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Abstract

Making an accurate prediction of occupancy and flow
is essential to enable better safety and interaction for au-
tonomous vehicles under complex traffic scenarios. This
work proposes STrajNet: a multi-modal Swin Transformer-
based framework for effective scene occupancy and flow
predictions. We employ Swin Transformer to encode the
image and interaction-aware motion representations and
propose a cross-attention module to inject motion aware-
ness into grid cells across different time steps. Flow and
occupancy predictions are then decoded through temporal-
sharing Pyramid decoders. The proposed method shows
competitive prediction accuracy and other evaluation met-
rics in the Waymo Open Dataset benchmark.

1. Introduction
Accurately forecasting the future motion of multiple traf-

fic participants (agents) is one of the most challenging tasks
for autonomous driving. A novel and effective representa-
tion for motion prediction is the recently-proposed occu-
pancy flow fields [5], which consist of future occupancy
grid maps warped by backward motion flow, constructing
a spatial-temporal grid set accompanied by the correspond-
ing flow. Prediction of occupancy flow fields captures rich
distributions of traffic participants’ future motion with un-
certainties, maintaining the track-and-trace ability for every
participant through the predicted flow. It also helps promote
safety and efficiency for perception and planning. Impor-
tantly, predicting the occupancy flow fields requires a global
reception field of the driving scene, as well as a mechanism
able to incorporate the motion of each traffic participant
into the occupancy grid. However, the challenge is how to
handle the diverse traffic agents and traffic elements in the
driving scene, and how to model the underlying interactions
among all agents.

To tackle these challenges, we propose a multi-modal
Transformer-based prediction framework. The recent
prevalence of Transformer-based structures in computer vi-
sion and motion prediction tasks is primarily due to its abil-

ity in graph-like interaction modeling through multi-head
attention with global fields, as well as its superior compu-
tational efficiency. For instance, [8] explicitly models inter-
actions among agents and map segments across time steps
by unified Transformer. Graph attention-based interaction
modeling among agents [6] and edges [7] also facilitates
the capabilities of motion forecasting. [9] utilized a Trans-
former network to incorporate both spatial and temporal in-
teractions for flow estimation. In our work, a carefully de-
signed Swin Transformer [4] encoder is proposed to cap-
ture the interactions among image patches of historical oc-
cupancy, backward flow, and dense road map; and vector-
ized historical motion trajectories are separately encoded by
a trajectory Transformer considering interaction awareness.
To better associate occupancy grid cells with correspond-
ing agent trajectories to capture their motion tendencies, we
propose a cross-attention module that queries the encoded
interaction trajectories of each grid cell across future steps.

2. Method
2.1. Problem formulation

Occupancy flow fields prediction entails a multi-task ob-
jective Ŷ that simultaneously predicts future keyframes of
observed occupancy Ôb

k, occluded occupancy Ôc
k, and cor-

responding backward flow F̂k at different timesteps k ∈
[1, Tf ] (Tf = 8 the number of future frames sampled at
1Hz), given the past and current states of traffic agents
and environmental context. More specifically, an occu-
pancy grid can be regarded as a binary single-channel im-
age Ôb

k, Ô
c
k ∈ RH×W×1, and the backward flow as a two-

channel image-like tensor for motion shifting along x and
y-axis: F̂k ∈ RH×W×2. In our framework, the state
input X consists of multiple modalities (detailed in Sec.
2.2): historical temporal frames of vehicle-only occupancy
Ot, t ∈ [−Th, 0] (Th = 10 the number of historical frames
sampled at 10Hz), dense road map M, one frame of histor-
ical flow Fh, as well as vectorized trajectories of n agents
S = {S1, S2, · · · , Sn}. Si represents a sequence of mo-
tion states (sit ∈ Si) over historical and current timesteps
t ∈ [−Th, 0]. Mathematically, the problem is formulated
as:



X = [{Ot|t ∈ [−Th, 0]};M;S;Fh],

Ŷ = {(Ôb
k, Ô

c
k, F̂k)|k ∈ [1, Tf ]}.

(1)

2.2. Data processing

We employ the Waymo Open Motion dataset [1] in the
experiment, which consists of over 500,000 samples cov-
ering diverse driving scenarios and dynamical interactions
among traffic agents including vehicles, cyclists, and pedes-
trians. The historical timesteps are sampled at 10Hz for the
past one second, and the objective is to predict keyframes
over future eight seconds at 1Hz.

a) b)

c) d)

Figure 1. Multi-modal input representations: a) historical vehicle
occupancy grid map; b) historical backward flow; c) vectorized
historical motion trajectories; d) dense road map.

