ICPV: Deep Fusion of Different Point Cloud Representations, 1st Place Solution
for 3D Semantic Segmentation Track in Waymo Open Dataset Challenge 2022

Hao Tian', Yuenan Hou', Huijie Wang', Youquan Liu', Jiawei Li',
Xinge Zhu?, Wenkang Qin', Junchao Gong!, Yang Li', Kai Li'

1Shanghai AI Laboratory

Abstract

This report introduces the solution for the 3D Seman-
tic Segmentation track in Waymo Open Dataset Challenge
2022 from Shanghai Al Lab. Built upon our baseline, i.e.,
SPVCNN [10] and Cylinder3D [14], the performance of
our method is improved with multiple simple yet effective
techniques. These techniques include the fusion of multiple
point cloud representations, the ensemble of several het-
erogeneous models, etc. Additionally, object-level refine-
ment and segmentation with tracking are applied as post-
processing techniques to further improve the performance,
especially for rare and ambiguous classes. With a full suite
of our design modules, we propose ICPV, a new baseline
for the LiDAR segmentation task, and achieve Ist place
on the 3D Semantic Segmentation track in Waymo Open
Dataset Challenge 2022 leaderboard.

1. Introduction

The Waymo Open Dataset Challenges are the largest and
most challenging self-driving perception competition [9].
At CVPR 2022, Waymo released a new competition for 3D
Semantic Segmentation. In this track, the challenge requires
the algorithm to predict per-point labels on point cloud data.

Previous works on point cloud semantic segmentation
focus on the interaction between point and voxel [10,12,13]
or different representations of point cloud [0, 14]. Our pro-
posed solution, the Image-Cylinder-Point-Voxel (ICPV)
network, combines the strength of both of them. Addition-
ally, semantic information from images and temporal infor-
mation are utilized to boost the segmentation performance.
Besides, due to the extreme imbalance of the number of
points among different classes, object-level refinement and
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Figure 1: Illustration of the Image-Cylinder-Point-Voxel
(ICPV) fusion. The point branch also takes the voxels as
input. Features from the voxel and cylinder branches are
fused to the point branch. The image feature is obtained by
deformable attention and then fused to the point branch by
deep fusion. Then the fused point feature is re-voxelized to
the voxel and cylinder branch.

segmentation with tracking is introduced to perform more
accurate segmentation for foreground objects.

2. Solution

In this section, we dive into the details of our method.
We first introduce improvements to model architectures.
Then we describe the fusion technique on point cloud rep-
resentations and multimodal information. Expert model
and ensemble technique are utilized to boost model perfor-
mance. Finally, post-processing techniques, namely object-
level refinement and segmentation with tracking, are used
for foreground classes.

2.1. Basic Architecture

Data augmentation. As the semantic segmentation labels
are annotated roughly every 5 frames, the amount of data
in this task is relatively small compared to other tracks. To
boost the model performance, heavy data augmentations are
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Table 1: Ablation studies on validation set with our improvements starting from SPVCNN, where Aug represents
heavy data augmentation. Arch represents a large model backbone, and TTA represents testing time augmentation. Painting
represents one-hot painting from image semantic segmentation. Temporal represents multi-frames input. ICPV represents
our image-cylinder-point-voxel fusion block. Ensemble represents model ensemble. Expert represents ensemble with more
expert models. Post represents post-processing including object-level refinement and segmentation with tracking.

used in the training process, including rotation, scaling, flip-
ping, and point translation.

Model architecture. Given the basic SPVCNN [10] and
Cylinder3D [14], we adjust the model architectures to meet
a better performance on the Waymo Open Dataset [9]. To
balance the training time and model performance, the back-
bone network of SPVCNN [10] is set to Minkunet34 [3].
For Cylinder3D [14], the number of input voxels is changed
to 960 x 720 x 64 from 480 x 320 x 32.

Loss. Instead of a common cross-entropy loss, we use
Geo loss [7] and Lovasz loss [1] to train all our models.
To have a better boundary of different classes, Geo loss is
utilized to distinguish voxel with rich detail. Lovasz loss
is served as a differentiable IoU loss to mitigate the class
imbalance problem.

