
Block-NeRF: Scalable Large Scene Neural View Synthesis

Matthew Tancik1∗ Vincent Casser2 Xinchen Yan2 Sabeek Pradhan2

Ben Mildenhall3 Pratul Srinivasan3 Jonathan T. Barron3 Henrik Kretzschmar2

1UC Berkeley 2Waymo 3Google Research

Alamo Square, SF

1 km

Block-NeRF

Sept.

June

Figure 1. Block-NeRF is a method that enables large-scale scene reconstruction by representing the environment using multiple compact
NeRFs that each fit into memory. At inference time, Block-NeRF seamlessly combines renderings of the relevant NeRFs for the given area.
In this example, we reconstruct the Alamo Square neighborhood in San Francisco using data collected over 3 months. Block-NeRF can
update individual blocks of the environment without retraining on the entire scene, as demonstrated by the construction on the right. Video
results can be found on the project website waymo.com/research/block-nerf.

Abstract

We present Block-NeRF, a variant of Neural Radiance
Fields that can represent large-scale environments. Specif-
ically, we demonstrate that when scaling NeRF to render
city-scale scenes spanning multiple blocks, it is vital to de-
compose the scene into individually trained NeRFs. This
decomposition decouples rendering time from scene size, en-
ables rendering to scale to arbitrarily large environments,
and allows per-block updates of the environment. We adopt
several architectural changes to make NeRF robust to data
captured over months under different environmental condi-
tions. We add appearance embeddings, learned pose refine-
ment, and controllable exposure to each individual NeRF,
and introduce a procedure for aligning appearance between
adjacent NeRFs so that they can be seamlessly combined. We
build a grid of Block-NeRFs from 2.8 million images to cre-
ate the largest neural scene representation to date, capable
of rendering an entire neighborhood of San Francisco.

1. Introduction
Recent advancements in neural rendering such as Neural

Radiance Fields [42] have enabled photo-realistic reconstruc-

*Work done as an intern at Waymo.

tion and novel view synthesis given a set of posed camera im-
ages [3,40,45]. Earlier works tended to focus on small-scale
and object-centric reconstruction. Though some methods
now address scenes the size of a single room or building,
these are generally still limited and do not naı̈vely scale up
to city-scale environments. Applying these methods to large
environments typically leads to significant artifacts and low
visual fidelity due to limited model capacity.

Reconstructing large-scale environments enables several
important use-cases in domains such as autonomous driv-
ing [32,44,68] and aerial surveying [14,35]. One example is
mapping, where a high-fidelity map of the entire operating
domain is created to act as a powerful prior for a variety of
problems, including robot localization, navigation, and colli-
sion avoidance. Furthermore, large-scale scene reconstruc-
tions can be used for closed-loop robotic simulations [13].
Autonomous driving systems are commonly evaluated by
re-simulating previously encountered scenarios; however,
any deviation from the recorded encounter may change the
vehicle’s trajectory, requiring high-fidelity novel view ren-
derings along the altered path. Beyond basic view synthesis,
scene conditioned NeRFs are also capable of changing en-
vironmental lighting conditions such as camera exposure,
weather, or time of day, which can be used to further augment
simulation scenarios.

1

http://waymo.com/research/block-nerf

Reconstructing such large-scale environments introduces
additional challenges, including the presence of transient
objects (cars and pedestrians), limitations in model capacity,
along with memory and compute constraints. Furthermore,
training data for such large environments is highly unlikely
to be collected in a single capture under consistent condi-
tions. Rather, data for different parts of the environment may
need to be sourced from different data collection efforts, in-
troducing variance in both scene geometry (e.g., construction
work and parked cars), as well as appearance (e.g., weather
conditions and time of day).

We extend NeRF with appearance embeddings and
learned pose refinement to address the environmental
changes and pose errors in the collected data. We addi-
tionally add exposure conditioning to provide the ability
to modify the exposure during inference. We refer to this
modified model as a Block-NeRF. Scaling up the network
capacity of Block-NeRF enables the ability to represent in-
creasingly large scenes. However this approach comes with a
number of limitations; rendering time scales with the size of
the network, networks can no longer fit on a single compute
device, and updating or expanding the environment requires
retraining the entire network.

To address these challenges, we propose dividing up large
environments into individually trained Block-NeRFs, which
are then rendered and combined dynamically at inference
time. Modeling these Block-NeRFs independently allows
for maximum flexibility, scales up to arbitrarily large en-
vironments and provides the ability to update or introduce
new regions in a piecewise manner without retraining the
entire environment as demonstrated in Figure 1. To com-
pute a target view, only a subset of the Block-NeRFs are
rendered and then composited based on their geographic lo-
cation compared to the camera. To allow for more seamless
compositing, we propose an appearance matching technique
which brings different Block-NeRFs into visual alignment
by optimizing their appearance embeddings.

2. Related Work
2.1. Large Scale 3D Reconstruction

Researchers have been developing and refining tech-
niques for 3D reconstruction from large image collections
for decades [1, 16, 33, 47, 57, 77], and much current work re-
lies on mature and robust software implementations such as
COLMAP to perform this task [55]. Nearly all of these recon-
struction methods share a common pipeline: extract 2D im-
age features (such as SIFT [39]), match these features across
different images, and jointly optimize a set of 3D points and
camera poses to be consistent with these matches (the well-
explored problem of bundle adjustment [23, 65]). Extending
this pipeline to city-scale data is largely a matter of imple-
menting highly robust and parallelized versions of these
algorithms, as explored in work such as Photo Tourism [57]

Block-NeRF Origin

Block-NeRF Training Radius

Visibility Prediction

Color Prediction

Combined
Color Prediction

Target View

Discarded

Figure 2. The scene is split into multiple Block-NeRFs that are each
trained on data within some radius (dotted orange line) of a specific
Block-NeRF origin coordinate (orange dot). To render a target
view in the scene, the visibility maps are computed for all of the
NeRFs within a given radius. Block-NeRFs with low visibility are
discarded (bottom Block-NeRF) and the color output is rendered
for the remaining blocks. The renderings are then merged based on
each block origin’s distance to the target view.

and Building Rome in a Day [1]. Core graphics research
has also explored breaking up scenes for fast high quality
rendering [38].

