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Abstract

This technical report presents our top-performing multi-
modal solution for the 3D semantic segmentation track in
Waymo Open Dataset Challenge at CVPR 2022. Almost
all the existing LiDAR 3D semantic segmentation methods
take only sparse laser points as input, suffering from
inaccurate distinction on small objects. We propose a
winning multi-modal method that uses multi-camera images
to complement the point cloud. However, multi-modal
data also introduces issues on modal heterogeneity and
multi-modal data augmentation. To address the former,
we propose to perform specific intra-modal feature extrac-
tion and inter-modal fusion in a jointly optimized model.
The later limitation of multi-modal data augmentation is
decoupled as the asymmetric transformations on the point
cloud and the images. Besides, the final segmentation
performance also benefits from using historical multi-frame
point clouds as input, Test-Time Augmentation (TTA), and
model ensemble. We achieve the 2nd place with 70.48 mIoU
on the official leaderboard.

1. Introduction
The competitive Waymo Open Dataset Challenges at

CVPR 2022 ends on May 23 2022, which provides
the largest autonomous driving dataset currently publicly
available to enable the exciting research [13]. We mainly
focus on the 3D semantic segmentation track, which
requires to predict one of the 23 semantic categories for
each point in the 3D point cloud surrounding the ego-
vehicle in the real self-driving scenarios. The subset for 3D
semantic segmentation includes 23,691 training samples,
5,976 validation samples and 2,982 testing samples. Given
a point cloud sample of N points, the multi-camera images
are temporally aligned to this point cloud, and each point
with 3D coordinates (x, y, z) is spatially aligned into the
image plane with the projected coordinates (u, v).

The 3D semantic segmentation track allows the usage of
unlimited historical frame data prior to the current frame,
including LiDAR point clouds and multi-camera images.
With careful and effective design, our proposed multi-
modal 3D segmentation method achieves the 2nd place
among all the competing methods.

2. Method
The point cloud data accurately measures the driving

scenario using sparse laser points, and the artificial neural
network is also powerful enough to learn the structural
information of objects from it [2, 9, 14, 20]. But the
fine-grained segmentation of some small objects is still
challenging for point clouds with sparse laser points. We
thus complement point clouds with the color, texture and
other information from the corresponding high-resolution
multi-camera images for building a top-performing multi-
modal 3D semantic segmentation model. However, there
is few multi-modal 3D semantic segmentation methods
for autonomous driving. We rationally reason about
these two factors: i) Heterogeneity between modalities.
Multi-modal models need to be carefully designed with
effective intra-modal feature extraction and inter-modal
fusion mechanisms to nourish from such heterogeneous
data of sparse points and dense pixels. ii) Multi-modal
data augmentation. Compared with the single modality,
the multi-modal data augmentation is of more challenges to
achieve high quality of inter-modal spatial alignment, while
the alignment quality is critical for effective multi-modal
association [10]. Some transformations like the rotation
of the point cloud cannot be simultaneously applied to
the corresponding image, which results in that such useful
augmentation transformations are inapplicable.

This section presents our effective and novel solutions
to the above issues for multi-modal 3D semantic segmen-
tation of the Waymo Open Dataset challenge. As shown
in Fig. 1, we perform feature-level multi-modal fusion
through specific intra-modal feature extraction (Sec. 2.1)
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Figure 1. Overview of our multi-modal 3D semantic segmentation (“Seg”) model.

and inter-modal feature fusion (Sec. 2.2), then predict the
point-wise segmentation using an Multi-Layer Perceptron
(MLP) segmentation head based on the point-wise fused
feature. Sec. 2.3 introduces the proposed multi-modal data
augmentation, followed by the loss function in Sec. 2.4.
An optional extension to multi-frame point clouds input is
discussed in Sec. 2.5.

2.1. Intra-modal Feature Extraction

Point Cloud Feature Extraction. For effective and
efficient point cloud feature learning in a large-scale
autonomous driving scenario, we use the voxel-based point
cloud backbone as shown in Fig.2.

