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Figure 1. Overview of our cross-modality knowledge distillation framework for monocular 3D detection: (a) a pre-trained LiDAR-based
3D detector as the teacher model; (b) an image-based monocular 3D detector as the student model. The pre-trained teacher model provides
distillation guidance to train the student model which is used for inference alone.

Abstract

This is the report for the 3rd ranking method CMKD in
the 2022 Waymo 3D Camera-only Detection Challenge. In
this work we propose a simple framework, namely Cross-
Modality Knowledge Distillation Network, where we take
advantage of LiDAR data for useful knowledge transferring
to boost the performance of the Bird’s-Eye-View(BEV) fea-
ture map based monocular 3D detector. Specifically, us-
ing only 20% of the total training samples, no previous
frames, no data augmentation and no training&testing
tricks, CMKD ranks among the top submissions on the
leaderboard. And we believe the performance could be
much further boosted with more engineering and fine-
tuning. Additionally, CMKD can be also be considered as a
plug-and-play component for a BEV-based monocular 3D
detector to further boost the performance without bringing
any extra cost in the inference stage.

1. Framework Overview

Fig. 1 illustrates an overview of our cross-modality
knowledge distillation (CMKD) framework for monocular
3D object detection. The key is to extract the same type of
feature and response representations from point clouds and
images, and then perform feature-based and response-based
knowledge distillation between the two modalities. Our
framework includes a pre-trained LiDAR-based 3D detec-
tor that provides distillation guidance used only in the train-
ing stage as the teacher model, an image-based monocular
3D detector as the student model, and the cross-modality
knowledge distillation on both features and responses.

Training. In the training stage, we take the monocu-
lar images and the corresponding LiDAR point clouds as
the input pair. Both the LiDAR-based teacher model and
the image-base student model are composed of a Bird’s-
Eye-View(BEV) feature map generator to generate the BEV
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Figure 2. BEV feature map generation. The top row is the LiDAR-based branch, and the bottom row is the image-based branch.

feature map in correspondence to each modality input, and
aligned BEV backbone&detection heads after the BEV fea-
ture map to perform 3D detection.

Inference. In the inference stage, we use the student
model alone to perform 3D object detection with monocular
images as input only.

2. BEV Feature Map Generation
2.1. LiDAR-based BEV Feature Map Generation

Voxelization. We use the LiDAR-based detector Cen-
terPoint12 [11] to generate the LiDAR BEV feature map.
Given the point clouds of range (L,W,H), where L, W
and H are the length, width and height of the 3D space
corresponding to the X , Y and Z axis respectively, we
first filter out the points that can be projected onto the
image plane, i.e., Field of View (FoV) points. Then,
we subdivide the 3D space into equal 3D voxels of size
(dx, dy, dz) to obtain the original voxel volume of size
(L/dx,W/dy,H/dz). Taking the Front Camera for exam-
ple, the range for the point clouds in the 3D space is set to
[0, 73.6]×[−36.8, 36.8]×[−2.0, 4.0] meters. The voxel size
is set to (0.05, 0.05, 0.1) meters, and the size of the original
voxel volume is (1472, 1472, 60).

Voxel Feature Extraction. The features of the origi-
nal voxels are the mean values of the point features in each
voxel denoted as F̃ v

L ∈ R1472×1472×60×5. After voxeliza-
tion, F̃ v

L is fed to a sparse 3D convolution backbone, gradu-
ally converting the original voxel features into higher di-

1https://github.com/tianweiy/CenterPoint
2https://github.com/open-mmlab/OpenPCDet

mensional space with 1×, 2×, 4×, 8× down-sample rates
using a series of sparse 3D convolution blocks. The out-
put features of the voxel backbone are denoted as F v

L ∈
R184×184×2×64.

Map to BEV. The voxel features F v
L ∈ R184×184×2×64

are collapsed to a 2D BEV feature map by stacking the fea-
tures in height dimension to obtain the LiDAR BEV feature
map F bev

L ∈ R184×184×2∗64.
We illustrate the BEV feature map generating process of

the LiDAR-based method in the top row of Fig. 2. More
details can be found in CenterPoint [11].