These approaches typically output a camera pose for each
input image and a sparse 3D point cloud. To get a complete
3D scene model, these outputs must be further processed by
a dense multi-view stereo algorithm (e.g., PMVS [18]) to
produce a dense point cloud or triangle mesh. This process
presents its own scaling difficulties [17]. The resulting 3D
models often contain artifacts or holes in areas with limited
texture or specular reflections as they are challenging to
triangulate across images. As such, they frequently require
further postprocessing to create models that can be used to
render convincing imagery [56]. However, this task is mainly
the domain of novel view synthesis, and 3D reconstruction
techniques primarily focus on geometric accuracy.

In contrast, our approach does not rely on large-scale
SfM to produce camera poses, instead performing odome-
try using various sensors on the vehicle as the images are
collected [64].

2.2. Novel View Synthesis
Given a set of input images of a given scene and their

camera poses, novel view synthesis seeks to render observed
scene content from previously unobserved viewpoints, al-
lowing a user to navigate through a recreated environment
with high visual fidelity.

2

Geometry-based Image Reprojection. Many approaches
to view synthesis start by applying traditional 3D recon-
struction techniques to build a point cloud or triangle mesh
representing the scene. This geometric “proxy” is then used
to reproject pixels from the input images into new camera
views, where they are blended by heuristic [6] or learning-
based methods [24, 52, 53]. This approach has been scaled
to long trajectories of first-person video [31], panoramas
collected along a city street [30], and single landmarks from
the Photo Tourism dataset [41]. Methods reliant on geometry
proxies are limited by the quality of the initial 3D reconstruc-
tion, which hurts their performance in scenes with complex
geometry or reflectance effects.

Volumetric Scene Representations. Recent view synthe-
sis work has focused on unifying reconstruction and render-
ing and learning this pipeline end-to-end, typically using
a volumetric scene representation. Methods for rendering
small baseline view interpolation often use feed-forward
networks to learn a mapping directly from input images to
an output volume [15, 76], while methods such as Neural
Volumes [37] that target larger-baseline view synthesis run
a global optimization over all input images to reconstruct
every new scene, similar to traditional bundle adjustment.

Neural Radiance Fields (NeRF) [42] combines this single-
scene optimization setting with a neural scene representation
capable of representing complex scenes much more effi-
ciently than a discrete 3D voxel grid; however, its rendering
model scales very poorly to large-scale scenes in terms of
compute. Followup work has proposed making NeRF more
efficient by partitioning space into smaller regions, each con-
taining its own lightweight NeRF network [48, 49]. Unlike
our method, these network ensembles must be trained jointly,
limiting their flexibility. Another approach is to provide extra
capacity in the form of a coarse 3D grid of latent codes [36].
This approach has also been applied to compress detailed
3D shapes into neural signed distance functions [62] and to
represent large scenes using occupancy networks [46].

We build our Block-NeRF implementation on top of mip-
NeRF [3], which improves aliasing issues that hurt NeRF’s
performance in scenes where the input images observe the
scene from many different distances. We incorporate tech-
niques from NeRF in the Wild (NeRF-W) [40], which adds
a latent code per training image to handle inconsistent scene
appearance when applying NeRF to landmarks from the
Photo Tourism dataset. NeRF-W creates a separate NeRF
for each landmark from thousands of images, whereas our
approach combines many NeRFs to reconstruct a coherent
large environment from millions of images. Our model also
incorporates a learned camera pose refinement which has
been explored in previous works [34, 59, 66, 69, 70].

Some NeRF-based methods use segmentation data to
isolate and reconstruct static [67] or moving objects (such

d

df

RGB

x σ
σ

fcExposure Integrated Positional
Encoding

Positional Encoding

Appearance Embedding

fx
v

Visibility

Figure 3. Our model is an extension of the model presented in
mip-NeRF [3]. The first MLP fσ predicts the density σ for a
position x in space. The network also outputs a feature vector
that is concatenated with viewing direction d, the exposure level,
and an appearance embedding. These are fed into a second MLP
fc that outputs the color for the point. We additionally train a
visibility network fv to predict whether a point in space was visible
in the training views, which is used for culling Block-NeRFs during
inference.

as people or cars) [44, 73] across video sequences. As we
focus primarily on reconstructing the environment itself, we
choose to simply mask out dynamic objects during training.

2.3. Urban Scene Camera Simulation

Camera simulation has become a popular data source
for training and validating autonomous driving systems on
interactive platforms [2,28]. Early works [13,19,51,54] syn-
thesized data from scripted scenarios and manually created
3D assets. These methods suffered from domain mismatch
and limited scene-level diversity. Several recent works tackle
the simulation-to-reality gaps by minimizing the distribution
shifts in the simulation and rendering pipeline. Kar et al. [26]
and Devaranjan et al. [12] proposed to minimize the scene-
level distribution shift from rendered outputs to real camera
sensor data through a learned scenario generation frame-
work. Richter et al. [50] leveraged intermediate rendering
buffers in the graphics pipeline to improve photorealism of
synthetically generated camera images.

Towards the goal of building photo-realistic and scalable
camera simulation, prior methods [9, 32, 68] leverage rich
multi-sensor driving data collected during a single drive to
reconstruct 3D scenes for object injection [9] and novel view
synthesis [68] using modern machine learning techniques, in-
cluding image GANs for 2D neural rendering. Relying on a
sophisticated surfel reconstruction pipeline, SurfelGAN [68]
is still susceptible to errors in graphical reconstruction and
can suffer from the limited range and vertical field-of-view
of LiDAR scans. In contrast to existing efforts, our work
tackles the 3D rendering problem and is capable of modeling
the real camera data captured from multiple drives under
varying environmental conditions, such as weather and time
of day, which is a prerequisite for reconstructing large-scale
areas.

3

3. Background
We build upon NeRF [42] and its extension mip-NeRF [3].

Here, we summarize relevant parts of these methods. For
details, please refer to the original papers.

3.1. NeRF and mip-NeRF Preliminaries
Neural Radiance Fields (NeRF) [42] is a coordinate-based

neural scene representation that is optimized through a dif-
ferentiable rendering loss to reproduce the appearance of a
set of input images from known camera poses. After opti-
mization, the NeRF model can be used to render previously
unseen viewpoints.