The input point cloud is divided by a quantization
step d and rearranged as non-empty voxels by the Voxel
Feature Encoder (VFE), which averages the point-wise
initial features (3D coordinates, reflectance and elongation)
of the local points inside a voxel. These non-empty
voxels are then token as input to a 3D sparse U-Net for
3D convolutional processing. Inspired by the 3D object
detection work Part-A2 [11], we build the 3D sparse U-Net
backbone by stacking four down-sampling blocks to make
the voxel-wise features more informative with increasing
receptive fields, and stack four up-sampling blocks for
resolution restoration and feature refinement.

Fig.2 demonstrates the details of the point cloud back-
bone, which is implemented with the 3D sparse convolution
(SparseConv3D), 3D inverse sparse convolution (Invers-
eSparseConv3D) [18], and 3D submanifold convolution
(SubMConv3D) [7]. We decompose a pair of down-
sampling block Di and up-sampling block Ui for a clear
illustration. More details are in the OpenPCDet [4] toolbox.

For point segmentation, we devoxelize the voxel-wise
features into point-wise features Fpc. For each point, we
interpolate the point feature from its K nearest neighboring
voxels [9]. We set the K to 3 for computation efficiency.

Image Feature Extraction. A naive way to enhance
the point cloud with images is painting the input points

with the RGB values or image segmentation results inferred
by a well-trained image segmentation model [15, 17].
However, there are three main limitations: i) The image
inherently has structural information in dense pixels, and
point cloud networks are not designed for image data,
which leads to insufficient image feature extraction. ii)
High-quality image segmentation results require a large
number of image annotations for model training, but they
are unavailable on Waymo Open Dataset. Models trained
on other segmentation datasets will always have distribution
gaps and also are not allowed by the challenge rules. iii)
Inferring the image segmentation results in advance disable
the joint optimization of the image network and the point
cloud network, which wastes the powerful learning ability
of the artificial neural networks.

Instead, we propose to employ an image backbone to
provide the hidden feature maps and jointly optimize it in
the overall 3D segmentation model. With the clear modular
design of our method, our image backbone can be flexibly
selected from a large number of mature and off-the-shelf
image backbone networks. In practice, we adopt the widely
used HRNet-w48 [16], which provides ×4 down-sampled
feature map with large receptive fields and rich details. A
1 × 1 2D convolution is further employed to compress the
channels for saving computation, resulting in a feature map
M ∈ RCimg×Ho×Wo .

2.2. Inter-modal Feature Fusion

The point cloud features Fpc and image features M are
specifically extracted with expressive semantic represen-
tations, which guarantees the effectiveness of inter-modal
feature fusion. Technically, there are two steps to achieve
inter-modal feature fusion: association and fusion.

Association. For the i-th point (xi, yi, zi) with point
cloud feature fpc,i in Fpc, we use the provided point-wise
image coordinates (ui

4 , vi
4 ) to perform bilinear interpolation

on the ×4 down-sampled image features M within the
corresponding local camera. Zeros are padded to the
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Figure 2. Network architecture details of our point cloud backbone. Two segmentation heads in Fig. 1 can be built on the point cloud
backbone output, which serves as the point cloud based single-modal model in Tab 1.

overflow points, which allows each point to be decorated
with the feature fimg,i of the same dimension.

Fusion. To balance the two feature sources of fpc,i and
fimg,i, we first project them into a Cint-dimensional inter-
mediate space using fully connected layers Fpc and Fimg,
and then concatenate (“©”) them together for subsequent
learnable information aggregation using another MLP with
output channels of Cfused as

ffused,i = MLP (Fpc(fpc,i)©Fimg(fimg,i)), (1)

Ffused = [ffused,1, · · · , ffused,N ] ∈ RCfused×N . (2)

The simple yet effective fusion mechanism achieves suf-
ficiently significant performance improvements through
unbiased considerations on both modalities. More elaborate
fusion mechanisms will be explored in our future work.

2.3. Multi-modal Data Augmentation
The effect of multi-modal fusion depends heavily on

the alignment quality between modalities in the association
process, so that the multi-modal data augmentation is
necessary to be addressed. Our solution does not consider
performing the symmetric augmentation transformations on
both the point cloud and images.

