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Abstract

This report introduces the solution for Waymo Open
Dataset Challenge 2022 from Shanghai AI Lab. Built upon
our strong baseline, BEVFormer, the performance of our
method is improved with several simple and yet effective
techniques. These techniques include the adoption of sev-
eral detector heads, LET-IoU based assignment/post pro-
cessing, ensemble of 26 model results, etc. With the use of
our methods, we achieve the 1st place on 3D Camera-only
object detection track in Waymo Open Dataset Challenge
2022.

1. Introduction
The Waymo Open Dataset (WOD) Challenges are the

largest and most challenging self-driving perception com-
petition [18]. At CVPR 2022, WOD released a new compe-
tition for 3D detection using only camera-only input. In the
camera-only 3D detection track, the challenge requires the
algorithm to detect the 3D bounding boxes of objects with
only camera data.

Our solution focuses on extracting image features into
high quality 3D representation. While many camera based
3D object detection pipelines have been proposed in re-
cent years [7, 10, 16, 21], we seek to build upon one base-
line model that has two desired properties. First, accurate
transformation from 2D image feature to 3D features. Sec-
ond, general and application-friendly feature representation
that can be a good test bed for different detection meth-
ods. Thus we choose BEVFormer [10], the state-of-the-art
multi-camera recognition pipeline as a start point, and im-
prove it for 3D camera-only detection task step by step.

2. Our Solution
In this section, we present the details of our model. We

begin by introducing our baseline model BEVFormer and
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several main architecture improvements. Then we intro-
duce the bells and whistles used to improve the baseline
performance. Finally, we introduce the ensemble pipeline
that produces our test results.

2.1. Baseline Detectors
We deploy the BEVFormer, which adopts a spatio-

temporal transformer to generate BEV features from multi-
view inputs, as a baseline 3D camera-only detector. As
shown in Fig. 1, BEVFormer consists of three modules:
backbone network, BEV encoder and detection head. Since
BEVFormer is used to generate BEV features, the design
of BEV-based detection heads is perpendicular to the BEV-
Former.

BEVFormer provides high quality BEV features, which
allows us to explore the design of different detection heads
in both image and lidar-based 3D detection. In this chal-
lenge, We use three different detection heads to combine
with BEVFormer into three different detection models.
These three heads covers three main categories of detec-
tor design, including anchor-free, anchor-based and center-
based. We choose different types of detector heads that dif-
fer as much as possible in design, so as to fully leverage
different detection frameworks for their potential in differ-
ent scenarios, because we think these different heads facili-
tate the final ensemble results.

Deformable DETR head Original BEVFormer uses a
modified Deformable DETR decoder as its 3D detector [1,
10, 24], which can detect 3D bounding boxes end-to-end
without NMS. For this head, we follow the original design
but use Smooth L1 loss to replace the origin L1 loss.

Freeachor head We also adopt the FreeAnchor [23] as
our 3D detector, which is an anchor-based detector that can
automatically learns the matching of anchors. We compute
the LET-IoU between prediction results and ground truth.

Centerpoint head The Centerpoint [22] head is the last
detector head we utilize, which is a powerful center-based
anchor-free 3D detector.
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Figure 1: Overall architecture of BEVFormer. (a) The encoder layer of BEVFormer contains grid-shaped BEV queries,
temporal self-attention, and spatial cross-attention. (b) In spatial cross-attention, each BEV query only interacts with image
features in the regions of interest. (c) In temporal self-attention, each BEV query interacts with two features: the BEV queries
at the current timestamp and the BEV features at the previous timestamp. We also add corner pooling and view encoder to
refine view feautres better.

2.2. Improving BEVFormer

Deformable DETR view encoder. In the original BEV-
Former design, there is no separate encoder module for view
features, which is a potential shortcoming of the model.
So we use the encoder of Deformable DETR to refine the
multi-scale view features that output from FPN and then
feed these refined view features into the BEV encoder [24].
To save GPU memory, we only use 3 encoder layers.

