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1 Approach Overview

In this challenge, our team explores the benefit of combining vectorized and rasterized represen-
tations in the task of occupancy and flow prediction, as proposed by [1]. Both representations
have demonstrated great success in trajectory prediction benchmarks, yet few models combine them
together. Our proposed model, VectorFlow, is a simple but effective approach that fuses both vec-
torized and rasterized representations of traffic context to predict observed occupancy, occluded
occupancy, and flow.

2 Problem Formulation

In this work, we follow the problem proposed by the Waymo Occupancy and Flow Challenge1:
Given one-second history of traffic agents in a scene and the scene context such as map [2], the
objective is to predict i) future observed occupancy, ii) future occluded occupancy, and iii) future
flow of all the vehicles in a scene over the next 8 waypoints, where each waypoint covers a one-
second interval.

We process the input into a rasterized image and a set of vectors. We follow the challenge tutorial2

to obtain the rasterized image, with respect to the local coordinate of the self-driving car (SDC).
To obtain the vectorized input that is consistent with the rasterized image, we follow the same
transformation by rotating and shifting the input agent and map coordinates with respect to SDC’s
local view.

3 Model Details

3.1 Encoder

The encoder includes two parts: a VGG-16 model [3] that encodes the rasterized representation, and
a VectorNet [4] model that encodes the vectorized representation. We fuse the vectorized features
with the features of the last two stages of VGG-16 by cross-attention modules. The fused features
are upsampled to the original resolution as the input rasterized features by an FPN-style network.
More details can be found in Fig. 1 and Sec. 4.3.

3.2 Decoder

The decoder is a single 2D convolution layer that maps the output of the encoder to the desired
output, which includes a sequence of 8 grid maps representing the predicted occupancy and flow.

1https://waymo.com/open/challenges/2022/occupancy-flow-prediction-challenge/
2https://github.com/waymo-research/waymo-open-dataset/blob/master/tutorial/

tutorial_occupancy_flow.ipynb

https://waymo.com/open/challenges/2022/occupancy-flow-prediction-challenge/
https://github.com/waymo-research/waymo-open-dataset/blob/master/tutorial/tutorial_occupancy_flow.ipynb
https://github.com/waymo-research/waymo-open-dataset/blob/master/tutorial/tutorial_occupancy_flow.ipynb
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Figure 1: Overview of VectorFlow. More details can be found in Sec. 4.3. Representation images
from [4].

3.3 Loss

We follow the loss function as in [1], including a cross entropy loss on observed occupancy pre-
diction LO,b, a cross entropy loss on occluded occupancy prediction LO,c, and an L2 loss on flow
prediction LF . The total loss is:

L = αLO,b + βLO,c + γLF . (1)

4 Experiment

4.1 Dataset

We train, evaluate, and test our model on the Waymo open motion dataset (WOMD) based on the
standard split and the filtered scenarios.

4.2 Metrics

We follow the standard challenge metrics, which include AUC and Soft IoU for observed occupancy,
occluded occupancy, and flow-grounded occupancy, as well as the end-point error (EPE) that mea-
sures the error of flow prediction.

4.3 Model Details

Our model is illustrated in Fig 1. We use the standard VGG-16 model from torchvision.models as
our rasterized encoder, and follow the implementations of VectorNet as in [5]3. The input to the
VectorNet includes i) a set of road element vectors with a shape of B × NR × 9, where B is the
batch size, NR = 10000 is the maximum number of road element vectors, and the last dimension of
9 represents the positions (x, y) and headings (cos θ, sin θ) of two end points in each vector and the
vector id; ii) a set of agent vectors with a shape of B × 1280× 9, including the vectors of up to 128
agents in a scene, where each agent has 10 vectors from the observed positions. We follow VectorNet
by first running a local graph over each traffic element based on their ids and second running a global
graph over all local features to obtain a vectorized feature with a shape of B × 128 ×N , where N
is the total number of traffic elements, including road elements and agents. We further quadrupled
the size of the feature through an MLP layer to obtain a final vectorized feature V with a shape of
B × 512 × N , so that its feature size is consistent with the channel size of the image feature, as
discussed in the following paragraph.