2.2. Image-based BEV Feature Map Generation

Image Feature Extraction. We follow CaDDN34 [10]
to generate the image BEV feature map. Given the monoc-
ular image I ∈ RW×H×3, where W and H are 1920 and
1280 in Waymo [4](images from side cameras are padded
with zeros), we first resize the images to 1920 × 600,
and then use a ResNet-50 [5] backbone to extract the im-
age features. In our case, we use the intermediate im-
age features from layer3 [5] with down-sample rate 8 as
the image features FI ∈ RWI×HI×C where WI = 240,
HI = 75 and C = 1024. We use the output image features
F out
I ∈ RWI×HI×Cout where WI = 240, HI = 75 and

Cout = 2048 as the output feature of the image backbone,
which are then fed to the depth distribution estimation head
described below.

Voxelization via Depth Distribution Estimation. The
image features FI ∈ RWI×HI×C go through a channel re-

3https://github.com/TRAILab/CaDDN
4https://github.com/open-mmlab/OpenPCDet



duction network to obtain F̂I ∈ RWI×HI×C′
, where C ′ =

64 is the number of reduced feature channels. For each po-
sition in F̂I , we predict its depth in a classification man-
ner. Specifically, the continuous depth range [dmin, dmax]
is subdivided into D discrete bins using linear-increasing
discretization (LID) as:

di = dmin +
dmax − dmin

D(D + 1)
· i(i+ 1), i ∈ [0, D] (1)

where di is the discrete depth value of the i-th depth bin,
dmin = 0m, dmax = 73.6m and D = 150. We use
a depth distribution estimation head DeepLabV3 [3] after
the output image features of the image backbone F out

I ∈
RWI×HI×Cout (WI = 240, HI = 75 and Cout = 2048) to
predict pixel-wise depth distribution Ddepth ∈ RWI×HI×D

for each location in F̂I . We then calculate the outer prod-
uct of F̂I ∈ RWI×HI×C′

and Ddepth ∈ RWI×HI×D to
construct an image frustum grid G ∈ RWI×HI×D×C′

,
where the feature of each location in F̂I is placed at each
predicted depth bin and weighted by the predicted proba-
bilities. We then use an interpolation operation to obtain
the cuboid shaped voxels in LiDAR coordinate(vehicle co-
ordinate). Specifically, we first construct the voxel vol-
ume V oxelImage for the image-based branch in LiDAR
coordinates, where the range of the 3D space is the same
as the LiDAR branch, i.e., [0, 73.6] × [−36.8, 36.8] ×
[−2.0, 4.0] meters for X ,Y and Z axis, and voxel size
is set to (0.4, 0.4, 0.4) meters, so we get V oxelImage ∈
R184×184×15. For each voxel in V oxelImage, we project
the center coordinate of this voxel (x,y,z) into the image
coordinate space to get (u,v,d) according to the projection
relationship, and apply a trilinear interpolation operation to
obtain the features for this voxel, and we thus get the voxel
features of the image-based branch F v

I ∈ R184×184×15×64

Map to BEV. The voxel features of F v
I ∈

R184×184×15×64 are collapsed to a 2D BEV feature
map by stacking the features in height dimension to obtain
F̃ bev
I ∈ R184×184×15∗64, which then goes through a

channel compression network to get the image BEV feature
map F bev

I ∈ R184×184×128.
We illustrate the BEV feature map generating process for

the image-based method in the bottom row of Fig. 2. More
details can be found in CaDDN [11].

BEV Features Enhancement. We stack three Self-
Calibrated Blocks (SCB) [9] after F bev

I ∈ R184×184×128

to enhance the BEV features as:

F̂ bev
I = SCB(F bev′

I ) (2)

where F̂ bev
I ∈ R184×184×128 is the enhanced BEV feature

map.

