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Abstract

Autonomous driving technology is developing rapidly
and nowadays first autonomous rides are being provided
in city areas. This requires the highest standards for the
safety and reliability of the technology. Motion prediction
part of the general self-driving pipeline plays a crucial role
in providing these qualities. In this work we present one of
the solutions for Waymo Motion Prediction Challenge 2022
based on MultiPath++ [10] ranked the 3rd as of May, 26
2022. Our source code is publicly available on GitHub'.

1. Introduction

The most popular approach for creating an autonomous
driving technology consists of multiple steps: receiving data
from sensors, solving perception problem to recognize the
surrounding objects, localization, motion prediction and fi-
nally motion planning. In this paper we focus solely on the
motion prediction problem, considering the relative loca-
tions of other agents and road lines as ground truth. Motion
prediction problem has been approached in multiple works
however it remains a complex and challenging problem so
far. One of the key difficulties is a natural uncertainty of
other agents’ behavior. In this paper we propose a solution
based on MultiPath++ [16] which efficiently scores the 3rd
on Waymo Motion Prediction Challenge 2022 and signifi-
cantly outperforms our previous solution based on Convo-
lutional Neural Network.

2. Related work

Motion prediction task is a challenging problem that at-
tracts a lot of attention from researchers. There are two
main approaches for this task: based on CNN [2, 3, 6, 8,

,13] and GNN [1,4,5]. For CNN the input data is rep-
resented as a dense tensor where the channel dimension is
usually referred to as a discrete-time dimension. The GNN
approach takes graph data as input where the road lines and
previous agents’ positions are represented as nodes within
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polylines. More details about our specific representation are
in section 3.1. However CNN approach seems comfortable
for its simplicity because CNNs are greatly explored and
stable due to the regular structure of the input data it tends
to lose its popularity in favor of the GNN approach.

3. Method

In this section we provide the description of the input
data structure, its preprocessing, model architecture and
training strategy followed by a postprocessing description.

3.1. Input data

For training our model we first did some preprocessing
for agents of interest. Since our model is based on Mul-
tiPath++ [16] we follow similar process of data input data
preparation as in MultiPath++ [16]. A usual approach is to
first transform the frame into the canonical coordinate sys-
tem where the agent we make prediction for is always lo-
cated in the same position with the same heading at the mo-
ment we make prediction for. This step helps us to eliminate
redundant symmetries. Road graph data was represented as
in MultiPath++ [16]. For the target agent and other agents
that surround the target agent for each timestamp in his-
tory (past + current) we computed x,y coordinates, head-
ing, velocity in the mentioned canonical coordinate system
and the validity boolean flag. We cached this precomputed
data along with road graph data for faster training. The size
of the dataset and corresponding splits remain the same as
described in our previous work MotionCNN [10].

3.2. Model architecture

Our model follows the architecture of MultiPath++ [16]
mostly, however we tried to alternate it a little (see Fig. 1).
First we did not have a specific encoder for autonomous ve-
hicle itself. Second we did not use proposed EM algorithm
because in our experiments it performed numerically unsta-
ble. Instead we experimented with a single decoder with 6
modes and 5 decoders each with 6 modes followed by atten-
tion mechanism [ 1 7] and multi-context gating block (MCG)
from MultiPath++ [16] that mapped 30 modes into required
6. With multiple decoders we used a proposed strategy of
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Figure 1. General overview of the architecture of out model based on MultiPath++ [16]
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Figure 2. Architectures of the predictors. a) Predictor with a single
decoder. b) Predictor with multiple decoders and attention [17]
mechanism

blocking weighs update for randomly selected decoders (see
Fig. 2).

3.3. Training strategy

For each target agent we predicted 6 modes, each con-
sisted of 80 coordinates {(z!,,v!,)}3%; form = 1,...,6
along with covariance matrices {X!,}3%,. For each mode
we also predicted its probability c,,. Thus the likelihood
has the form

6 80
l= Z CmHN(:utgt _anazin)
m=1 t=1

where pf, = (af,,y! ) predicted coordinates for timestamp
t and mode m and p, (44, ysy) is the correspond-
ing ground truth coordinate. We used the negative log-
likelihood as an objective function and optimized it w.r.t.
the whole set of predicted trajectories. In our experiments
models with trained covariance matrices performed better.
We trained our model for 1.5 million iterations with ini-
tial learning rate of 10~* with Adam [9] optimizer and Re-
duceLROnPlateau scheduler.

3.4. Augmentations

While training the model we faced some overfitting espe-
cially for minor agent classes. The natural way to avoid this
problem is to use augmentations, however is it not obvious
what augmentations may provide a quality improvement in
this specific task. Thus finally we have chosen to use mask-
ing for the history data. For each timestamp of the history
we randomly put the values to zero and the validity flag to
false during training. The probability of masking a single
timestamp p,,qsx = 0.15. We use masking only for histor-
ical data of both target and surrounding agents and do not
mask the road graph.



3.5. Postprocessing

Since the proposed loss function does not directly opti-
mize the target Soft MAP metric we decided to apply post-
processing. As MAP metric is typical for detection tasks we
decided to use a typical approach - non-maximum suppres-
sion. This algorithm has been successfully used in multiple
of previous works [5,7, 12, 14, 18]. More specifically, in
case where two trajectories appear to be close enough to
each other the less probable was suppressed in favour for
more probable one. However as the number of input trajec-
tories is equal to the number of the output ones we do not
completely drop the suppressed trajectories but assign some
minor constant probability to them.

4. Results

Object Type Soft mAP  mAP

Avg Vehicle 0.4467 0.4382
Avg Pedestrian | 0.3831 0.3758
Avg Cyclist 0.3493 0.3458
Avg 3s 0.4875 0.4773
Avg 5s 0.3935 0.3883
Avg 8s 0.2981 0.2943
Total 0.3930 0.3866

Table 1. Detailed evaluation of our model on test set of Waymo
Open Motion Dataset [15].

For the final submission we selected the best model for
each of agent types. For cars and pedestrians the model with
single decoder performed the best, whereas for cyclist the
model with multiple decoders followed by attention mech-
anism outperformed other models. Numerical results are
presented in Tab. 1
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