3Code available at https://github.com/Tsinghua-MARS-Lab/DenseTNT
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Observed Occluded Flow-Grounded
Model AUC ↑ Soft IoU ↑ AUC ↑ Soft IoU ↑ AUC ↑ Soft IoU ↑ EPE ↓

HorizonOccFlowPred. 0.803 0.235 0.165 0.017 0.839 0.633 3.672
Look Around 0.801 0.234 0.139 0.029 0.825 0.549 2.619
Temporal Query 0.757 0.393 0.171 0.040 0.778 0.465 3.308
STrajNet 0.751 0.482 0.161 0.018 0.777 0.555 3.587
3D-STCNN 0.691 0.412 0.115 0.021 0.733 0.468 4.181
Motionnet 0.694 0.411 0.141 0.031 0.732 0.469 4.275
FTLS 0.618 0.318 0.085 0.019 0.689 0.431 9.612
OccFlowNet 0.667 0.391 0.111 0.026 0.678 0.443 6.636

VectorFlow 0.755 0.488 0.174 0.045 0.767 0.530 3.583

Table 1: Prediction performance on the test set. The best performed metrics are bolded and the
grey cell indicates the ranking metric used by the WOMD benchmark. Our model achieves the best
performance in three metrics.

Observed Occluded
Model AUC ↑ Soft IoU ↑ AUC ↑ Soft IoU ↑ EPE ↓

VectorFlow (VGG-only) 0.746 0.468 0.139 0.034 3.713
VectorFlow 0.760 0.490 0.173 0.050 3.603

Table 2: Prediction performance on the validation set. The best performed metrics are bolded. Using
a vectorized representation helps boost the prediction performance.

We denote the output features of each VGG stage as {C1, C2, C3, C4, C5}, and they have strides of
{1, 2, 4, 8, 16} pixels with respect to the input image and a hidden dimension of 512. The vectorized
feature V is fused with the rasterized image feature C5 with a shape of B × 512 × 16 × 16 by a
cross-attention module to obtain F5 with the same shape. The query term of the cross-attention is
the image feature C5 flattened into B × 512 × 256 with 256 tokens, and the key and value term is
the vectorized feature V with N tokens. We then concatenate F5 and C5 in the channel dimension
and pass it through two 3 × 3 conv layers to obtain P5 with a shape of B × 512 × 16 × 16. P5 is
upsampled and concatenated with C4 (B×512×32×32) by an FPN-style 2×2 upsampling module
to generate U4 with the same shape as C4. Next, we perform another round of fusion between V and
U4 to obtain P4 (B×512×32×32) following the same procedure, including cross attention. At the
end, P4 will be gradually upsampled by the FPN-style network and concatenated with {C3, C2, C1}
to generate P1 with a shape of B × 512× 256× 256. We pass P1 through two 3× 3 conv layers to
obtain the final output feature with a shape of B × 128× 256× 256.

The decoder is a single 2D convolution layer with an input channel size of 128 and an output channel
size of 32 (8 waypoints × 4 output dimensions).

4.4 Training Details

We train our model on the full training set of WOMD with a batch size of 32 for 16 epochs on 8
Nvidia A10 GPUs. We use an Adam optimizer and a learning rate scheduler that decays the learning
rate by 50% every 5 epochs, with an initial value of 1e-3. The loss coefficients are α = β = 1000,
and γ = 1.

4.5 Results

We present the results of the challenge in Table 1. Our model achieves the best performance in three
metrics, including both AUC and Soft IoU scores for occluded occupancy predictions.

Furthermore, we compare the performance of our model with a variant that only includes the VGG
encoder. The results in Table 2 show that fusion helps improve the prediction performance, espe-
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cially in occluded metrics. More specifically, the Occluded AUC and Occluded Soft IoU scores
improve by 24.46% and 47.06%, respectively.

5 Conclusion

In this report, we present a simple but effective occupancy and flow predictor that combines two
popular representations used in trajectory prediction. Our model achieves competitive performance
compared to other challenge entries.
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