separately. “Cont. Reg.” represents the network for continuous regression, which outputs the trajectory of continuous states for the
corresponding mixture component.

The posterior plans of each agent are then executed to
generate the subsequent closed-loop states, and the replanning
frequency is aligned with the simulation update interval τ :

ŝnh:h+Tpred
= πpost(xcl

:h, s
n
h:h+Tpost

; θ),

scl
h:h+τ = {ŝnh:h+τ}Nn=1.

(13)

At each optimization step during training, the model πθ first
generates a batch of closed-loop samples through the above
process, and then updates θ based on these samples:

max
θ

E(xcl,y)∼Dcl [log πθ(y|xcl)]. (14)

Such closed-loop samples, while attempting to stay close to
the ground truth, introduce the model’s generated behaviors
into the input xcl. As a result, the input states observed during
training more closely resemble those encountered by the model
in closed-loop simulation.

2) Shortcut Learning Issue: Considering the goal of mak-
ing input states more consistent between training and closed-
loop simulation, the posterior planning horizon Tpost is by
default set equal to the prediction horizon Tpred. However,
when Tpred exceeds the update interval τ , meaning that the
planning horizon of πpost is greater than its replanning in-
terval (Tpost > τ), the generated closed-loop input xcl will
incorporate information from the ground truth output y. As
shown in Fig. 1(c), the closed-loop states scl

2τ :3τ are derived
based on s2τ :2τ+Tpost that overlap with the ground truth output.
This may lead the model πθ to learn a shortcut, which could
hinder its ability to generate realistic behaviors in closed-
loop simulation. Therefore, we attempt to set the posterior
planning horizon equal to the update interval (Tpost = τ)
for resolving the shortcut learning issue.

3) Off-Policy Learning Problem: If one seeks to leverage
a longer prediction horizon (Tpred > τ), the aforementioned
alignment between the posterior planning horizon and the
update interval (Tpost = τ) will introduce a misalignment
between Tpost and Tpred. Upon closer inspection, this mis-
alignment is primarily reflected in the fact that the behavior
model πθ is trained to select the positive component z∗ over
Tpred (Eq. 7 and Eq. 8), while the posterior policy πpost

selects the posterior component zpost over Tpost (Eq. 12).

This is analogous to the off-policy problem in Reinforcement
Learning (RL), where a mismatch between the data collection
policy and the training policy leads to distributional shifts.
Here, the off-policyness is mainly manifested in the disparity
between the component selection horizons of πθ and πpost.

In fact, the component selection horizon of πθ, namely the
positive matching horizon Tz∗ , can differ from the prediction
horizon Tpred by extending Eq. 7 and Eq. 8 as follows:

z∗=argmin
k

{
dTz∗

(
µk(x

cl; θ), y
)
, anchor-free

dTz∗

(
Ak(x

cl), y
)
, anchor-based

. (15)

Similar to Eq. 12, dTz∗ represents the distance calculated over
the first Tz∗ time interval of the trajectories. This indicates that
the positive component z∗ is selected over the horizon Tz∗ ,
while πθ could still generate trajectories over a longer Tpred.
We utilize the alignment between Tz∗ and Tpost to mitigate
the off-policy learning problem.

4) Approximate Posterior Policy: Except for discrete mod-
els, closed-loop sample generation involves iterative inference
with the model πθ, which could take a relatively long time.
According to previous work [4], the behavior patterns gener-
ated by anchor-based models can be reflected in their anchors.
Therefore, we propose an approximate posterior policy for
anchor-based models:

πpost(xcl
:h, s

n
h:h+Tpost

; θ) ≈ Azpost(xcl
:h), (16)

where the anchor Azpost(xcl
:h) rather than the predicted tra-

jectory of the component zpost is applied. In this way, the
generation of closed-loop samples involves only predefined
anchors, eliminating the need for πθ computation and signifi-
cantly reducing the required time.

D. Network Architecture
1) Context Encoder: To efficiently process information

from multiple agents across multiple time steps simultane-
ously, we adopt a symmetric scene context encoding based
on query-centric attention [3], [5]. Specifically, for each scene
element, such as a map polyline or an agent tracklet, the
embedding is derived in its local reference frame. When

4

modeling interactions between scene elements, their relative
positional encodings are integrated into the corresponding
attention operations. Following existing works [8], [13], we
apply map self-attention within the map encoder, as well as
the factorized attention containing temporal, agent-map and
agent-agent attention (Fig. 2), to obtain agent embeddings
enriched with diverse spatio-temporal features. During closed-
loop simulation, thanks to the symmetric encoding [3], we can
reuse previously derived embeddings to incrementally encode
newly generated agent motions for faster inference, akin to the
KV cache in LLMs [10].

2) Motion Decoder: Since the agent embeddings derived
from the symmetric encoder contain spatio-temporal infor-
mation in their local reference frame, the motion decoder
treats each embedding equivalently and outputs trajectories in
the corresponding local coordinate system. Without loss of
generality, focusing on the processing of an individual agent
embedding, we next introduce the decoder designs for anchor-
free and anchor-based models respectively.

