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Abstract

In this technical report, we present our solution, dubbed
MV-FCOS3D++, for the Camera-Only 3D Detection track
in Waymo Open Dataset Challenge 2022. For multi-view
camera-only 3D detection, methods based on bird-eye-view
or 3D geometric representations can leverage the stereo
cues from overlapped regions between adjacent views and
directly perform 3D detection without hand-crafted post-
processing. However, it lacks direct semantic supervi-
sion for 2D backbones, which can be complemented by
pretraining simple monocular-based detectors. Our solu-
tion is a multi-view framework for 4D detection follow-
ing this paradigm. It is built upon a simple monocular
detector FCOS3D++, pretrained only with object anno-
tations of Waymo, and converts multi-view features to a
3D grid space to detect 3D objects thereon. A dual-path
neck for single-frame understanding and temporal stereo
matching is devised to incorporate multi-frame information.
Our method finally achieves 49.75% mAPL with a single
model and wins 2nd place in the WOD challenge, with-
out any LiDAR-based depth supervision during training.
The code will be released at https://github.com/open-
mmlab/mmdetection3d.

1. Introduction
The Waymo Open Dataset Challenge at CVPR 2022 is

one of the largest and most challenging competitions for
autonomous driving. This year, it sets up a new track
for camera-only 3D detection, which requires the algo-
rithm to localize and classify 3D objects given only im-
ages from multiple cameras. In contrast to previous bench-
marks [1, 4] and the original Waymo 3D detection track,
this challenge provides user-friendly camera synced labels
for training and proposes a custom metric, LET-3D-APL,
to evaluate camera-only 3D detectors. Both make this chal-
lenge a promising benchmark that encourages new insights
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and methods in this stream.
In this challenge, motivated by ImVoxelNet [10], we ex-

plore a general solution, MV-FCOS3D++, built upon an ex-
plicit 3D voxel representation for performing multi-view
camera-only 3D detection. This pre-defined voxel grid
provides a unified, regular structure bridging the monocu-
lar features from different views and serves as the volume
space for temporal stereo matching. It enables the frame-
work to conduct multi-view 3D detection in a simple and
unified manner but lacks the direct image-view semantic su-
pervision for 2D feature extraction. To address this issue,
we pretrain the 2D backbone based on a simple monocu-
lar 3D detector, FCOS3D++ [12, 13], with only object an-
notations on Waymo. It enhances the backbone’s capabil-
ity of understanding semantics and geometry in monocular
images and improves the 3D detection performance signif-
icantly. Furthermore, we devise a dual-path scheme to in-
corporate multi-frame information in our main framework.
It disentangles single-frame understanding from temporal
stereo matching and naturally compensates the latter for
cases when temporal matching breaks down, such as static
scenes and moving objects.

Our method finally achieves 49.75% mAPL with a single
model and wins 2nd place in the WOD challenge, without
any LiDAR-based depth supervision during training.

2. Methodology

This section will introduce the details of our winning so-
lution, MV-FCOS3D++ (Fig. 1). We first give the overview
of our framework from the perspective of 2D feature extrac-
tion, feature transformation from perspective view (FOV) to
bird-eye-view (BEV), and the subsequent simple 3D detec-
tor. Then we introduce the pre-training and temporal mod-
eling techniques that enhance our MV-FCOS3D++.

2.1. MV-FCOS3D++

2D Feature Extraction. Given a 2D image I ∈
RW×H×3, the feature extraction module aims at extract-
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Figure 1. An overview of our framework.

ing its high-level information to understand the semantics
and geometry structure therein. Following [10, 13], we use
a shared 2D backbone ResNet-101 with DCN [3] to extract
the features and aggregate the multi-scale features by Fea-
ture Pyramid Network (FPN) to get FI ∈ RW

4 ×H
4 ×c (P2

feature level in Fig. 1) for each view of image.
Feature Transformation. Given the FOV features FI of
multiple views, the feature transformation module uses the
camera intrinsic to lift it to 3D space and obtains a unified
volume feature FV ∈ RNx×Ny×Nz×c, where Nx, Ny and
Nz denote the grid size in the x, y, z axis. Specifically, we
first pre-define the 3D voxel space and grid sample each
point to construct the 3D volume feature. For each point
(x, y, z), the corresponding 3D features FV (x, y, z) is ob-
tained via:

FV (x, y, z) = FI (π(x, y, z)) , (1)

where π denotes the 3D to 2D coordinate projection (with-
out considering rolling shutter for simplicity). Since the
driving cars in the Waymo dataset are equipped with sur-
round cameras, one 3D point may correspond to multiple
2D points in the images. To handle this situation, we adopt
the mean average pooling to aggregate the features from
multiple 2D points.
Voxel-Based 3D Detector. After obtaining the 3D voxel
feature, we utilize several residual blocks composed of 3D
convolutional neural networks following ImVoxelNet [10]
to aggregate the 3D spatial information and compress it
along z-axis to get the BEV features FB ∈ RNx×Ny×4c.