The NeRF scene representation is a pair of multilayer
perceptrons (MLPs). The first MLP fσ takes in a 3D position
x and outputs volume density σ and a feature vector. This
feature vector is concatenated with a 2D viewing direction
d and fed into the second MLP fc, which outputs an RGB
color c. This architecture ensures that the output color can
vary when observed from different angles, allowing NeRF
to represent reflections and glossy materials, but that the
underlying geometry represented by σ is only a function of
position.

Each pixel in an image corresponds to a ray r(t) = o +
td through 3D space. To calculate the color of r, NeRF
randomly samples distances {ti}Ni=0 along the ray and passes
the points r(ti) and direction d through its MLPs to calculate
σi and ci. The resulting output color is

cout =

N∑
i=1

wici, where wi = Ti(1− e−∆iσi), (1)

Ti = exp

−∑
j<i

∆jσj

 , ∆i = ti − ti−1 . (2)

The full implementation of NeRF iteratively resamples the
points ti (by treating the weights wi as a probability distribu-
tion) in order to better concentrate samples in areas of high
density.

To enable the NeRF MLPs to represent higher frequency
detail [63], the inputs x and d are each preprocessed by a
componentwise sinusoidal positional encoding γPE:

γPE(z) = [sin(20z), cos(20z), . . . , sin(2L−1z), cos(2L−1z)] (3)

where L is the number of levels of positional encoding.
NeRF’s MLP fσ takes a single 3D point as input. How-

ever, this ignores both the relative footprint of the corre-
sponding image pixel and the length of the interval [ti−1, ti]
along the ray r containing the point, resulting in aliasing
artifacts when rendering novel camera trajectories. Mip-
NeRF [3] remedies this issue by using the projected pixel
footprint to sample conical frustums along the ray rather than

intervals. To feed these frustums into the MLP, mip-NeRF
approximates each of them as Gaussian distributions with
parameters µi,Σi and replaces the positional encoding γPE
with its expectation over the input Gaussian

γIPE(µ,Σ) = EX∼N (µ,Σ)[γPE(X)] , (4)

referred to as an integrated positional encoding.

4. Method

Training a single NeRF does not scale when trying to
represent scenes as large as cities. We instead propose split-
ting the environment into a set of Block-NeRFs that can
be independently trained in parallel and composited during
inference. This independence enables the ability to expand
the environment with additional Block-NeRFs or update
blocks without retraining the entire environment (see Fig-
ure 1). We dynamically select relevant Block-NeRFs for
rendering, which are then composited in a smooth manner
when traversing the scene. To aid with this compositing,
we optimize the appearances codes to match lighting condi-
tions and use interpolation weights computed based on each
Block-NeRF’s distance to the novel view.

4.1. Block Size and Placement
The individual Block-NeRFs should be arranged to col-

lectively ensure full coverage of the target environment. We
typically place one Block-NeRF at each intersection, cov-
ering the intersection itself and any connected street 75%
of the way until it converges into the next intersection (see
Figure 1). This results in a 50% overlap between any two
adjacent blocks on the connecting street segment, making
appearance alignment easier between them. Following this
procedure means that the block size is variable; where neces-
sary, additional blocks may be introduced as connectors be-
tween intersections. We ensure that the training data for each
block stays exactly within its intended bounds by applying
a geographical filter. This procedure can be automated and
only relies on basic map data such as OpenStreetMap [22].

Note that other placement heuristics are also possible, as
long as the entire environment is covered by at least one
Block-NeRF. For example, for some of our experiments, we
instead place blocks along a single street segment at uniform
distances and define the block size as a sphere around the
Block-NeRF Origin (see Figure 2).

4.2. Training Individual Block-NeRFs
4.2.1 Appearance Embeddings

Given that different parts of our data may be captured under
different environmental conditions, we follow NeRF-W [40]
and use Generative Latent Optimization [5] to optimize per-
image appearance embedding vectors, as shown in Figure 3.

4

Figure 4. The appearance codes allow the model to represent different lighting and weather conditions.

This allows the NeRF to explain away several appearance-
changing conditions, such as varying weather and lighting.
We can additionally manipulate these appearance embed-
dings to interpolate between different conditions observed
in the training data (such as cloudy versus clear skies, or
day and night). Examples of rendering with different appear-
ances can be seen in Figure 4. In § 4.3.3, we use test-time
optimization over these embeddings to match the appear-
ance of adjacent Block-NeRFs, which is important when
combining multiple renderings.

4.2.2 Learned Pose Refinement

Although we assume that camera poses are provided, we find
it advantageous to learn regularized pose offsets for further
alignment. Pose refinement has been explored in previous
NeRF based models [34,59,66,70]. These offsets are learned
per driving segment and include both a translation and a
rotation component. We optimize these offsets jointly with
the NeRF itself, significantly regularizing the offsets in the
early phase of training to allow the network to first learn a
rough structure prior to modifying the poses.

4.2.3 Exposure Input

Training images may be captured across a wide range of
exposure levels, which can impact NeRF training if left
unaccounted for. We find that feeding the camera exposure
information to the appearance prediction part of the model
allows the NeRF to compensate for the visual differences
(see Figure 3). Specifically, the exposure information is
processed as γPE(shutter speed× analog gain/t) where γPE
is a sinusoidal positional encoding with 4 levels, and t is
a scaling factor (we use 1,000 in practice). An example of
different learned exposures can be found in Figure 5.

4.2.4 Transient Objects

While our method accounts for variation in appearance using
the appearance embeddings, we assume that the scene ge-
ometry is consistent across the training data. Any movable
objects (e.g. cars, pedestrians) typically violate this assump-
tion. We therefore use a semantic segmentation model [10]
to produce masks of common movable objects, and ignore
masked areas during training. While this does not account

for changes in otherwise static parts of the environment,
e.g. construction, it accommodates most common types of
geometric inconsistency.