Both the segmentation output and our multi-modal
fusion mechanism are point-centric. The point-wise feature
association is applicable by using (u, v), as long as the order
of the coordinate pairs of the points in the point cloud and

the camera coordinate systems is kept in synchronization.
Bare this in mind, we now have the flexibility to decouple
multi-modal data augmentation: i) We can apply arbitrary
transformations to the point cloud while keeping the images
and the coordinates (u, v) unchanged. ii) We can even apply
different and asymmetric transformations to the point cloud
and the images if we ensure that the coordinates (u, v) are
synchronously transformed with the images.

In such a manner, we are not only able to keep all
the point cloud augmentation transformations, but also
introduce more image transformations. The permutations
between the asymmetric augmentation transformations sig-
nificantly diversify the multi-modal data augmentation and
improve the model robustness.

2.4. Loss Function
As shown in Fig. 1, there are primary and auxiliary

segmentation heads built on the final point-wise fused
features and the voxel-wise features of the 3D sparse U-
Net output, respectively. For each segmentation head, we
employ a combination of the cross-entropy loss Lce and
lovasz-softmax loss Llovasz [1]. Let α ∈ {V, P} denote the
voxel-wise and point-wise, respectively. The total loss term
can be formulated as L =

∑
α (Lce,α + Llovasz,α). Note

that the voxel-wise prediction is for auxiliary supervision
only, while the point-wise prediction is set as the final
segmentation results. To avoid ambiguity in voxel-wise
supervision, we ignore the voxels containing points of
multiple classes in the auxiliary voxel-wise loss.
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1 ×
√

× × 61.92 93.93 56.28 68.86 8.60 0.00 64.08 86.10 68.37 20.65 69.08 64.32 54.30 56.98 94.15 89.93 63.99 67.34 92.16 50.32 41.22 78.05 73.54
1 ×

√
×

√
63.70 94.42 57.07 70.88 6.02 0.00 66.76 87.62 70.73 24.77 71.02 67.56 61.96 68.57 94.71 90.66 64.92 69.36 92.45 48.87 40.01 78.82 74.25

1
√

× × × 59.88 94.09 52.88 57.96 14.30 0.00 52.85 85.21 67.31 24.48 69.57 62.45 40.64 52.98 94.06 89.50 63.17 66.76 91.78 47.75 39.96 76.96 72.76
1

√ √
× × 63.24 94.69 57.68 68.66 18.47 0.00 64.15 86.36 69.51 25.55 72.21 65.96 51.28 56.8 94.52 90.17 66.24 67.81 92.11 51.84 45.89 77.95 73.41

1
√ √ √

× 64.18 94.67 58.90 73.37 18.75 0.00 66.96 87.34 70.30 28.09 73.79 67.30 50.99 55.66 94.70 90.37 66.70 68.48 92.53 52.84 46.31 78.65 75.28
1

√ √ √ √
65.45 94.89 59.64 75.26 19.61 0.00 67.08 88.30 71.51 28.61 75.18 69.14 58.76 62.98 95.07 90.87 67.60 69.99 92.68 52.42 45.58 79.09 75.61

9 ×
√

× × 63.83 94.67 55.76 76.94 13.17 0.00 63.41 86.75 67.31 26.48 71.24 67.11 55.99 65.81 94.72 90.32 65.41 68.74 92.39 52.66 44.00 78.28 73.12
9 ×

√
×

√
65.56 94.89 56.98 76.67 12.46 0.00 67.77 88.05 69.53 28.99 73.24 69.22 63.89 74.70 95.23 91.02 66.78 70.31 92.74 53.16 43.85 79.08 73.67

9
√ √ √

× 65.66 95.30 60.15 77.32 19.66 0.00 66.74 88.15 71.29 31.62 74.41 68.32 60.90 60.25 95.20 90.80 66.93 69.72 92.65 53.34 46.53 79.18 76.07
9

√ √ √ √
66.91 95.44 60.79 78.57 20.12 0.00 68.52 88.96 72.32 31.77 75.45 69.64 67.93 68.09 95.50 91.25 67.70 71.26 92.82 53.27 46.64 79.52 76.43