Conv offset in Temporal Self Attention (TSA). Origi-
nal BEVFormer design uses TSA to construct association
between the BEV features of the same objects at different
time, especially moving objects. Since the resolution of
BEV features is much smaller than the object size, we use
one convolutions layer to predict TSA offsets instead of lin-
ear layers to obtain a larger receptive field on BEV features.
The kernel size, stride and padding of this convolution layer
are 3, 1, 1.

Corner Pooling. To enlarge the receptive field of fea-
ture sampling in the Camera-BEV feature transformation in
BEVFormer’s Camera-BEV cross attention, we introduce
corner pooling on the output of FPN feature [9]. Corner
pooling aggregates features along horizontal and vertical di-
rection in the camera feature map. WE add pooling features
with shape 1×W and H×1 to original features with broad-
casting.

LET-IoU based Assignment. While LET-IoU [8] is used
in NMS, we also find that LET-IoU based assignment is
more friendly to camera-based 3D object detection under
LET-IoU metrics. We apply LET-IoU in the assignment
of Free anchor head we used. This changes the assigned

anchors to be distributed along radial direction from the
camera center, resulting better alignment of visual features
when projected from BEV to camera coordinates.

LET-IoU based NMS. Since this challenge proposes a
new metric LET-AP [8] which uses LET-IoU to match the
ground truth and prediction results, we also design a NMS
based on LET-IoU to remove redundant results. Actually,
this design is more suitable for Camera-only 3D-detectors.
Since the 3D IoU of two mutually redundant results may be
small, this leads to failing to remove many false positive re-
sults. With LET-IoU, redundant results tend to have higher
IoU, thus can be more thoroughly removed.
2D detection auxiliary loss. We apply an additional 2d
detection head on image features after FPN and train it with
projected 2D bounding boxes. The signal goes directly to
2D image features and provides better image feature super-
vision. The 2D detector we use is FCOS [19]. The relative
weight between 2D and 3D detector loss is learnable.
Global position regression. We apply additional loss on
regression of global position for Deformbale DETR head
for better localization performance since its object queries
are not location-specific. The global position is a tuple of
(X,Y,

√
X2 + Y 2), where X, Y are the coordinates.

EMA. Following YOLOX [5], we use Exponential Mov-
ing Average (EMA) weights updating. EMA copies a
backup of model weights and the EMA weights are updated
with a sliding average. After the training phase, the model
weights are replaced by EMA weights for prediction.
Multi-scale and Flip Training. Mutli-scale and flip train-
ing are the most simple and effective way to improve the
performance of the model. In this work, the input image is
scaled by a factor between 0.5 and 1.2 and flipped by a ratio
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of 0.5. Since BEVFormer uses sequence input, we ensure
that the transformations are consistent for each frame of the
sequence.
2.3. Expert Model

Since the Waymo Open Dataset has a highly imbalanced
data distribution [18], we follow previous works on the 2D
Detection track [2, 4] to train multiple expert models on re-
sampled subsets. WOD contains only 81k cyclist annota-
tions while having a much larger number of vehicles(9.0M)
and pedestrians(2.7M). We sampled a class rebalanced sub-
set from the training set with the most frequent annotations
of each category by the ratio of 1:1:1 for cyclists, pedestri-
ans, and vehicles. Besides, according to context informa-
tion about the time of the day provided in the scenes, we
also sampled a context time rebalanced subset by the ra-
tio of 1:1:2 for nighttime, dawn/dusk, and daytime scenes.
We fine-tuned the aforementioned detection models on each
subset to get the final expert models.

2.4. Ensemble

In the ensemble phase, we use the improved version of
the weighted boxes fusion (WBF) [17]. Inspired by Adj-
NMS [12], we add matrix NMS [20] after the original fu-
sion to filter out redundant boxes. In order to introduce the
multi-scale and flip results, we use a two-step ensemble pro-
cedure. In step 1, we use WBF to integrate the prediction
results from multi-scale to generate flip and noflip results
for each model. In step 2, we put all model results together
and adopt WBF to get the final results. Considering the
diversity of the performance of each model, the parame-
ter adjustment is much complex, so the evolution algorithm
is used to search the WBF parameters and model weights.
We use Evolution in NNI [15] to automatic search parame-
ters, where the population size is 100. The search process
is based on the performance of the 3000 validation images,
and different classes are searched separately.
3. Experiments
3.1. Dataset and Evaluation
Dataset. The Waymo Open Dataset v1.3 [18] contains 798,
202 and 80 video sequences in the training, validation, and
testing sets, respectively. Each sequence has 5 views of side
left, front left, front, front right, and side right, and the im-
age resolution is 1920 × 1280 pixels or 1920 × 886 pix-
els. Due to limited computational resources, we sample 1
frame of every 5 frames from the training set to form a mini-
train set to quickly verify the effect of different implemen-
tations [18].