4.2.5 Visibility Prediction

When merging multiple Block-NeRFs, it can be useful to
know whether a specific region of space was visible to a
given NeRF during training. We extend our model with an
additional small MLP fv that is trained to learn an approx-
imation of the visibility of a sampled point (see Figure 3).
For each sample along a training ray, fv takes in the lo-
cation and view direction and regresses the corresponding
transmittance of the point (Ti in Equation 2). The model
is trained alongside fσ, which provides supervision. Trans-
mittance represents how visible a point is from a particular
input camera: points in free space or on the surface of the
first intersected object will have transmittance near 1, and
points inside or behind the first visible object will have trans-
mittance near 0. If a point is seen from some viewpoints
but not others, the regressed transmittance value will be the
average over all training cameras and lie between zero and
one, indicating that the point is partially observed. Our vis-
ibility prediction is similar to the visibility fields proposed
by Srinivasan et al. [58]. However, they used an MLP to
predict visibility to environment lighting for the purpose
of recovering a relightable NeRF model, while we predict
visibility to training rays.

The visibility network is small and can be run indepen-
dently from the color and density networks. This proves
useful when merging multiple NeRFs, since it can help to
determine whether a specific NeRF is likely to produce mean-
ingful outputs for a given location, as explained in § 4.3.1.
The visibility predictions can also be used to determine loca-
tions to perform appearance matching between two NeRFs,
as detailed in § 4.3.3.

4.3. Merging Multiple Block-NeRFs
4.3.1 Block-NeRF Selection

The environment can be composed of an arbitrary number
of Block-NeRFs. For efficiency, we utilize two filtering
mechanisms to only render relevant blocks for the given
target viewpoint. We only consider Block-NeRFs that are

5

Figure 5. Our model is conditioned on exposure, which helps
account for exposure changes present in the training data. This
allows users to alter the appearance of the output images in a
human-interpretable manner during inference.

within a set radius of the target viewpoint. Additionally,
for each of these candidates, we compute the associated
visibility. If the mean visibility is below a threshold, we
discard the Block-NeRF. An example of visibility filtering
is provided in Figure 2. Visibility can be computed quickly
because its network is independent of the color network, and
it does not need to be rendered at the target image resolution.
After filtering, there are typically one to three Block-NeRFs
left to merge.

4.3.2 Block-NeRF Compositing

We render color images from each of the filtered Block-
NeRFs and interpolate between them using inverse distance
weighting between the camera origin c and the centers xi of
each Block-NeRF. Specifically, we calculate the respective
weights as wi ∝ distance(c, xi)

−p, where p influences the
rate of blending between Block-NeRF renders. The inter-
polation is done in 2D image space and produces smooth
transitions between Block-NeRFs. We also explore other
interpolation methods in § 5.4.

4.3.3 Appearance Matching

The appearance of our learned models can be controlled by
an appearance latent code after the Block-NeRF has been
trained. These codes are randomly initialized during train-
ing and therefore the same code typically leads to different
appearances when fed into different Block-NeRFs. This is
undesirable when compositing as it may lead to inconsis-
tencies between views. Given a target appearance in one
of the Block-NeRFs, we aim to match its appearance in the
remaining blocks. To accomplish this, we first select a 3D
matching location between pairs of adjacent Block-NeRFs.
The visibility prediction at this location should be high for
both Block-NeRFs.

Given the matching location, we freeze the Block-NeRF
network weights and only optimize the appearance code of

the target in order to reduce the `2 loss between the respective
area renders. This optimization is quick, converging within
100 iterations. While not necessarily yielding perfect align-
ment, this procedure aligns most global and low-frequency
attributes of the scene, such as time of day, color balance, and
weather, which is a prerequisite for successful compositing.
Figure 6 shows an example optimization, where appearance
matching turns a daytime scene into nighttime to match the
adjacent Block-NeRF.

The optimized appearance is iteratively propagated
through the scene. Starting from one root Block-NeRF,
we optimize the appearance of the neighboring ones and
continue the process from there. If multiple blocks surround-
ing a target Block-NeRF have already been optimized, we
consider each of them when computing the loss.

5. Results and Experiments

In this section we will discuss our datasets and exper-
iments. The architectural and optimization specifics are
provided in the supplement. The supplement also provides
comparisons to reconstructions from COLMAP [55], a tradi-
tional Structure from Motion approach. This reconstruction
is sparse and fails to represent reflective surfaces and the sky.

5.1. Datasets

We perform experiments on datasets that we collect
specifically for the task of novel view synthesis of large-
scale scenes. Our dataset is collected on public roads using
data collection vehicles. While several large-scale driving
datasets already exist, they are not designed for the task of
view synthesis. For example, some datasets lack sufficient
camera coverage (e.g., KITTI [21], Cityscapes [11]) or pri-
oritize visual diversity over repeated observations of a target
area (e.g., NuScenes [7], Waymo Open Dataset [61], Argov-
erse [8]). Instead, they are typically designed for tasks such
as object detection or tracking, where similar observations
across drives can lead to generalization issues.

We capture both long-term sequence data (100 s or more),
as well as distinct sequences captured repeatedly in a particu-
lar target area over a period of several months. We use image
data captured from 12 cameras that collectively provide a
360° view. 8 of the cameras provide a complete surround
view from the roof of the car, with 4 additional cameras
located at the vehicle front pointing forward and sideways.
Each camera captures images at 10 Hz and stores a scalar
exposure value. The vehicle pose is known and all cameras
are calibrated. Using this information, we calculate the cor-
responding camera ray origins and directions in a common
coordinate system, also accounting for the rolling shutter
of the cameras. As described in § 4.2.4, we use a semantic
segmentation model [10] to detect movable objects.

6

Before Appearance Matching After Appearance Matching

Base Block-NeRF Adjacent Block-NeRF

Figure 6. When rendering scenes based on multiple Block-NeRFs, we use appearance matching to obtain a consistent appearance across the
scene. Given a fixed target appearance for one of the Block-NeRFs (left image), we optimize the appearances of the adjacent Block-NeRFs
to match. In this example, appearance matching produces a consistent night appearance across Block-NeRFs.