TTA. During inference, multiple test time augmen-
tations (TTAs) are utilized, including rotation, scal-
ing, and flipping. For scaling, scale factor is set to
{0.90,0.95,1.00,1.05,1.10} for all models. Flipping is
performed in both X and Y axis, and rotation angle is set to
{—=%,0,%,7}. A combination of TTAs would further im-
prove model performance. However, it is time-consuming
due to the multiplication of inference times. A combina-
tion, which is model-dependent, with around 20 inference
times is chosen. For example, a combination of scaling and
flipping is suitable for ICPV while a combination of scaling
and rotation fits Cylinder3D [14].

2.2. Proposed Method

Painting. By projecting point cloud data to correspond-
ing images and densifying the sparse annotations, semantic

labels for images are obtained from annotated point cloud
data. The Mask2Former [2] model with R50 backbone is
trained to provide 2D semantic segmentation results on im-
ages. Then, predicted semantic labels are painted as one-hot
vectors to point cloud data as additional channels to repre-
sent semantic information from images.

Temporal. For temporal information, past 10 consecutive
frames, including 2 labeled frames and 8 unlabeled frames,
are concatenated to the current frame. An additional chan-
nel is appended to represent the relative time information of
different frames. To reduce the number of points, a small
voxelization network is applied to 11 consecutive frames.
Then, voxels treated as points are served as input to our
models.

ICPV. To take the benefit from both voxel and cylinder
representations, and further utilize the image and temporal
information, we propose ICPV (Figure 1) to fuse the image,
cylinder, point, and voxel representations during the fea-
ture extraction stage. The ICPV is built based on SPVCNN
[10]. An additional cylinder feature extraction branch from
Cylinder3D [14] is fused to the point branch by simple ad-
dition. To utilize image information, image features from
the aforementioned semantic segmentation model are also
fused to the point branch. After projecting points to image
coordinates as reference points, deformable attention [15]
is utilized to aggregate image features. Then, the obtained
features are fused to the point branch following DeepFu-
sion [5].

2.3. Model Ensemble

Expert model. To improve the diversity of our models,
we train our models under a different data re-sampling strat-
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Table 2: Our final per-class results on test set.

egy called the export model. According to context infor-
mation about scenes and weather conditions, 10 models
for 5 different scenes and under 5 different weather condi-
tions are trained. These context-specific expert models are
trained by finetuning on the model trained on all data. To
further enhance the performance of rare classes, RFS [4] is
applied to train our models from scratch.

Ensemble. Results of models are aggregated in a hierar-
chical manner after TTA. Considering the diversity of our
models, model ensemble is processed in two stages. In the
first stage, logits of homogeneous models, such as models
with different hyper-parameters, are averaged with differ-
ent weights. Then, logits of heterogeneous models, namely
models with different architectures, are averaged with dif-
ferent weights in the second stage. NNI [&] is utilized to
search weights on validation set in both stages.

2.4. Post-Processing

Hierarchical classification. Totally 22 semantic classes
are divided into 5 semantic groups, including 4 fore-
ground semantic groups and 1 background semantic group.
By analyzing the confusion matrix, we notice that most
of the misclassification occurs within similar classes.
For example, MOTORCYCLIST is mainly confused with
BICYCLIST and MOTORCYCLE. The background se-
mantic group contains 9 classes, including BUILD-
ING, VEGETATION, TREE_TRUNK, CURB, ROAD,
LANE_MARKER, OTHER_GROUND, WALKABLE, and
SIDEWALK. For other classes, CAR, TRUCK, BUS, and
OTHER_VEHICLE form the vehicle semantic group, MO-
TORCYCLIST, BICYCLIST, BICYCLE, and MOTORCY-
CLE form the cycle-like semantic group, SIGN, TRAF-
FIC_LIGHT, POLE, CONSTRUCTION_CONE form the
sign-like semantic group, and PEDESTRIAN individually
forms the pedestrian semantic group. Our post-processing
techniques are conducted on the 4 foreground semantic
groups separately.