3.2. Implementation Details
BEVFormer. By default, we utilize the output multi-scale
features from FPN [11] with sizes of 1/16, 1/32, 1/64 and the
dimension of C=256. We use 3 layers instead of 6 to save

GPU memory. For WOD, the default spatial shape of BEV
queries is 300×220 for mini-train and 450×330 for the final
models, the perception ranges are [-35.0m, 75.0m] for the
X−axis and [-75.0m, 75.0m] for the Y−axis. During train-
ing, we use a temporal sequence that consists of 4 frames,
the time interval between frames is about 0.5s. During in-
ference phase, we convert the 10Hz video into five 2Hz
sub-videos for temporal inference, and the i-th sub-video
only contains frames with the frame index are multiple of
i. For the samples that without enough history, we pad the
sequence with the the first valid sample. Other settings are
the same to original BEVFormer.

Deformable DETR Detector. Following BEVFormer and
Deformable DETR, this head uses a single-scale BEV fea-
tures as the input of the decoder, predicting 3D bounding
boxes and velocity rather than 2D bounding boxes, and only
using smooth L1 loss to supervise 3D bounding box regres-
sion. With the detection head, our model can end-to-end
predict 3D bounding boxes and velocity without the NMS
post-processing.

Centerpoint Detector. Centerpoint head takes single-scale
BEV features as input, and uses a separate DCN branch
to handle each category. We use gaussian Focal Loss and
smooth L1 loss to supervise classification and bounding box
regression, and the corresponding loss weights are 1 and
0.5.

FreeAnchor Detector. FreeAnchor head also uses a single-
scale BEV features as input. We set anchor size 2.08 ×
4.73 × 1.77, 0.84 × 1.81 × 1.77, 0.84, 0.91, 1.74 for car,
cyclist and pedestrian respectively. The unit of anchor size
is meter. Box IoU threshold of 0.5 is used in assignment for
enlarged 2D boxes under BEV. The direction classification
loss is also adopted.

Training Strategy. Following BEVFormer, by default,
models are trained with AdamW [14] optimizer and 12
epochs, a learning rate of 2×10−4, a weight decay of 0.01,
a total batch of 8 on 8 NVIDIA A100 GPUs. We use co-
sine annealing to schedule the learning rate. We use R101-
DCN [3, 6] as backbone during the exploration stage and
finally use Swin-Large [13] to build stronger models. No
external data are used in the final results.

3.3. Ablations
Improvements over BEVFormer baseline. The results
of applying techniques introduced in Section 2.2 on all three
detection heads we’ve used are shown in Tab. 1.

Expert models. The performance of expert models are
shown in Tab. 2. The expert models fine-tuned on the
class rebalanced subsets improved the performance of De-
formable DETR on cars and pedestrians by 0.9% and 0.5%,
and 0.4%, 1.1% for Centerpoint on cars and cyclists, respec-
tively. And the time-rebalanced expert models brought an
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ID DeD FrA CeP CovO DE CoP DA GR MS EMA LE Backbone DS LET-mAPL LET-mAP LET-mAPH
0 ✓ R101 mini 34.6 50.2 46.1
1 ✓ ✓ R101 mini 35.9 51.8 48.1
2 ✓ ✓ R101 mini 36.1 52.2 48.1
3 ✓ ✓ R101 mini 35.6 51.1 46.9
4 ✓ ✓ R101 mini 36.2 52.2 48.1
5 ✓ ✓ R101 mini 35.4 50.9 47.2
6 ✓ ✓ R101 mini 35.4 51.1 47.1
7 ✓ ✓ R101 mini 34.9 50.3 46.3