With the BEV features FB , we follow BEV-based de-
tectors [6, 9, 10] and conduct 3D detection in the 2D space.
In this competition, we mainly study two kinds of detection
heads: anchor-based 3D head [6] and anchor-free, center-
based 3D head [16].

The anchor-based 3D head, a single shot multi-box de-
tector (SSD)-like [8] architecture is also widely used in

LiDAR-based 3D object detection [6, 15]. It consists of
three components: anchor classification, bounding box re-
gression, and direction classification. Anchor classification
identifies the positive anchors and estimates the correspond-
ing semantic classes (i.e. car, pedestrian, and cyclist). Fol-
lowing [10, 15], the positive anchors are determined by the
IoU between anchors with ground truth in the BEV space.
The positive and negative thresholds are set to 0.6 and 0.45
for car while 0.5 and 0.35 for pedestrian and cyclist. During
training, the loss in anchor-based head is defined as follows:

L = Lcls + λregLreg + λdirLdir, (2)

where Lcls denotes the focal loss for anchor classification,
Lreg denotes the smooth L1 loss for the bounding box re-
gression, Ldir denotes the cross entropy loss for direction
classification, λreg and λdir are 2 and 0.2, respectively.
During inference, we filter the redundant prediction through
Non-Maximum Suppression (NMS), where the redundant
criterion is based on the IoU in the BEV space. The number
of predictions before and after NMS is set to 4096 and 500
to increase the recall performance.

The center-based 3D head [16] is an anchor-free detec-
tion head. It first localizes the object center based on the
keypoint network and then regresses the bounding box at-
tributes. The regression part consists of the object location,
dimension and the cosine and sine value of bounding box
yaw angle. The overall loss is defined as follows:

L = Lkey + λregLreg, (3)

where Lkey denotes the gaussian-based focal loss for key-
point localization, Lreg represents the L1 loss for the regres-
sion part and λreg is 0.25. During inference, we utilize the
pooling-based peak keypoint extraction to obtain the object
centers and construct 3D bounding boxes.
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Figure 2. Our dual-path design for temporal modeling.

2.2. Pretraining with Perspective-View Supervision

As observed in [9, 14], BEV-based 3D detectors can
benefit from backbone pretraining with monocular-based
paradigms due to the lack of perspective-view supervi-
sion. To this end, we first pretrain our 2D feature extrac-
tion components by a simple monocular-based 3D detec-
tor, FCOS3D++ [12, 13], with only object annotations and
then finetune them with a smaller learning rate (0.1×) when
training the detector in the BEV space subsequently. The
implementation of FCOS3D++ follows its open-source ver-
sion [2] while adjusting the depth and 3D size priors accord-
ing to the statistics on Waymo. Besides, we only use P3-P5
(Fig. 1) with regression ranges set to (0, 128, 256, ∞) to
produce multi-level predictions more efficiently.

So far, we have set up a baseline that can conduct 3D
detection from single-frame multi-view images. Although
it has incorporated a few stereo cues lying in the overlapped
regions between adjacent views, they are still limited for es-
timating object depths accurately. Next, we will show how
we exploit the stereo cues provided by consecutive frames.

2.3. Dual-Path Temporal Modeling

Similar to typical multi-view or binocular settings, two
images nearby in temporal also have stereo correspondence
for a static environment. Compared to monocular-based un-
derstanding, the underlying philosophies of stereo depth es-
timation are different: it relies on matching instead of data-
driven monocular priors. Therefore, we use concatenation
instead of simple average pooling to construct multi-frame
volumetric features. In addition, although stereo estima-
tion can leverage the strong cues provided by absolute ego
motions, there are multiple cases that stereo estimation ap-
proaches can not handle, such as static scenes and moving
objects. So we further devise a dual-path scheme to keep the
monocular understanding branch and allow it to adaptively
compensate the stereo estimation.