For anchor-free models, similar to previous methods [8],
each learnable query is linked to a specific component. Every
component query is fused with the agent embedding, which is
then used to generate the corresponding trajectory along with
its confidence score, as depicted in Fig. 2.

For anchor-based models, we first generate anchor trajecto-
ries for each agent category by clustering the training data, as
done in previous works [6], [11]. In this context, for a specific
agent category, the anchor corresponding to each component
index is actually well-defined. Additionally, the confidence
scores assess the congruence between the ground truth and
anchors, rather than predicted trajectories. Therefore, we can
directly use the agent embedding to predict a categorical
distribution over anchors, as shown in Fig. 2. When employing
continuous regression, we only need to select a single anchor,
either the one associated with the positive component or one
sampled based on the scores, and generate its corresponding
trajectory. If continuous regression is not applied, the model is
equivalent to GPT-like discrete models [13]. While preserving
the features inherent to anchor-based models, the above design
markedly mitigates the increase in decoder computational cost
as the number of components grows.

E. Implementation Details
To balance granularity and efficiency, we downsample the

HD map so that the point distance is around 2.5 meters
and divide it into polylines with intervals of about 5 meters.
The agent trajectories are segmented into multiple tracklets,
each with a duration equal to the simulation update interval
τ = 0.5s. The embeddings at the map polyline or agent
tracklet level are derived through attention-based aggregation,
with the dimensions set to 128. For modeling interactions
among scene elements, we apply 1 layer of map self-attention
and stack 2 layers of factorized attention. The temporal at-
tention has a time window of 3 seconds, and the numbers of
neighbors for map-map, agent-map, and agent-agent attention
are 16, 64, and 32, respectively. The scorer and continuous
regression networks in the decoder are implemented using 2-
layer MLPs. In anchor-free models, component queries and

agent embeddings are fused by concatenation. In anchor-based
models, anchors are generated through the k-means clustering
on the training set. Before entering the continuous regression
network, the selected anchor is encoded by a 2-layer MLP and
then concatenated with the agent embedding. Ultimately, the
models in our experiments generally have 4M parameters.

The agent state in the model’s predicted trajectory includes
2D position and heading. Following previous works [1], [3],
we treat each coordinate and time step in the trajectory as in-
dependent. In the component distribution, we use Laplace dis-
tributions for position and von Mises distribution for heading.
At inference, the output trajectory for a specific component
utilizes the expected value of its corresponding component
distribution. During closed-loop simulation, we sample the
components based on the original output probabilities.

F. Training Details
The models evaluated on the WOSAC [17] benchmark

are trained on the full WOMD [23] training set, using the
AdamW optimizer with a weight decay of 0.0001. Training is
performed with a batch size of 32 scenes for 30 epochs on 8
GPUs (NVIDIA RTX 4090). The learning rate is decayed from
0.0005 to 0 using a cosine annealing scheduler. Consistent
with simulation, the scene’s 1s history is included in the initial
context C0, and all valid agents at the current time are used.
Historical states in C0 are processed by the encoder like other
states, except that their agent embeddings are not passed to the
decoder for prediction. Using the 8s future from the training
data, the model predicts in parallel based on corresponding
agent embeddings at intervals of τ = 0.5s.

III. RESULTS

Building on the exploratory experiments (see our full paper),
we select the best-performing configuration within the UniMM
framework for evaluation on the WOSAC [17] benchmark:
• UniMM (Anchor-Based-4s): The anchor-based model with

continuous regression, using K = 2048 anchors and a
Tpred = 4s prediction horizon, trained with closed-loop
samples based on the approximate posterior policy with
a Tpost = 0.5s planning horizon. The horizon for positive
component matching, Tz∗ = 0.5s, aligns with the posterior
planning horizon Tpost.

As shown in Table I, UniMM (Anchor-Based-4s) is compet-
itive with current state-of-the-art methods across all metrics,
particularly in terms of minADE, highlighting the advantages
of continuous modeling in multi-agent simulation.

IV. CONCLUSION

This technical report introduces the unified mixture model
(UniMM) framework for multi-agent simulation, seeking to
unify mainstream methods derived from different inspirations.
We propose a closed-loop sample generation approach applica-
ble to general mixture models, and further address the shortcut
learning and off-policy learning issues to extend its benefits
across a broader class of mixture models. As a result, UniMM
ranks among the top-performing methods in the Waymo Open
Sim Agents Challenge (WOSAC) 2025.

https://arxiv.org/abs/2501.17015

5

TABLE I
WOSAC 2025 BENCHMARK RESULTS

Method Realism Meta ↑ Kinematic ↑ Interactive ↑ Map-based ↑ minADE ↓
SMART-R1 0.7855 0.4940 0.8109 0.9194 1.2990
TrajTok 0.7852 0.4887 0.8116 0.9207 1.3179
unimotion 0.7851 0.4943 0.8105 0.9187 1.3036
SMART-tiny-CLSFT [24] 0.7846 0.4931 0.8106 0.9177 1.3065
SMART-tiny-RLFTSim 0.7844 0.4893 0.8128 0.9164 1.3470
comBOT 0.7837 0.4899 0.8102 0.9175 1.3687
AgentFormer 0.7836 0.4906 0.8103 0.9167 1.3422
UniMM (Anchor-Based-4s) 0.7829 0.4914 0.8089 0.9161 1.2949

REFERENCES

[1] S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global
intention localization and local movement refinement,” Advances in
Neural Information Processing Systems, vol. 35, pp. 6531–6543, 2022.