To construct the multi-modal input, as shown in Fig. 1,
all of the vectorized data points are firstly normalized ac-
cording to the ego vehicle’s current status. For image-based
inputs, the vehicle historical and current occupancy Ot is
processed and stacked by the standard pipeline in [5]. The
environmental context of the road network and traffic light
states M are densely rasterized as an RGB image. Differ-
ent types of road segments are associated with a color map
and rendered according to their sizes. For instance, yellow
represents road border lines, blue for crosswalks, and grey
for drivable lanes. Current states of traffic lights are plot-
ted as colored circles (red, yellow, and green) centered by
their corresponding locations. Historical backward flow
Fh is a single-frame flow field constructed from the (dx, dy)
displacement of agents in the occupancy grid between the
two timesteps −Th, 0. The size of the image-based input
is 256 × 256, encoding the driving scene with an area of
80m× 80m, which is the same as the prediction output.

For vectorized inputs of historical motion trajectories
S, we collected all the agents currently inside the grid. The
agents in S are sorted by their distances to the current ego
agent and only n = 64 agents are kept. For each timestep,
the motion state of an agent sit ∈ Si is represented in a
tuple format: sit = (x, y, vx, vy, θ), meaning normalized lo-
cations, speed and yaw angle. We also maintained the one-
hot encoding of traffic participant’s type (vehicle, cyclist, or
pedestrian) Tpi for each agent Si. The vector inputs are or-
ganized into a 3D-tensor with shape 64 × 11 × 5 (agents,
timesteps, features) and 64× 3 for agent types.

2.3. STrajNet

As illustrated in Fig. 2, the overall structure of STrajNet
is an end-to-end multi-modal framework comprising 4 fun-
damental modules for occupancy and flow prediction across
future timesteps.

1) Swin Transformer-based Image Encoder: For image-
based representations, the visual features of various scales
are encoded through Swin Transformer-based encoder. A
separated Swin Transformer block is designed for histor-
ical flow Fh for information “shortcut” directly to future
flow prediction heads. All of the vehicle occupancy Ot,
dense RGB map M and flow Fh are initially embedded
and down-sampled into H × W × C by separated 4 × 4
convolution kernels with a stride of 4. We follow the
Swin-Transformer (Tiny) [4] and set the embedded dimen-
sion as C = 96, H,W = 64. More specifically, each
Swin-Transformer module is a two-layer Transformer with
both global window self-attention (WMSA) and shifted
window attention (SWMSA). It enables global and inter-
sected attention-based interaction modeling for visual fea-
tures. Each attention module is multi-head attention with
relative positional encoding bias B:

MSA(Q,K,V) = (head1 || · · · ||headh)W
O,

headi = softmax(QKT /
√

dk + B)V,
(2)

where the head numbers are h = [3, 6, 12] as the mod-
ule goes deeper, and dk is the dimension of the key token.
The image encoder outputs sets of visual features in varying
scales: 64× 64× 96, 32× 32× 192, and 16× 16× 384.

2) Trajectory Encoder: Trajectories features are encoded
considering interaction awareness. Historical motion fea-
tures for each agent are firstly aggregated across time by
4-head MSA with global max-pooling, concatenated with
its embedded agent type through the dense layer. Next, a
6-head self-attention layer (Fig. 3(b)) with residual connec-
tion is introduced to build an interaction graph among all
currently present agents. The latent dimensions are kept the
same as 384 for all layers.

3) Trajectory-aware Cross-attention: The purpose is to
associate each grid cell with trajectory information of pre-
sented agents, so that the information is more directed and
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Figure 2. An overview of STrajNet. Multi-modal inputs are separately encoded by Swin-Transformer encoders and trajectory encoders;
trajectory-based interaction awareness of each grid cell is encoded by cross-attention and decoded by a shared feature pyramid decoder to
predict occupancy and flow for each timestep.

no longer constrained by patches or nearby features. As
shown in Fig. 3(c), the highest level visual features are flat-
tened by each pixel to H/4 ·W/4× 384 = 256× 384, and
used as queries. Keys and values are the output trajectory
features from the trajectory encoder. To query different tra-
jectories interactions for different future timesteps, we im-
plement 8 separated cross-attention Transformer modules,
each with 3 heads. The outputs are then reshaped back to
image shape with the same latent dimension: 16×16×384.
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Figure 3. Structures of a) Trajectory Encoder; b) Interaction-aware
Transformer; c) Trajectory-aware Cross-attention.

