
Motion Trajectory Prediction with Multi-Model Ensembling

Jingyu Qian
Horizon Robotics Inc.

qianjingyu0322@gmail.com

Yifan Zhuang
Horizon Robotics Inc.

zhuangyf2012@gmail.com

Zhening Yang
Horizon Robotics Inc.
zheningy@gmail.com

Jiajie Chen
Horizon Robotics Inc.
chenjiajie bm@163.com

Qiang Liu
Horizon Robotics Inc.
proliu@gmail.com

Abstract

This research proposes an ensembling method for motion
trajectory prediction, which builds upon multiple base mod-
els and employs an expectation-maximization (EM) process
as a post-processing step to enhance the trajectory preci-
sion. In our implementation, we have employed both raster-
based model and vector-based model as the base models.
The ensemble model with the EM process results in a sig-
nificantly higher mAP (mean Average Precision) than each
of the base models.

1. Introduction
Given a road map and the historical trajectories of the

observed agents, a motion prediction model forecasts the
future trajectories of the agents of interest. Based on the
encoding format of the map and history trajectories, mo-
tion prediction methods may be categorized as raster-based,
vector-based and graph-based. The raster-based methods
usually use CNN to encode the spatial information, while
the other two may use transformers or other vector opera-
tions to encode the structured road and agent features. The
raster-based models may have more limitations on the range
scope (due to memory constraints) and implicit encoding of
agent attributes (e.g., velocity), but the CNN structure has
been well established and may be preferred by some deep
learning accelerators. The vector-/graph-based models, on
the other hand, are usually featured with a lighter memory
footprint, larger receptive fields, and explicit encoding of
agent’s attributes, forming a more promising methodology.

From an engineering point of view, if the range scope
is small, e.g., for pedestrians and cyclists whose velocity
is much smaller than vehicles, the raster-based methods
may be much more affordable and can benefit from well-
established CNN networks and hardware. However, for ve-
hicles, it makes much more sense to utilize vector or graph-

based methods. Considering both, we design a general mo-
tion prediction framework that may be an ensemble of one
or both of these models, aiming to take advantage of both to
achieve better prediction accuracy.

2. Methodology

In this section, we briefly review some recent mo-
tion prediction methods, which contribute to our ensemble
model. Fig. 1 shows the overview of our method. For each
target agent in a scene, we forward its data (past trajecto-
ries and surrounding environments) through a group of base
models, which can be either raster-based or vector/graph-
based. The outputs from each of these models are fed to a
post-processing module for ensembling, which consolidates
all the outputs into a desired number of trajectories (e.g. 6
final trajectories). For different classes, i.e. vehicle, pedes-
trian or cyclist, we use different sets of hyper-parameters
for the ensembling, which are obtained by a grid-search be-
forehand. In our case, the base models are chosen to be a
raster-based model modified from HOME [3], and a vector-
based model with similar structure as Multipath++ [4].

Figure 1. Method Overview: Each base model proposes a number
of trajectories for an agent, and the ensemble post-process refines
these results based on grid-searched hyper-parameters.

1

2.1. HOME-based Model

The overall structure of the HOME-based model is
shown in Fig. 2, which encloses a two-stage algorithm, in-
cluding a keypoint heatmap prediction stage and a trajectory
generation stage. The first stage will predict heatmaps

(a) Heatmap Prediction of Keypoints

(b) Trajectory Generation

Figure 2. Home-based Motion Prediction Model: A two-stage
motion prediction model – (a) predicts the keypoint heatmaps at
specified time-steps (e.g. at 3s, 5s, 8s); (b) takes the heatmaps and
the target agent history and outputs the full trajectories and the
corresponding scores.

2.1.1 Heatmap Prediction

The first stage follows the original work from HOME [3].
The primary difference of this research lies in the output.
HOME only predicts the heatmap representing the last point
of the future trajectory. However, such a design may have
weak supervision by using a single trajectory point. In
contrast, we generate three heatmaps, corresponding to the
time-steps at the 3, 5 and 8 seconds respectively. In fact,
one may choose to employ all the points along the trajec-
tory for supervision. But we have found it much redundant,
as the trajectories are usually quite smooth.