3. Global BEV Feature Map Merging
We use the above operations to get the individual BEV

feature maps for each camera for both LiDAR modality and
image modality, and the 3D range for each camera is set
to [0, 73.6]× [−36.8, 36.8]× [−2.0, 4.0] for Front Camera,
[0, 73.6] × [0, 73.6] × [−2.0, 4.0] for Front Left Camera,
[0, 73.6]× [−73.6, 0]× [−2.0, 4.0] for Front Right Camera,
[−36.8, 36.8]× [0, 73.6]× [−2.0, 4.0] for Side Left Camera,
and [−36.8, 36.8]× [−73.6, 0]× [−2.0, 4.0] for Side Right
Camera. We then use a global BEV feature map merging
module to merge the individual BEV feature maps in both
LiDAR-based branch and image-based branch to produce
the global BEV feature maps BEV Global

LiDAR and BEV Global
Image

with the global 3D range [−36.8, 73.6] × [−73.6, 73.6] ×
[−2.0, 4.0]. Specifically, for each of the individual BEV
feature map BEV i

m where m ∈ [LiDAR, Image] and
i ∈ [0, 1, 2, 3, 4] in correspondence to 5 cameras, we first
pad it with zeros to the global BEV range, and then use the
MaxPooling operation to merge the 5 individual BEV fea-
ture maps to a global one BEV Global

LiDAR ∈ R276×368×128 or
BEV Global

Image ∈ R276×368×128, see Fig. 3.

4. BEV Backbone& Detection Heads
For the BEV backbone and detection heads, we simply

use the original one in CenterPoint [11], i.e., some basic
convolution blocks after BEV feature map, a classification
head to predict heatmaps and a regression head to predict
parameters like 3D dimensions and orientations. Please re-
fer to CenterPoint [11] and the implementation with Det3D5

or OpenPCDet6 for detail.

5. Cross-Modality Knowledge Distillation
5.1. Feature-based Knowledge Distillation

We use feature-based distillation between the BEV fea-
ture maps in LiDAR-based branch F bev

L and image-based
branch F̂ bev

I to make the image BEV features learn from
the LiDAR BEV features containing accurate depth infor-
mation and geometry information. We use mean square
error(MSE) to minimize the difference between F̂ bev

I and
F bev
L as the feature distillation loss:

Lfeat = LMSE(F̂
bev
I , F bev

L ) (3)

5.2. Response-based Knowledge Distillation

To better leverage the useful information extracted by
the teacher model, we further use the knowledge distillation
in output level as the response-based distillation. Specifi-
cally, the predictions from the pre-trained teacher model are
composed of two components, i.e., the predicted heatmap

5https://github.com/tianweiy/CenterPoint
6https://github.com/open-mmlab/OpenPCDet
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Figure 3. Global BEV Feature Map Merging.

Hteacher ∈ R276×368×3 where 3 corresponds to the 3 ob-
ject classes used in this challenge, and the predicted regres-
sion values Rteacher ∈ R276×368×8, where 8 corresponds
to (∆x,∆y, z, l, w, h, sinθ, cosθ), and ∆x, ∆y are the cen-
ter offsets, z is the z-component of the object center, l, w, h
are the dimensions of the 3D box and θ is the rotation angle.

The detection losses include the classification loss Lcls

and the regression loss Lreg, and each loss includes two
parts: loss with the hard labels and loss with the soft labels,
i.e., the predictions of the teacher model:

Ldet = Lcls + Lreg (4)

Lcls = Lhard
cls + Lsoft

cls (5)

Lreg = Lhard
reg + Lsoft

reg (6)

Specifically, we use a weighted Focal Loss(FL) [8] to cal-
culate the classification loss with hard labels.

Lhard
cls =

1

N

∑
FL(hpred

i , hgt
i ) (7)

where hpred
i ∈ Hpred and hgt

i ∈ Hgt, Hpred is the pre-
dicted heatmap of the image-based model, and Hgt is the
heatmap generated by the ground-truth labels. N is the
number of positive samples(hgt

i = 1) in Hgt. The element-
wise loss is formulated as:

FL(y, ygt) = −W (1− y′)
γ
log (y′) (8)

y′ =

{
y, when ygt = 1

1− y, when ygt < 1
(9)

W =

{
1, when ygt = 1

(1− ygt)β , when ygt < 1
(10)

where γ = 2 and β = 4. We use Quality Focal Loss(QFL)
[7] to calculate the classification loss with soft labels as:

Lsoft
cls =

1

N

∑
QFL(hpred

i , hteacher
i ) (11)

where hpred
i ∈ Hpred and hgt

i ∈ Hteacher, Hpred is the
predicted heatmap of the image-based model, and Hteacher

is the predicted heatmap of the teacher model. N is the
number of positive samples(hteacher

i > 0.3) in Hteacher.
The element-wise loss is formulated as:

QFL(y, ygt) = −
∣∣y − ygt

∣∣γ CE(y, ygt) (12)

CE(y, ygt) = ((1− ygt) log(1− y) + ygt log y) (13)

where γ = 2. Similarly, we use SmoothL1 loss to calculate
the regression loss which contains two parts:

Lhard
reg = SmoothL1(Rpred, Rgt) (14)

Lsoft
reg = SmoothL1(Rpred, Rteacher) (15)

where Rpred is the predicted regression values of the image-
based model, Rgt is the ground-truth regression targets gen-
erated by hard labels and Rteacher is the predicted regres-
sion values of the LiDAR-based teacher model.

6. Loss Function
The overall loss function is the combination of the losses

mentioned above:

Ltotal =λ1Lfeat + λ2Lhard
cls + λ3Lsoft

cls

+ λ4Lhard
reg + λ5Lsoft

reg

(16)

where λ1 − λ5 are hyper-parameters set to normalize the
losses into similar scale, specifically, λ1 = 16, λ2 = 1,
λ3 = 1, λ4 = 1 and λ5 = 4.

7. Implementation Detail
7.1. Dataset and Metric

Experiments are conducted using the official data pro-
vided by Waymo Open Dataset (WOD) [2] for the 2022
Waymo 3D Camera-only Detection Challenge [1], which



consists of 798 training sequences, 202 validation se-
quences and 80 testing sequences. The main metric is the
newly proposed Longitudinal Error Tolerant 3D Average
Precision (LET-3D-AP) [6] which allows longitudinal lo-
calization errors of the predicted bounding boxes up to a
given tolerance, and please refer to [6] for more details.

7.2. Training Strategy.

Teacher Model. We train the teacher model CenterPoint
[11] with the official settings implemented by OpenPCDet7.
The point cloud range is set to [−25, 50] × [−50, 50] ×
[−2, 4] meters for the X,Y and Z axis. The voxel size is
set to (0.05, 0.05, 0.1) meters. We train the teacher model
with 2 NVIDIA 3090 GPUs with a total batch size of 16 for
20 epochs. we use AdamW optimizer with OneCycle learn-
ing rate strategy, the parameters are set as: max LR=2e-3,
β = (0.9, 0.999), eps=1e-8, weight decay=0.01. We sam-
ple 1 frame every 5 frames for training. Once the teacher
model is pre-trained, we fix it during the training process of
the student model.

Student Model. We train the model with 8 NVIDIA
3090 GPUs with a total batch size of 8, i.e. 1 batch (with 5
input images) per GPU. We first train the model with BEV
feature distillation loss only for 5 epochs, which is simi-
lar to depth pre-training in a lot of monocular 3D detec-
tors. We use AdamW optimizer with OneCycle learning
rate strategy, the parameters are set as: max LR=2e-3, β =
(0.9, 0.999), eps=1e-8, weight decay=0.01. We then train
the model with the complete losses for 10 epochs, we use
AdamW optimizer with OneCycle learning rate strategy, the
parameters are set as: max LR=3e-4, β = (0.9, 0.999),
eps=1e-8, weight decay=0.01. We sample 1 frame every
5 frames for training, i.e., we use 20% of the total training
samples.

7.3. Data Augmentation.

We use no data augmentation.

7.4. Training&Testing Tricks.

We use no training&testing tricks.

8. Conclusion
In this work, We propose the Cross-Modality Knowledge

Distillation (CMKD) Network for monocular 3D object de-
tection. We take advantage of LiDAR data for useful knowl-
edge transferring during training to boost the performance
of the image-based method. Using only 20% of the total
training samples, no previous frames, no data augmentation
and no training&testing tricks, CMKD ranks among the top
submissions on the leaderboard. And we believe the per-
formance could be much further boosted with more engi-

7https://github.com/open-mmlab/OpenPCDet

neering and fine-tuning. Additionally, CMKD can also be
considered as a plug-and-play component for a BEV-based
monocular 3D detector to further boost the performance
without bringing any extra cost in the inference stage.
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