San Francisco Alamo Square Dataset. We select San
Francisco’s Alamo Square neighborhood as the target area
for our scalability experiments. The dataset spans an area
of approximately 960 m× 570 m, and was recorded in June,
July, and August of 2021. We divide this dataset into 35
Block-NeRFs. Example renderings and Block-NeRF place-
ments can be seen in Figure 1. To best appreciate the scale
of the reconstruction, please refer to supplementary videos.
Each Block-NeRF was trained on data from 38 to 48 differ-
ent data collection runs, adding up to a total driving time of
18 to 28 minutes each. After filtering out some redundant
image captures (e.g. stationary captures), each Block-NeRF
is trained on between 64,575 to 108,216 images. The over-
all dataset is composed of 13.4 h of driving time sourced
from 1,330 different data collection runs, with a total of
2,818,745 training images.

San Francisco Mission Bay Dataset. We choose San
Francisco’s Mission Bay District as the target area for our
baseline, block size, and placement experiments. Mission
Bay is an urban environment with challenging geometry and
reflective facades. We identified a long stretch on Third
Street with far-range visibility, making it an interesting test
case. Notably, this dataset was recorded in a single capture in
November 2020, with consistent environmental conditions al-
lowing for simple evaluation. This dataset was recorded over
100 s, in which the data collection vehicle traveled 1.08 km
and captured 12,000 total images from 12 cameras. We will
release this single-capture dataset to aid reproducibility.

5.2. Model Ablations
We ablate our model modifications on a single intersec-

tion from the Alamo Square dataset. We report PSNR, SSIM,
and LPIPS [75] metrics for the test image reconstructions
in Table 1. The test images are split in half vertically, with
the appearance embeddings being optimized on one half and
tested on the other. We also provide qualitative examples
in Figure 7. Mip-NeRF alone fails to properly reconstruct
the scene and is prone to adding non-existent geometry and
cloudy artifacts to explain the differences in appearance.

NeRFs PSNR↑ SSIM↑ LPIPS↓

mip-NeRF 17.86 0.563 0.509

O
ur

s

-Appearance 20.13 0.611 0.458
-Exposure 23.55 0.649 0.418
-Pose Opt. 23.05 0.625 0.442

Full 23.60 0.649 0.417

Table 1. Ablations of different Block-NeRF components on a
single intersection in the Alamo Square dataset. We show the
performance of mip-NeRF as a baseline, as well as the effect of
removing individual components from our method.

When our method is not trained with appearance embed-
dings, these artifacts are still present. If our method is not
trained with pose optimization, the resulting scene is blurrier
and can contain duplicated objects due to pose misalignment.
Finally, the exposure input marginally improves the recon-
struction, but more importantly provides us with the ability
to change the exposure during inference.

5.3. Block-NeRF Size and Placement

Blocks Weights / Total Size Compute PSNR↑ SSIM↑ LPIPS↓

1 0.25M / 0.25M 544 m 1× 23.83 0.825 0.381
4 0.25M / 1.00M 271 m 2× 25.55 0.868 0.318
8 0.25M / 2.00M 116 m 2× 26.59 0.890 0.278
16 0.25M / 4.00M 54 m 2× 27.40 0.907 0.242

1 1.00M / 1.00M 544 m 1× 24.90 0.852 0.340
4 0.25M / 1.00M 271 m 0.5× 25.55 0.868 0.318
8 0.13M / 1.00M 116 m 0.25× 25.92 0.875 0.306
16 0.07M / 1.00M 54 m 0.125× 25.98 0.877 0.305

Table 2. Comparison of different numbers of Block-NeRFs for
reconstructing the Mission Bay dataset. Splitting the scene into
multiple Block-NeRFs improves the reconstruction accuracy, even
when holding the total number of weights constant (bottom section).
The number of blocks determines the size of the area each block is
trained on and the relative compute expense at inference time.

We compare performance on our Mission Bay dataset
versus the number of Block-NeRFs used. We show details
in Table 2, where depending on granularity, the Block-NeRF
sizes range from as small as 54 m to as large as 544 m. We
ensure that each pair of adjacent blocks overlaps by 50%
and compare other overlap percentages in the supplement.

7

Ground Truth mip-NeRF Full
Block-NeRF

-Pose Opt.-Exposure-Appearance

Figure 7. Model ablation results on multi segment data. Appearance embeddings help the network avoid adding cloudy geometry to explain
away changes in the environment like weather and lighting. Removing exposure slightly decreases the accuracy. The pose optimization
helps sharpen the results and removes ghosting from repeated objects, as observed with the telephone pole in the first row.

All were evaluated on the same set of held-out test images
spanning the entire trajectory. We consider two regimes,
one where each Block-NeRF contains the same number of
weights (top section) and one where the total number of
weights across all Block-NeRFs is fixed (bottom section).
In both cases, we observe that increasing the number of
models improves the reconstruction metrics. In terms of
computational expense, parallelization during training is
trivial as each model can be optimized independently across
devices. At inference, our method only requires rendering
Block-NeRFs near the target view. Depending on the scene
and NeRF layout, we typically render between one to three
NeRFs. We report the relative compute expense in each
setting without assuming any parallelization, which however
would be possible and lead to an additional speed-up. Our
results imply that splitting the scene into multiple lower
capacity models can reduce the overall computational cost
as not all of the models need to be evaluated (see bottom
section of Table 2).

5.4. Interpolation Methods

Interpolation Consistent? PSNR↑ SSIM↑ LPIPS↓

Nearest – 26.40 0.887 0.280
IDW 2D 3 26.59 0.890 0.278
IDW 3D – 26.57 0.890 0.278

Pixelwise Visibility – 27.39 0.906 0.242
Imagewise Visibility – 27.41 0.907 0.242

Table 3. Comparison of interpolation methods. For our flythrough
video results, we opt for 2D inverse distance weighting (IDW) as it
produces temporally consistent results.

We explore different interpolation methods in Table 3.
The simple method of only rendering the nearest Block-
NeRF to the camera requires the least amount of compute
but results in harsh jumps when transitioning between blocks.
These transitions can be smoothed by using inverse distance

weighting (IDW) between the camera and Block-NeRF cen-
ters, as described in § 4.3.2. We also explored a variant of
IDW where the interpolation was performed over projected
3D points predicted by the expected Block-NeRF depth.
This method suffers when the depth prediction is incorrect,
leading to artifacts and temporal incoherence.