Formally, as shown in Fig. 2, given volumetric features
extracted from consecutive frames and transformed into the
ego coordinate system in the current frame, we concatenate

them along the feature channel to obtain FV
stereo. Then we

use two ImVoxelNeck to aggregate monocular (FV
mono) and

stereo features (FV
stereo) separately. The network for the

stereo path shares the same architecture with the other, ex-
cept that the input channel is multiplied by the number of
frames Nt. Then we have two BEV features with the same
shape. To fuse these features, we concatenate them and feed
them into a simple 2D convolutional layer composed of 1×1
kernel, and aggregate it along the feature channel to get a
point-wise weight feature map. Then the sigmoid response
of this feature serves as the weight ωfuse for guiding the
fusion of FB

mono and FB
stereo. Denoting the convolutional

network as ϕ, this procedure is represented as follows:

ωfuse = σ(ϕ(FB
mono,FB

stereo)), (4)

FB
fuse = ωfuse ◦ FB

stereo + (1− ωfuse) ◦ FB
mono. (5)

Here σ denotes the sigmoid function, and ◦ refers to
element-wise multiplication. The derived stereo feature
FB

fuse is finally input to the subsequent 3D detection head.
In practice, to avoid much memory overhead, we cut off

the gradient back-propagation of the 2D backbone for pre-
vious frames and only sample one from the previous ten
frames to construct stereo pairs. During inference, we use
the most previous one (at most the previous 10th frame)
to guarantee relatively large view changes. When there is
no previous frame, we copy the current frame as the previ-
ous frame and the weight can empirically switch to relying
on the monocular path. This training and inference setting
empirically perform best, surpassing other choices (5 or 20
frames) by 0.5% mAPL.

3. Experiments

3.1. Dataset and Evaluation metrics

Waymo Open Dataset [11] consists of 798/202/80 se-
quences for training/validation/testing in the camera-only
3D detection track, where each sequence contains 171-200
frames. Regarding to the image data, each frame contains
five surround-view images with resolution of 1920 × 1280
or 1920× 886 pixels.

In this competition, the longitudinal error tolerant IoU
(LET-IoU) based average precision (LET-3D-AP) and av-
erage precision weighted by localization affinity (LET-3D-
APL) metrics are adopted. Specifically, LET-IoU measures
the 3D IoU between the ground truth and the prediction that
is corrected with the longitudinal localization error. Based
on LET-IoU, LET-3D-AP measures the mean average pre-
cision of predictions through their bipartite matching with
ground truths. On this basis, LET-3D-APL further consid-
ers the localization performance by multiplying the preci-
sion in LET-3D-AP with the longitudinal affinity [5].
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Table 1. Main results. ”full res.” and ”w/ pt.” represent that the input has full resolution and the backbone is initialized with weights
pretrained from FCOS3D++, respectively. Note that ”+” denotes the orthogonal modifications based on MV-FCOS3D++ (w/ pt.). The
cyclist performance of FCOS3D++ is much lower possibly because the strong uncertainty filters out too many positive predictions.

Method Split Data
Car Pedestrian Cyclist Average

APL AP APL AP APL AP APL AP
FCOS3D++ (full res.)

Val 1/5
40.48 57.36 21.48 32.92 2.02 3.12 21.33 31.13

DETR3D (vanilla, full res.) 34.61 48.09 25.61 38.56 18.01 30.34 26.08 39.00
DETR3D (w/ pt., full res.) 39.9 53.05 29.34 43.94 20.01 31.87 29.75 42.95
MV-FCOS3D++ (Baseline)

Val 1/5

47.27 62.81 14.22 21.16 12.44 18.96 24.65 34.31
MV-FCOS3D++ (w/ pt.) 50.66 66.34 20.93 30.47 18.12 26.82 29.90 41.21
+ adjust assign params 53.90 69.55 28.59 40.70 24.18 36.75 35.56 49.00
+ adjust assign & full res. & temporal 58.30 73.63 30.98 43.69 25.64 36.90 38.31 51.41
+ adjust assign & infer. params 57.33 74.16 36.11 50.87 25.04 37.83 39.50 54.29
+ use CenterHead 53.28 69.74 36.87 52.39 26.23 39.55 38.79 53.89
3DMVT

Test -
60.89 78.01 44.83 63.85 40.56 54.66 48.76 65.50

BEVFormer [7] 68.78 82.91 53.20 71.05 46.50 58.10 56.16 70.69
MV-FCOS3D++ (single model)