1/5/9
√ √ √ √

70.48 95.73 69.03 79.74 37.00 0.00 88.77 92.66 71.82 30.02 80.85 65.97 69.53 76.97 97.15 88.18 72.76 76.40 93.27 49.49 52.61 75.40 87.25

Table 1. 3D segmentation performance of the variants of our method evaluated on the validation set (rows 1 - 10) and testing set (the last
raw). For quick validation, a uniformly sampled 1/3 training set with 7,897 samples are used for model training in rows 1 - 10. “P-Frame”
and “TTA” denote number of used point cloud frames and test-time augmentation, respectively. The multi-modal data augmentation is
decomposed as “P-DA” and “I-DA” for the point cloud and image data augmentations, respectively.

2.5. Extension to Multi-frame Point Clouds
Collapsing the adjacent point cloud frames can improve

the sparsity of the point cloud in the current frame [8]. We
provide an optional extension to boost performance using
multi-frame point clouds as input. We follow Yin et al.
[19] to align and collapse the multiple historical frames
to the current one by the provided ego-vehicle motion
information. The relative timestamp is used as additional
point-wise initial feature.

3. Experiment
3.1. Implementation Details

Network Architecture. The voxelization step d is set
as (0.1, 0.1, 0.15) meters to voxelize point cloud within
the range of [−75.2,+75.2], [−75.2,+75.2], [−4.0,+2.0]
meters along the X,Y, Z axis. We configure the 3D
sparse U-Net with the feature dimensions C1 - C8 of 32,
64, 128, 128, 128, 128, 64, 32, respectively. For the
image backbone, we adopt the HRNet-w48 [16] with the
parameters pre-trained on ImageNet [6], which is publicly
available at mmSegmentation toolbox [3].

Training. All our models are trained by the same
schedules with the Adam optimizer and one-cycle policy
[12] with LR 0.01, division factor 10, momentum ranges
from 0.95 to 0.85, weight decay 0.01. A batch of 32 random
samples is trained on 16 Tesla V100 GPUs with 12 epochs.
Due to the limited memories, we only optimize the last
stage of HRNet-w48 based on the frozen first three stages.

We employ the multi-modal data augmentation men-
tioned in Sec. 2.3. The point cloud augmentation trans-
formations include global scaling with a random scaling
factor in [0.95, 1.05], random flipping along the X,Y
axis, global rotation around the Z axis with a random
angle in

[
−π

4 ,+
π
4

]
, global translation with a random

vector (∆x,∆y,∆z) sampled from a Gaussian distribution

with mean zero and the standard deviation 0.5. For
image, we first resize it as 640×960, then perform image
transformations of random horizontal flipping with 0.5
probabilities, scaling with a random factor in [1.0, 1.5],
random cropping with a size of 640×960.

Inference. TTA is used for performance boost in
inference stage by averaging the predictions from 8 aug-
mented input variants. We perform our multi-modal data
augmentation again with some slightly modified parameters
to generate the random multi-modal input variants. All
the point cloud transformations are kept with default pa-
rameters. For images, we only perform random horizontal
flipping with 0.5 probabilities for simplicity. Besides, We
use model ensemble of the TTA results of 6 candidate
models for the final submission: multi-modal and point
cloud based single-modal segmentation models, configured
and trained with 1, 5, 9 point cloud frames, respectively.

3.2. Ablation Study and Results

Tab. 1 reports the ablation study and our final results.
Rows 1 and 3-5 show that multi-modal data augmentation
is the key to effectively train multi-modal models with im-
proved performance, and excluding the data augmentation
on either modality degrades the performance a lot. With
fairly applying data augmentations, the multi-modal model
in row 5 significantly improves the single-modal model in
the first row, especially for small objects such as traffic
light, pole, cone, bicycle, and so on. TTA stably improves
the segmentation robustness of inference. Moreover, the
rows 7-10 also representatively demonstrate that the multi-
frame point clouds can further improve the segmentation
performance. By employing all the components with the
full training data, our final results on the testing set are
shown in the last raw and can be retrieved on the official
leaderboard [5] by the submission entry of “SegNet3D”.
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