4) Pyramid Decoder: A feature pyramid network [2] de-
coder is utilized to decode the occupancy and flow with
residual connections of visual features from the image en-
coder and trajectory fusion. 2D-CNNs (kernel size 3 × 3)
are shared across future time steps, and separated 2D-CNNs
(kernel size 1× 1) are used to process the information from

the residual path. We select the dimensions of pyramid de-
coder as [192, 128, 96, 48, 2]. We also design the split de-
coding heads for occupancy and flow to enable varying pro-
jections in receiving shared features and direct information
paths. The output of each occupancy head would be two
dimensions of observed Ôb

k and occluded Ôc
k occupancy

grids, while the output of the flow head is also 2 dimensions
with dx and dy for the future flow F̂k.

2.4. Objective functions

To achieve better performance for joint predictions of oc-
cupancy and flow, we modify the objective functions in [5],
and we follow the binary probabilistic modeling of the oc-
cluded and observed occupancy. However, as the ground-
truth samples are imbalanced heavily towards zero (unoc-
cupied area), we alleviated this issue by replacing the cross-
entropy term with focal loss [3]:

FL (y, p) =− yα (1− p)
γ
log (p)

− (1− y)(1− α)pγ log (1− p) ,
(3)

where the parameters are α = 0.25, γ = 2.and the modified
losses for Ôb

k and Ôc
k become:

Lobs =

Tf∑
k=1

w−1∑
x=0

h−1∑
y=0

FL
(
Ob

k(x, y), Ô
b
k(x, y)

)
, (4)

Locc =

Tf∑
k=1

w−1∑
x=0

h−1∑
y=0

FL
(
Oc

k(x, y), Ô
c
k(x, y)

)
. (5)

The flow loss remains L1 distance weighted by ground-
truth occupancy grids averaged by valid time-steps:

LF =

Tf∑
k=1

w−1∑
x=0

h−1∑
y=0

∥∥∥Fk(x, y)− F̂k(x, y)
∥∥∥
1
Ok(x, y). (6)
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Figure 4. Visualization of validation results from two samples: a) sample A b) sample B. The dotted lines separate ground-truth and the
prediction results of observed occupancy Ob, Ôb; occluded occupancy Oc, Ôc; and the occupancy flow FO, F̂ Ô, (O = Ob + Oc; Ô =
Ôb + Ôc).

For flow-warped occupancy loss LW defined in [5], we
replace the predicted occupancy WkÔk with the ground
truth one WkOk for better performance:

LW =

Tf∑
k=1

w−1∑
x=0

h−1∑
y=0

FL (Ok(x, y),Wk(x, y)Ok(x, y)) , (7)

The final multi-task objective sums up the following loss
terms averaged by the height, width and timestep of the out-
put h,w = 256;Tf = 8:

L =
1

hwTf
(1000Lobs + 1000Locc + 1000Lw + LF ) . (8)

2.5. Implementation details

We choose GELU as the activation function in all en-
coders and ELU in the pyramid decoder. To mitigate over-
fitting, dropout is added after each MLP layer and also in
the image encoder, all with a dropout rate of 0.1. Due to the
numerous size of data inputs and predictions, we use a dis-
tributed training strategy on 4 Tesla V100 with a total batch
size of 16. Adam optimizer is used with an initial learning
rate of 1e-4, and the learning rate decays by a factor of 50%
every 3 epochs. The total training epochs are set to 15.

3. Results

Qualitative results in comparison with the ground-truth
are displayed in Fig. 4. The results reveal high accuracy in
predicting observed occupancy together with the flow. Still,
the performance of occluded occupancy needs further im-
provements. Quantitative results are given in Table 1. Flow
errors are minimized well by separated prediction heads.
Improved performance is shown in terms of prediction ac-
curacy, especially soft-IOU which reveals high accuracy in
predicted occupied locations of all vehicles.

Table 1. Testing results of occupancy and flow prediction.

Testing Metrics
obs-AUC obs-IOU occ-AUC occ-IOU flow-EPE FG-AUC FG-IOU
0.7514 0.4818 0.161 0.0183 3.5867 0.7772 0.5551
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