8* ✓ SwinL mini 40.0 55.6 51.9
9* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SwinL mini 44.7 60.8 55.5
10 ✓ R101 mini 35.9 49.9 45.9
11 ✓ ✓ R101 mini 36.3 51.1 46.6
12 ✓ R101 mini 34.0 47.9 43.5
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SwinL full 48.4 64.8 60.4
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SwinL full 47.2 61.2 56.8
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SwinL full 47.6 61.4 57.0
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SwinL full 41.9 54.6 48.2

Table 1: Ablation studies on val set with our improvements on BEVFormer. DeD (Deformable Detr head). FrA (FreeAnchor
head). CeP (Centerpoint head). ConvO (Conv offsets in TSA). DE (Deformable view Encoder). CoP (Corner Pooling). LE
(LET-IoU based Assignment). DA (2D Auxiliary loss). GR (Global location regression). DS (Dataset). The mini dataset
contains 1/5 training data. * notes we train the model with 24 epochs.

ID Head LET-mAPL
Overall Car Cyc Ped Day Night D/D

13 DeD 48.4 60.4 37.0 47.8 49.2 37.0 49.5
13.1 expert 1 48.9 61.3 37.1 48.3
13.2 expert 2 48.7 49.5 36.2 49.9
14 FrA 47.2 62.7 36.7 42.1 48.4 33.4 46.0
14.1 expert 1 47.2 62.8 36.6 42.3
14.2 expert 2 47.0 48.5 33.3 46.3
16 CeP 41.9 56.8 29.7 39.3 42.8 31.9 42.2
16.1 expert 1 42.4 57.2 30.8 39.2
16.2 expert 2 42.3 43.2 31.8 42.1

Table 2: Performance of expert models. The overall LET-
mAPL metrics and that on each category or each time-of-
day subset of the models are listed in the table. Expert 1
is class rebalanced and Expert 2 is time rebalanced. D/D is
short for dawn/dusk.

increase of 0.3% and 0.4% for Deformable DETR and Cen-
terpoint in the overall performance. The strengths of expert
models were further utilized in our final solution by model
ensembling.

Ensemble. Tab. 3 presents the ablation results of ensem-
ble. As shown in the 2nd and 3rd row, we can get better
results by combining different models in the ensemble pro-
cess. The 4th row is the result of using the search algorithm
to ensemble 20 model results, which obtains a very large
gain, indicating that our ensemble process is very effective.
These models results consist of 18 nolfip and flip testing re-
sults of 9 models in Tab. 2 and 2 results of ID 15 model in
the Tab. 1. Based on the ensemble results, we continue to
introduce two-step ensemble and let-iou based NMS. From
5th row and 6th row, we can see that those two tricks have

Head LET-mAPL LET-mAP LET-mAPH
FrA 47.6 61.4 57.0
+DeD 49.1 65.2 60.2
+CeP 50.6 66.5 61.2
20 Search 53.2 69.3 64.9
+Two-Step 53.9 69.2 64.5
+L-NMS 55.1 71.1 66.2

Table 3: Performance of ensemble model on the valida-
tion set. Two-Step (Two-step ensemble). L-NMS (LET-IoU
based NMS)

Head Backbone Params. FLOPs FPS
D-Detr R101 102M 2469G 2.8
D-Detr Swin-L 333M 8864G 1.2

Table 4: FPS is measured on A100 GPU. The shape of im-
age is 1920×1280. The shape of BEV queries is 450×330.

Method LET-mAPL LET-mAP LET-mAPH
WaymoBaseline 14.77 22.61 18.17
Our Solution 56.16 70.69 65.93

Table 5: Our final results.

brought about an increase of 0.7% and 1.2% respectively.

4. Final Results
We show the FLOPs and FPS of our final model in Tab. 4.

For our final results, apart from the pipeline we introduce in
Sec. 3.3, we add another three models corresponding to
ID 13, 14, 16 in Tab. 1, and train them on both training
and validation splits. Thus we use ensemble of 20 + 3 × 2
inference results and the final results are shown in Tab. 5.
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