Test full
63.90 79.18 44.72 62.67 40.63 51.92 49.75 64.59

MV-FCOS3D++ (ensemble) 66.8 82.01 45.15 63.14 41.87 53.66 51.27 66.27

Table 2. Quantitative analysis for the performance of different camera views

Method
Front Front-Left Front-Right Side-Left Side-Right Average

mAPL mAP mAPL mAP mAPL mAP mAPL mAP mAPL mAP mAPL mAP
3DMVT 48.74 64.65 50.19 66.50 50.74 69.02 42.84 58.28 41.19 58.71 48.76 65.50
BEVFormer [7] 58.21 71.29 56.51 70.41 57.13 73.92 47.47 62.80 48.39 63.53 56.16 70.69
Ours (single) 48.38 61.30 51.76 66.91 52.41 69.51 44.53 59.54 47.13 62.31 49.75 64.59
Ours (ensemble) 49.39 62.73 53.10 68.34 54.49 71.11 47.23 62.75 48.64 63.60 51.27 66.27

3.2. Implementation details

Training parameters. Our training is split into two
stages. The first stage is trained with a monocular-based
model (FCOS3D++), and the second stage is trained with
our BEV-based model. In the first stage, we initialize the
FOV backbone with the ImageNet-pretrained weights and
optimize it with the SGD optimizer. We train the model for
24 epochs with the learning rate of 0.001 and first warm-up
in the 500 iterations, then decay after 16, 22 epochs with the
ratio of 0.1. In the second stage, we further train the BEV
model for 24 epochs based on the weights trained in the first
stage. We adopt the AdamW optimizer with the step decay
learning rate policy and initialize the learning rate as 4e-3
and weight decay as 1e-4. The 3D voxel size is (0.5m, 0.5m,
0.5m) and the detection range is [-35m, 75m], [-75m, 75m],
[-2m, 4m] for the X, Y and Z axis, respectively.

By default, we use a lower image resolution 1248× 832
and only 1/5 training data for ablation studies while using
the raw image with 1920× 1280 resolution and full dataset
in our final models. Due to the large scale of the Waymo
dataset, we only train 12 epochs for the second stage when
using the full training split. The batch size is set as 96 and
32 in the first and the second stage, respectively.
Data augmentation. We adopt the FOV-based data aug-
mentation techniques in our BEV-based main framework,
including random scaling, random cropping, and random
flipping. The implementation of random scaling and flip-

ping follows the standard pipeline in FCOS3D++. The
rescaling range is set to [0.95, 1.05]. The cropping size is
set to 1080 × 720 and 1536 × 1024 in the ablation studies
and our final experiments, respectively. The random crop-
ping saves a lot of memory, especially in our final models,
while can keeping the performance is not affected.

3.3. Results

We first show the results of several baselines and key re-
sults of our method in Tab. 1. Our MV-FCOS3D++ baseline
uses ImageNet pretrained backbone and is further enhanced
significantly with pretraining FCOS3D++ on Waymo, es-
pecially for small objects. It can be seen that our method
shows great superiority compared to the other two base-
lines, FCOS3D++ and DETR3D. Then we adjust the as-
signment settings, i.e., tune the matching IoU thresholds to
0.6/0.45 for car and 0.5/0.35 for pedestrian and cyclist, such
that MV-FCOS3D++ can achieve much better performance
than FCOS3D++ and DETR3D in each category, even with
lower image resolution. Full resolution and temporal mod-
eling (Sec. 2.3) can further enhance our baseline signifi-
cantly (each contributes about half from 35.56% to 38.31%
mAPL). Apart from the hyper-parameters for target assign-
ment during training, increasing the number of predictions
before and after NMS to 4096 and 500 is also an important
setting during inference. It can improve the recall perfor-
mance remarkably. Finally, the center-based 3D detection
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head shows better performance on small objects, pedestri-
ans and cyclists.

On the test set, our final single model result in Tab. 1 is
achieved with our center-based model, because we observe
that the center-based paradigm can perform much better on
small objects, thus showing better performance on average.
The ensemble model uses NMS to merge the predictions of
an anchor-based model and a center-based model for three
classes and another anchor-based model for only car to get
the final result.1

We also compare our method with others on the perfor-
mance of different categories (Tab. 1) and different camera
views (Tab. 2). We observe that our method performs better
on car and side views, which are comparable to or surpass
BEVFormer. However, the detection performance of small
objects and the front-view drags down the overall result. Fu-
ture work can be focused on improving these two aspects.
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