2.1.2 Trajectory Generation

As shown in Fig. 2b, the second stage will generate the
whole trajectory using the heatmap from Sec. 2.1.1. HOME

applies MR sampling or FDE sampling algorithms to esti-
mate potential final points from the heatmap, then uses an
MLP to generate the full future trajectory with the sampled
keypoints. But we have found that these algorithms suffer
from low-quality heatmaps, e.g. blurry heatmaps. As a re-
sult, we adopt a lightweight CNN, e.g. ResNet18, and a
global pooling to generate a context vector, which is then
concatenated with the feature vector projected from the ego
agent history trajectory. We then utilize an attention oper-
ator to combine this context vector with a set of latent an-
chors, and finally forward the combined vector to a linear
layer to output the regressed trajectories and their scores.
Each output trajectory has 16 points. In our implementa-
tion, we have used a MCG as the attention module, which
was inspired by [4].

2.2. MultiPath++ Based Model

2.2.1 Inputs

We have used two different model inputs, 256 closest map
objects (a line segment of maximum 20 points) of all types
(e.g. lane center, road edge, road line) and 128 nearest ob-
jects of lane center type only, respectively. 128 nearest lane
objects are selected using a Breadth-First-Search algorithm
based on road connection information. In this algorithm, we
start from the lane center object closest to the target agent,
and iteratively collect the lane object that are neighbors to
the already collected, until reaching the specified number of
lane objects. Note that the neighbors include the lanes both
in front of and behind the collected lane nodes.

For each point in a map object, we use a flag vector to
encode its attributes, which indicates if it is located in a spe-
cific traffic region (e.g. Crosswalk, Speed Bump) and/or
close to a stop sign and/or controlled by a traffic light sig-
nals. Note that this is not a one-hot vector, as multiple at-
tributes may co-exist.

2.2.2 Encoder

Agent history encoding. Different from [4], we have used
GRU (instead of LSTM) for history features encoding of the
target agent, without losing accuracy.
Agent interaction encoding. For surrounding agents, we
also used GRU to encode their history in the target agent’s
coordinate frame. For the three types of surrounding agents
(i.e. vehicle, pedestrian, cyclist), we have used three GRU
encoders respectively, the outputs of which are fused with
stacked MCG blocks.
Road network encoding. Instead of using custom lane
node encoding defined by start point, end point in [4]. We
still used GRU to encode all points for both the 256 all-type
road elements and the 128 lane-center-only elements, which
achieved similar performance in experiment.

2

2.2.3 Decoder

The encoded target agent, surrounding agents and road el-
ements are concatenated to form a context vector. Similar
to [4], we use latent anchors to fuse with the aggregated
context by using a stacked MCG block. The fused embed-
ding is then forwarded to an MLP layer to predict the K
trajectories and their probabilities. Each trajectory has 80
points.

2.3. EM-based Ensembling

We adopt the model-agnostic ensembling method pro-
posed in [4], so the trajectories can come either from mul-
tiple prediction heads of a single model or multiple models
with single prediction heads.

Let L denote the number of base models or prediction
heads, where each model or head predicts E trajectories for
the target. The ensembling then takes L ·E trajectories and
consolidate to 6 trajectories required by the task.

2.3.1 Centroid Selection

Let Eq. (1) denote a set of trajectories and corresponding
probabilities. We begin by selecting K trajectories out of
Ψ that are most representative of the entire set. We adopt
the greedy criterion that maximizes the probability sum of
the trajectories within τ (the distance threshold) from the
selected centroid in Eq. (2). Once a trajectory is selected as
a centroid, all the inliers are excluded in the next round of
iteration.

Ψ = {(ξ11, p11), ..., (ξ1E , p1E), ..., (ξLE , pLE)} (1)

ξ̄k
k∈[1,K]

= argmax
ξ̄k∈Ψ

L∑
i=1

E∑
j=1

pijI(∥ξij − ξ̄k∥ ≤ τ) (2)

As an alternative, we’ve also implemented a non-
maximum-suppression(NMS) method to select centroids.
Different from the aforementioned greedy selection, NMS
is based solely on the probabilities of trajectories, while the
criterion of the inliers is the same as the greedy method.