Object-level refinement. The segmentation results are
further improved by considering the object-level in-
tegrity based on the hierarchical classification, especially
for large and rare objects like MOTORCYCLIST and

OTHER_VEHICLE. Existing semantic segmentation meth-
ods perform point-wise classification, however, the consis-
tency of a single object is ignored. By masking points in
the same semantic group based on prediction and perform-
ing Euclidean clustering, points could be grouped into in-
stances. Then, the prediction of each instance is determined
by majority voting. Besides, for each object, object-level
classification justification is performed by a small classifi-
cation network to determine the final predicted class of the
object.

Segmentation with tracking. Since object-level predic-
tion is obtained, the time consistency of the prediction is
further refined by tracking. Tracking is performed to find
the corresponding object from all previous frames. Then,
the predicted class of an object in the current frame is re-
fined by considering all previous predictions.

3. Experiments

In this section, we describe the setup of our experiments,
including dataset, evaluation metric, and implementation
details. In the ablation study, we decompose our method
and study the effectiveness of each component of our solu-
tion.

3.1. Dataset and Metric

The Waymo Open Dataset [9] contains 798, 202 and 150
video sequences in the training, validation, and testing set,
respectively. Each sequence is annotated roughly at a fre-
quency of 2H z for the task of 3D semantic segmentation,
resulting in 23,770 and 5,976 annotated frames for train-
ing and validation, respectively. Labels of dataset version
v1.3.2 are used for training and validation. The 3D Seman-
tic Segmentation track uses intersection-over-union (IoU)
for per-class evaluation and mean IoU (mloU), which is un-
weighted average among all classes, for overall evaluation.

3.2. Implementation Details

Following the OpenPCDet framework [ ], all our mod-
els are adapted or implemented in this codebase. The point
cloud range is set to [—75, 75] meters for X and Y axis, and
[—2, 4] meters for Z axis. Synchronized batch norm is uti-
lized in all models and no external data is used. For data



augmentation, random rotation, random scaling with scale
factor in the range of [0.9,1.1], random flipping along X
or Y axis, and random point translation following a norm
distribution are applied. We utilize Geo loss [7] and Lovasz
loss [1], the weight for both loss is set to 0.5. Models are
trained with stochastic gradient descent (SGD) optimizer
and the number of training epochs is set to 12. Learning
rates, batch size, and learning rate schedulers are tunned
differently on different models. All models are trained with
8 NVIDIA A100 GPUs.

SPVCNN. For all variants of SPVCNN [10], SGD opti-
mizer with 1e — 4 weight decay and 0.9 momentum is ap-
plied. Learning rate linearly warmups for the first epoch
and then follows the cosine decay for the rest 11 epochs.
The batch size is set to 16 and the learning rate is set to
0.32. The other settings are the same as in SPVCNN [10].

Cylinder3D. For all variants of Cylinder3D [14], SGD
optimizer with no weight decay and 0.9 momentum is ap-
plied. Learning rate linearly warmups for the first epoch
and then decays by 0.5 at the 9th and 11th epochs. The
batch size is set to 16 and the learning rate is set to 0.048.
The number of input voxels is changed to 960 x 720 x 64
from 480 x 320 x 32. The other settings are the same as in
Cylinder3D [14].

ICPV. ICPV contains 4 branches for feature fusion. Be-
fore all branches, a small point net with channel-wise max-
pooling which shares the same structure as in Cylinder3D
[14] is applied. The point branch and the voxel branch
follow the same setting as in our SPVCNN, and the cylin-
der branch follows the same setting as in our Cylinder3D.
The image feature is extracted from the first stage of the
pretrained R50 of Mask2Former [2] from our 2D semantic
segmentation model. For feature fusion, three point cloud
branches are first fused by adding to the point branch. Then
the fused point feature is fused with the image feature fol-
lowing DeepFusion [5].

3.3. Ablations

As shown in Table 1, techniques mentioned in Section 2
improve the performance from SPVCNN on validation
set from 67.4 to 75.4.

4. Results

For our final submission, all techniques mentioned in
Section 2 are utilized in all model architectures. TTA is
conducted separately and model ensemble is conducted in a
hierarchical manner. We achieve 0.7118 mloU on test set,
ranking the 1st on the 3D Semantic Segmentation leader-

board of Waymo Open Dataset Challenge 2022. Per-class
results on test set are reported in Table 2.
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