Finally, we experiment with weighing the Block-NeRFs
based on per-pixel and per-image predicted visibility. This
produces sharper reconstructions of further-away areas but is
prone to temporal inconsistency. Therefore, these methods
are best used only when rendering still images. Further
details are provided in the supplement.

6. Limitations and Future Work
The proposed method handles transient objects by filter-

ing them out during training via masking using a segmen-
tation algorithm. If objects are not properly masked, they
can cause artifacts in the resulting renderings. For exam-
ple, the shadows of cars often remain, even when the car
itself is correctly removed. Vegetation also breaks this as-
sumption as foliage changes seasonally and moves in the
wind; this results in blurred representations of trees and
plants. Similarly, temporal inconsistencies in the training
data, such as construction work, are not automatically han-
dled and require the manual retraining of the affected blocks.
Further, the inability to render scenes containing dynamic
objects currently limits the applicability of Block-NeRF to-
wards closed-loop simulation tasks in robotics. In the future,
these issues could be addressed by learning transient objects
during the optimization [40], or directly modeling dynamic
objects [44, 67]. In particular, the scene could be composed
of multiple Block-NeRFs of the environment and individual
controllable object NeRFs. Separation can be facilitated by
the use of segmentation masks or bounding boxes.

8

In our model, distant objects in the scene are not sam-
pled with the same density as nearby objects which leads to
blurrier reconstructions. This is an issue with sampling un-
bounded volumetric representations. Techniques proposed
in NeRF++ [74] and concurrent Mip-NeRF 360 [4] could
potentially be used to produce sharper renderings of distant
objects.

In many applications, real-time rendering is key, but
NeRFs are computationally expensive to render (up to mul-
tiple seconds per image). Several NeRF caching tech-
niques [20, 25, 72] or a sparse voxel grid [36] could be used
to enable real-time Block-NeRF rendering. Similarly, multi-
ple concurrent works have demonstrated techniques to speed
up training of NeRF style representations by multiple orders
of magnitude [43, 60, 71].

7. Conclusion
In this paper we propose Block-NeRF, a method that

reconstructs arbitrarily large environments using NeRFs.
We demonstrate the method’s efficacy by building an entire
neighborhood in San Francisco from 2.8M images, forming
the largest neural scene representation to date. We accom-
plish this scale by splitting our representation into multiple
blocks that can be optimized independently. At such a scale,
the data collected will necessarily have transient objects and
variations in appearance, which we account for by modifying
the underlying NeRF architecture. We hope that this can
inspire future work in large-scale scene reconstruction using
modern neural rendering methods.

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian

Simon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM, 2011.
2

[2] Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia
Moseyko, Rohan Banerjee, Sertac Karaman, and Daniela Rus.
Learning robust control policies for end-to-end autonomous
driving from data-driven simulation. IEEE Robotics and
Automation Letters, 2020. 3

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 1, 3, 4

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Un-
bounded anti-aliased neural radiance fields. arXiv preprint
arXiv:2111.12077, 2021. 9

[5] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and
Arthur Szlam. Optimizing the latent space of generative
networks. arXiv:1707.05776, 2017. 4

[6] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. Computer graphics and interactive techniques, 2001.
3

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. CVPR, 2020. 6

[8] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet
Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr,
Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking
and forecasting with rich maps. CVPR, 2019. 6

[9] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang,
Xinchen Yan, Sivabalan Manivasagam, Shangjie Xue, Ersin
Yumer, and Raquel Urtasun. Geosim: Realistic video simula-
tion via geometry-aware composition for self-driving. CVPR,
2021. 3

[10] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation. CVPR, 2020. 5, 6

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. CVPR, 2016. 6

[12] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2:
Unsupervised learning of scene structure for synthetic data
generation. ECCV, 2020. 3

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator. Conference on robot learning, 2017. 1, 3

[14] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen
Duan, Guorong Li, Weigang Zhang, Qingming Huang, and
Qi Tian. The unmanned aerial vehicle benchmark: Object
detection and tracking. ECCV, 2018. 1

[15] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely.
Deepstereo: Learning to predict new views from the world’s
imagery. CVPR, 2016. 3

[16] Christian Früh and Avideh Zakhor. An automated method for
large-scale, ground-based city model acquisition. IJCV, 2004.
2

[17] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. Towards internet-scale multi-view stereo.
CVPR, 2010. 2

[18] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multi-view stereopsis. IEEE TPAMI, 2010. 2

[19] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking analysis.
CVPR, 2016. 3

[20] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. arXiv:2103.10380, 2021. 9

[21] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. CVPR, 2012. 6

[22] Mordechai Haklay and Patrick Weber. Openstreetmap: User-
generated street maps. IEEE Pervasive computing, 2008. 4

[23] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, second
edition, 2004. 2

9

[24] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions on
Graphics (TOG), 2018. 3

[25] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. arXiv:2103.14645,
2021. 9

[26] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. ICCV, 2019. 3

[27] Michael Kazhdan and Hugues Hoppe. Screened poisson
surface reconstruction. ACM Transactions on Graphics (ToG),
2013. 13

[28] Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja
Fidler. Drivegan: Towards a controllable high-quality neural
simulation. CVPR, 2021. 3

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 12

[30] Johannes Kopf, Billy Chen, Richard Szeliski, and Michael
Cohen. Street slide: browsing street level imagery. ACM
Transactions on Graphics (TOG), 2010. 3

[31] Johannes Kopf, Michael Cohen, and Rick Szeliski. First-
person hyperlapse videos. SIGGRAPH, 2014. 3

[32] Wei Li, CW Pan, Rong Zhang, JP Ren, YX Ma, Jin Fang, FL
Yan, QC Geng, XY Huang, HJ Gong, et al. Aads: Augmented
autonomous driving simulation using data-driven algorithms.
Science robotics, 2019. 1, 3

[33] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana
Lazebnik, and Jan-Michael Frahm. Modeling and recognition
of landmark image collections using iconic scene graphs.
ECCV, 2008. 2

[34] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon
Lucey. Barf: Bundle-adjusting neural radiance fields. arXiv
preprint arXiv:2104.06405, 2021. 3, 5