2.3.2 Expectation Maximization

Same as [4], we view all the predictions from all the base
models at a single time point as Gaussian mixture models
(GMM), described as Eq. (3):

p(x, y; Ψ) =

L·E∑
j=1

qjN (x, y;µj ,Σj) (3)

The aggregated results Ψ̄ should minimize the KL-
divergence DKL(Ψ||Ψ̄), which involves updating q, µ and

Σ iteratively:

q̄h ←
L·E∑
i=1

qip(h|µi; Ψ̄) (4)

µ̄h ←
1

q̄h

L·E∑
i=1

qip(h|µi; Ψ̄)µi (5)

Σ̄h ←
1

q̄h

L·E∑
i=1

qip(h|µi; Ψ̄)[Σi+(µi−µ̄h)(µi−µ̄h)
T] (6)

In our implementation, we specified a maximum number
of iterations as the stopping criterion.

3. Experiments
3.1. Evaluation of MultiPath++

Table 1. Vehicle result of using Multipath++ as the base model:
We compare the two different inputs to the model. Both experi-
ments were conducted on the vehicle data only, with 6 trajectories
as output.

Soft mAP 3s 5s 8s Average
256 all-type-elem 0.426 0.339 0.238 0.335
128 lane-center 0.405 0.329 0.251 0.328

Tab. 1 summarizes the evaluation of different model in-
put types. One thing we have noticed : for the shorter
time horizon, e.g. at 3s and 5s, encoding the road ele-
ments of all types showed significantly higher accuracy, but
not at the long horizon, i.e at 8s time-step. This is prob-
ably due to the cases in which the target agents possess
high speed and the collected all-type road elements didn’t
cover enough range, while the lane-center only elements
may cover enough range, but lacks of the richness of the
road information. So for better accuracy, one may need to
use a larger number road elements with all the types.

3.2. Evaluation of HOME-based Model

We evaluate the HOME-based models on cyclists and
pedestrians, as shown in Tab. 2 and Tab. 3. Here, “Basic”
represents the baseline. “Data Augment” refers to the tem-
poral augmentation instead of spatial augmentation. Com-
pared to vehicles, which have over 106 training samples,
pedestrians and cyclists face the challenge of insufficient
training data. To mitigate this, we conducted two augmen-
tation methods. First, we collected all the other agents be-
sides the target agents that are already given, and added their
future trajectories as additional training samples. Then, we
augmented the trajectories horizons, by randomly forward-
ing the trajectory to 1 to 5 seconds into the future. After data
augmentation, the size of the training set for pedestrians and
cyclists becomes around 250,000 and 700,000.

3

Table 2. Pedestrian Motion Prediction Accuracy (Data Augmen-
tation)

Algorithms Soft mAP mAP Miss Rate
Basic 0.353 0.338 0.087
Data Augment 0.360 0.334 0.078

Table 3. Cyclist Prediction Accuracy (Data Augmentation)

Algorithms Soft mAP mAP Miss Rate
Basic 0.268 0.249 0.241
Data Augment 0.297 0.279 0.226

As shown in Tab. 2 and Tab. 3, the temporal data aug-
mentation can increase the accuracy significantly. The im-
provement is more obvious when one category has fewer
training samples. For cyclists, the increasing scale is over
10% compared to the baseline. Besides evaluating the im-
pact of the data augmentation, we also conducted ablation
studies testing different trajectory regression algorithms.
Tab. 4 depicts the results of the two methods. The first row
shows the results of using CNN to regress the heatmap into
trajectories. The second row shows the results of using the
sampling method proposed by [2, 3] followed by an MLP.
As shown by Tab. 4, the CNN-based method is much more
accurate than using the MR sampling. Another ablation test
evaluates the usage of latent anchors, as shown in Tab. 5.
The first row shows the results of using latent anchors pro-
posed by [4], and the second row shows the results of using
fixed anchors proposed by [1]. As can be seen, the latent an-
chors showed superior performance, as they are more adap-
tive to different scenarios.

Table 4. Pedestrian Prediction Accuracy (Sampling)

Algorithms Soft mAP mAP Miss Rate
Basic 0.353 0.338 0.087
MR Sampling 0.271 0.268 0.113

Table 5. Pedestrian Prediction Accuracy (Anchors)

Algorithms Soft mAP mAP Miss Rate
Latent Anchors 0.353 0.338 0.087
Fixed Anchors 0.338 0.313 0.091

3.3. Evaluation of Ensembling

In our experiments, we trained a multipath++ based
model on vehicle data, and two HOME-based models on
pedestrian and cyclist data respectively. Each base model
has 6 prediction heads and each head predicts 6 potential
trajectories. As a result, each model predicts 36 trajectories
as inputs for ensembling.