[2] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and
B. Sapp, “Wayformer: Motion forecasting via simple & efficient at-
tention networks,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 2980–2987.

[3] Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang, “Query-centric trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 17 863–17 873.

[4] L. Lin, X. Lin, T. Lin, L. Huang, R. Xiong, and Y. Wang, “Eda: Evolving
and distinct anchors for multimodal motion prediction,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 38, no. 4, 2024,
pp. 3432–3440.

[5] S. Shi, L. Jiang, D. Dai, and B. Schiele, “Mtr++: Multi-agent motion
prediction with symmetric scene modeling and guided intention query-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[6] Y. Wang, T. Zhao, and F. Yi, “Multiverse transformer: 1st place
solution for waymo open sim agents challenge 2023,” arXiv preprint
arXiv:2306.11868, 2023.

[7] C. Qian, D. Xiu, and M. Tian, “The 2nd place solution for 2023 waymo
open sim agents challenge,” arXiv preprint arXiv:2306.15914, 2023.

[8] Z. Zhou, H. Hu, X. Chen, J. Wang, N. Guan, K. Wu, Y.-H. Li,
Y.-K. Huang, and C. J. Xue, “Behaviorgpt: Smart agent simulation
for autonomous driving with next-patch prediction,” arXiv preprint
arXiv:2405.17372, 2024.

[9] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.

[10] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[11] J. Philion, X. B. Peng, and S. Fidler, “Trajeglish: Traffic modeling
as next-token prediction,” in The Twelfth International Conference on
Learning Representations, 2024.

[12] Y. Hu, S. Chai, Z. Yang, J. Qian, K. Li, W. Shao, H. Zhang, W. Xu,
and Q. Liu, “Solving motion planning tasks with a scalable generative
model,” in European Conference on Computer Vision. Springer, 2025,
pp. 386–404.

[13] W. Wu, X. Feng, Z. Gao, and Y. Kan, “Smart: Scalable multi-
agent real-time simulation via next-token prediction,” arXiv preprint
arXiv:2405.15677, 2024.

[14] J. Zhao, J. Zhuang, Q. Zhou, T. Ban, Z. Xu, H. Zhou, J. Wang, G. Wang,
Z. Li, and B. Li, “Kigras: Kinematic-driven generative model for realistic
agent simulation,” arXiv preprint arXiv:2407.12940, 2024.

[15] A. Venkatraman, M. Hebert, and J. Bagnell, “Improving multi-step
prediction of learned time series models,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[16] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning
to simulate realistic multi-agent behaviors,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10 400–10 409.

[17] N. Montali, J. Lambert, P. Mougin, A. Kuefler, N. Rhinehart, M. Li,
C. Gulino, T. Emrich, Z. Yang, S. Whiteson et al., “The waymo open sim

agents challenge,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[18] A. Seff, B. Cera, D. Chen, M. Ng, A. Zhou, N. Nayakanti, K. S. Refaat,
R. Al-Rfou, and B. Sapp, “Motionlm: Multi-agent motion forecasting
as language modeling,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 8579–8590.

[19] J. Engström, S.-Y. Liu, A. DinparastDjadid, and C. Simoiu, “Modeling
road user response timing in naturalistic traffic conflicts: a surprise-based
framework,” Accident Analysis & Prevention, vol. 198, p. 107460, 2024.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society: series B (methodological), vol. 39, no. 1, pp. 1–22,
1977.

[21] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,” arXiv
preprint arXiv:1910.05449, 2019.

[22] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov et al.,
“Multipath++: Efficient information fusion and trajectory aggregation
for behavior prediction,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 7814–7821.

[23] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. R. Qi, Y. Zhou et al., “Large scale interactive motion
forecasting for autonomous driving: The waymo open motion dataset,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 9710–9719.

[24] Z. Zhang, P. Karkus, M. Igl, W. Ding, Y. Chen, B. Ivanovic, and
M. Pavone, “Closed-loop supervised fine-tuning of tokenized traffic
models,” arXiv preprint arXiv:2412.05334, 2024.

	Introduction
	Unified Mixture Model (UniMM)
	Problem Formulation
	Model Configurations
	Positive Component Matching
	Continuous Regression
	Prediction Horizon
	Number of Components

	Data Configuration
	Closed-Loop Sample Generation
	Shortcut Learning Issue
	Off-Policy Learning Problem
	Approximate Posterior Policy

	Network Architecture
	Context Encoder
	Motion Decoder

	Implementation Details
	Training Details

	Results
	Conclusion
	References