[35] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Maka-
dia, Noah Snavely, and Angjoo Kanazawa. Infinite nature:
Perpetual view generation of natural scenes from a single
image. ICCV, 2021. 1

[36] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 3, 9

[37] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from images.
SIGGRAPH, 2019. 3

[38] Frank Losasso and Hugues Hoppe. Geometry clipmaps: ter-
rain rendering using nested regular grids. Siggraph, 2004.
2

[39] David G Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 2004. 2

[40] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. CVPR, 2021. 1, 3, 4, 8

[41] Moustafa Meshry, Dan B. Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. CVPR, 2019. 3

[42] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020. 1, 3, 4

[43] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. arXiv:2201.05989, Jan. 2022.
9

[44] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. CVPR,
2021. 1, 3, 8

[45] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
ICCV, 2021. 1

[46] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020. 3

[47] Marc Pollefeys, David Nistér, J-M Frahm, Amir Akbarzadeh,
Philippos Mordohai, Brian Clipp, Chris Engels, David Gallup,
S-J Kim, Paul Merrell, et al. Detailed real-time urban 3d
reconstruction from video. IJCV, 2008. 2

[48] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. CVPR, 2021. 3

[49] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny MLPs. ICCV, 2021. 3

[50] Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun.
Enhancing photorealism enhancement. arXiv:2105.04619,
2021. 3

[51] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer games.
ECCV, 2016. 3

[52] Gernot Riegler and Vladlen Koltun. Free view synthesis.
ECCV, 2020. 3

[53] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
CVPR, 2021. 3

[54] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. CVPR, 2016. 3

[55] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. CVPR, 2016. 2, 6, 12

[56] Qi Shan, Riley Adams, Brian Curless, Yasutaka Furukawa,
and Steven M. Seitz. The visual turing test for scene recon-
struction. 3DV, 2013. 2

[57] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
tourism: Exploring photo collections in 3d. SIGGRAPH,
2006. 2

[58] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T. Barron. NeRV:

10

Neural reflectance and visibility fields for relighting and view
synthesis. CVPR, 2021. 5

[59] Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge
Rhodin. A-nerf: Articulated neural radiance fields for learn-
ing human shape, appearance, and pose. Advances in Neural
Information Processing Systems, 34, 2021. 3, 5

[60] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. arXiv preprint arXiv:2111.11215, 2021. 9

[61] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. CVPR, 2020.
6

[62] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis,
Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Mor-
gan McGuire, and Sanja Fidler. Neural geometric level of
detail: Real-time rendering with implicit 3D shapes. CVPR,
2021. 3

[63] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. NeurIPS, 2020. 4

[64] Sebastian Thrun. Probabilistic robotics. Communications of
the ACM, 2002. 2

[65] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and An-
drew W Fitzgibbon. Bundle adjustment—a modern synthesis.
International workshop on vision algorithms, 1999. 2

[66] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. Nerf–: Neural radiance fields without
known camera parameters. arXiv preprint arXiv:2102.07064,
2021. 3, 5

[67] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui. Learn-
ing object-compositional neural radiance field for editable
scene rendering. ICCV, 2021. 3, 8

[68] Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou,
Pei Sun, Dumitru Erhan, Sean Rafferty, and Henrik Kret-
zschmar. Surfelgan: Synthesizing realistic sensor data for
autonomous driving. CVPR, 2020. 1, 3

[69] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems,
33, 2020. 3

[70] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. iNeRF: Invert-
ing neural radiance fields for pose estimation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2021. 3, 5

[71] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2021. 9

[72] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. arXiv:2103.14024, 2021. 9

[73] Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yanshun
Zhang, Minye Wu, Yingliang Zhang, Lan Xu, and Jingyi
Yu. Editable free-viewpoint video using a layered neural
representation. ACM Transactions on Graphics (TOG), 2021.
3

[74] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 9

[75] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018. 7

[76] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. arXiv:1805.09817, 2018.
3

[77] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang,
Ping Tan, and Long Quan. Very large-scale global SFM by
distributed motion averaging. CVPR, 2018. 2

11

A. Model Parameters / Optimization Details

Our network follows the mip-NeRF structure. The net-
work fσ is composed of 8 layers with width 512 (Mission
Bay experiments) or 1024 (all other experiments). fc has 3
layers with width 128 and fv has 4 layers with width 128.
The appearance embeddings are 32 dimensional. We train
each Block-NeRF using the Adam [29] optimizer for 300 K
iterations with a batch size of 16384. Similar to mip-NeRF,
the learning rate is an annealed logarithmically from 2 ·10−3

to 2 · 10−5, with a warm up phase during the first 1024 itera-
tions. The coarse and fine networks are sampled 256 times
during training and 512 times when rendering the videos.
The visibility is supervised with MSE loss and is scaled by
10−6. The learned pose correction consists of a position
offset and a 3× 3 residual rotation matrix, which is added to
the identity matrix and normalized before being applied to
ensure it is orthogonal. The pose corrections are initialized
to 0 and their element-wise `2 norm is regularized during
training. This regularization is scaled by 105 at the start of
training and linearly decays to 10−1 after 5000 iterations.
This allows the network to learn initial geometry prior to
applying pose offsets.

Each Block-NeRF takes between 9 and 24 hours to train
(depending on hyperparameters). We train each Block-NeRF
on 32 TPU v3 cores available through Google Cloud Com-
pute, which combined offer a total of 1680 TFLOPS and 512
GB memory. Rendering an 1200× 900px image for a sin-
gle Block-NeRF takes approximately 5.9 seconds. Multiple
Block-NeRF can be processed in parallel during inference
(typically fewer than 3 Block-NeRFs need to be rendered for
a single frame).

B. Block-NeRF Size and Placement

We include qualitative comparisons in Figure 9 on the
Mission Bay dataset to complement the quantitative compar-
isons in (§5.3, Table 2). In this figure, we provide compar-
isons on two regimes, one where each Block-NeRF contains
the same number of weights (left section) and one where
the total number of weights across all Block-NeRFs is fixed
(right section).

C. Block-NeRF Overlap Comparison

In the main paper, we include experiments on Block-
NeRF size and placement (§5.3). For these experiments,
we assumed a relative overlap of 50% between each pair of
Block-NeRFs, which aids with appearance alignment.