In order to get an optimal ensemble results, we employed
a grid search algorithm to find the hyper-parameters. The
initial searches allowed us to fix some hyper-parameters,
reducing the search space size. Specifically:

• We limit the EM update to 3 iterations;

• Vehicle class uses the outputs from multipath++ based
model only, and pedestrian and cyclist classes use the
outputs from the HOME-based models only.

Our final submission for each category is shown in Tab. 6.
“Cent.” refers to centroid selection methods. τ represents
the distance threshold used for the centroid selection. Note
that for vehicle we have used l1 distance and l2 for pedes-
trian and cyclist. “EM” indicates whether the iterative EM
algorithm is used. “std” is a heuristic standard deviation
value used for the covariance matrix of the GMM’s, in
which we assumed an i.i.d distribution across all the trajec-
tories and the time-steps. “Base” means the type of models
during the ensemble.

Table 6. Hyper-params for Each Category

Category Cent. τ EM std. Base
Vehicle greedy 0.74 NO N/A MTP++
Pedestrian nms 0.94 YES 1.4 HOME
Cyclist nms 2.0 YES 3.4 HOME

Table 7. Ensemble Prediction Accuracy on Validation Set

Category Soft mAP mAP Miss Rate
Vehicle 0.335 0.293 0.168
Pedestrian 0.360 0.334 0.078
Cyclist 0.297 0.279 0.226
Vehicle Ens. 0.405 0.387 0.159
Pedestrian Ens. 0.381 0.374 0.083
Cyclist Ens. 0.367 0.363 0.222
Average Ens. 0.384 0.375 0.154

Table 8. Final results on Test Set

Algorithms Soft mAP mAP Miss Rate
MTRA 0.459 0.450 0.116
golfer 0.426 0.412 0.135
HBEns 0.380 0.370 0.159
DM 0.377 0.371 0.165

We show our ensemble results on the validation set in
Tab. 7 and the test set in Tab. 8, both submitted against the
online server. As can be concluded, the implemented model
ensemble method significantly boosts the overall prediction
accuracy. From grid-search, our best results were obtained

4

by using the greedy centroid selection on vehicles and NMS
centroid selection on pedestrians and cyclists. The reason
for this result may be that the trajectories of vehicles are not
as diverged as the pedestrians or cyclists, due to the fact that
vehicles do not make changes as easily as the latter two.
So for vehicles, NMS-based sampling tends to select the
trajectories close to each other, while the greedy centroid
sampling would prevent such cases. On the other hand, cy-
clists’ and pedestrians’ trajectories tend to be more omni-
directional compared to vehicles, so it makes more sense to
use the confidence-based sampling, such as NMS.

4. Conclusion
In this work, we have shown a multi-model ensem-

ble method for motion trajectory prediction by combining
raster-based and vector-based models to achieve superior
prediction accuracy. An EM-based ensembling module is
utilized as a post-processing step, which significantly en-
hances the mAP of the predicted trajectories.

References
[1] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir

Anguelov. Multipath: Multiple probabilistic anchor tra-
jectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019. 4

[2] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Gohome: Graph-oriented
heatmap output for future motion estimation. arXiv preprint
arXiv:2109.01827, 2021. 4

[3] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Home: Heatmap out-
put for future motion estimation. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pages
500–507. IEEE, 2021. 1, 2, 4

[4] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivas-
tava, Khaled S Refaat, Nigamaa Nayakanti, Andre Cornman,
Kan Chen, Bertrand Douillard, Chi Pang Lam, Dragomir
Anguelov, et al. Multipath++: Efficient information fusion
and trajectory aggregation for behavior prediction. arXiv
preprint arXiv:2111.14973, 2021. 1, 2, 3, 4

5

	. Introduction
	. Methodology
	. HOME-based Model
	Heatmap Prediction
	Trajectory Generation

	. MultiPath++ Based Model
	Inputs
	Encoder
	Decoder

	. EM-based Ensembling
	Centroid Selection
	Expectation Maximization

	. Experiments
	. Evaluation of MultiPath++
	. Evaluation of HOME-based Model
	. Evaluation of Ensembling

	. Conclusion