Table 4 is a direct extension of Table 2 in the main paper
and shows the effect of varying block overlap in the 8 block
scenario. Note that varying the overlap changes the spatial
block size. The original setting in the main paper is marked
with an asterisk.

The metrics imply that reducing overlap is beneficial for
image quality metrics. However, this can likely be attributed
to the resulting reduction in block size. In practice, having
an overlap between blocks is important to avoid temporal
artifacts when interpolating between Block-NeRFs.

Overlap Size PSNR↑ SSIM↑ LPIPS↓
0% 77 m 26.77 0.895 0.262
25% 97 m 26.75 0.894 0.269
50%* 116 m 26.59 0.890 0.278
75% 136 m 26.51 0.887 0.283

Table 4. Effect of different NeRF overlaps in the 8 block scenario
with 0.25M weights per block (2M weights in total). The original
setting used in the main paper is marked*.

D. Block-NeRF Interpolation Details

We experiment with multiple methods to interpolate be-
tween Block-NeRFs and find that simple inverse distance
weighting (IDW) in image space produces the most appeal-
ing videos due to temporal smoothness. We use an IDW
power p of 4 for the Alamo Square renderings and a power
of 1 for the Mission Bay renderings. We experiment with 3D
inverse distance weighting for each individual pixel by pro-
jecting the rendered pixels into 3D space using the expected
ray termination depth from the Block-NeRF closest to the
target view. The color value of the projected pixel is then
determined using inverse distance weighting with the nearest
Block-NeRFs. Artifacts occur in the resulting composited
renders due to noise in the depth predictions. We also ex-
periment with using the Block-NeRF predicted visibility for
interpolation. We consider imagewise visibility where we
take the mean visibility of the entire image and pixelwise
visibility where were directly utilize the per-pixel visibility
predictions. Both of these methods lead to sharper results
but come at the cost of temporal inconsistencies. Finally we
compare to nearest neighbor interpolation where we only ren-
der the Block-NeRF closest to the target view. This results
in harsh jumps when transiting between Block-NeRFs.

E. Structure from Motion (COLMAP)

We use COLMAP [55] to reconstruct the Mission Bay
dataset. We first split the dataset into 8 overlapping blocks
with 97 m radius each based on camera positions (each block
has roughly 25% overlap with the adjacent block). The bun-
dle adjustment step takes most of the time in reconstruction
and we do not see significant improvements if we increase
the radius per block. We mask out movable objects when
extracting feature points for matching, using the same seg-
mentation model as Block-NeRF. We assume a pinhole cam-
era model and provide camera intrinsics and camera pose
as priors for running structure-from-motion. We then run

12

Ground Truth
Point

Rendering
Surfel

Rendering Ground Truth
Point

Rendering
Surfel

Rendering

Figure 8. Qualitative results for COLMAP. We demonstrate the
two rendering options using the fused pointcloud computed by
COLMAP.

multi-view stereo within each block to produce dense depth
and normal maps in 3D and produce a dense point cloud of
the scene. In our preliminary experiments, we ran Poisson
meshing [27] on the fused dense pointcloud to reconstruct
textured meshes but found that the method fails to produce
reasonably-looking results due to the challenging geometry
and depth errors introduced by reflective surfaces and the sky.
Instead, we leverage the fused pointcloud and explore two
alternatives, namely, point rendering and surfel rendering,
respectively. To render the test view, we selected the nearest
scene and use OSMesa off-screen rendering assuming the
Lambertian model and a single light source.

In Table 5, we compare two different rendering options
for the densely reconstructed pointcloud. We discard the
invisible pixels when computing the PSNR for both methods,
making the quantitative results comparable to our Block-
NeRF setting.

In Figure 8, we show the qualitative comparisons between
two rendering options with PSNR on the corresponding im-
ages. This reconstruction is sparse and fails to represent
reflective surfaces and the sky.

Method PSNR* (train) ↑ PSNR* (test) ↑

COLMAP (point) 13.019 11.933
COLMAP (surfel) 13.291 12.343

Table 5. Quantitative results for COLMAP. We discard invisible
pixels (e.g., sky pixels that COLMAP fails to reconstruct) when
computing the PSNR.

https://docs.mesa3d.org/osmesa.html

F. Examples from our Datasets
In Figure 10, we show the camera images from our Mis-

sion Bay dataset. In Figure 11, we show both camera images
and corresponding segmentation masks from our Alamo
Square dataset.

G. Societal Impact
G.1. Methodological

Our method inherits the heavy compute footprint of NeRF
models and we propose to apply them at an unprecedented
scale. Our method also unlocks new use-cases for neural
rendering, such as building detailed maps of the environment
(mapping), which could cause more wide-spread use in favor
of less computationally involved alternatives. Depending on
the scale this work is being applied at, its compute demands
can lead to or worsen environmental damage if the energy
used for compute leads to increased carbon emissions. As
mentioned in the paper, we foresee further work, such as
caching methods, that could reduce the compute demands
and thus mitigate the environmental damage.

G.2. Application

We apply our method to real city environments. During
our own data collection efforts for this paper, we were care-
ful to blur faces and sensitive information, such as license
plates, and limited our driving to public roads. Future appli-
cations of this work might entail even larger data collection
efforts, which raises further privacy concerns. While detailed
imagery of public roads can already be found on services
like Google Street View, our methodology could promote
repeated and more regular scans of the environment. Several
companies in the autonomous vehicle space are also known
to perform regular area scans using their fleet of vehicles;
however some might only utilize LiDAR scans which can be
less sensitive than collecting camera imagery.

13

https://docs.mesa3d.org/osmesa.html

1 Block-NeRF 4 Block-NeRFs 8 Block-NeRFs 16 Block-NeRFs 1 Block-NeRF 8 Block-NeRFs 16 Block-NeRFs4 Block-NeRFsGround Truth

Fixed # of Weights per Block Fixed Total # of Weights

Figure 9. Qualitative results on Block-NeRF size and placement. We show results on the Mission Bay dataset using different options
discussed in § 5.3 of the main paper.

Figure 10. Selection of images from our Mission Bay Dataset.

14

Figure 11. Selection of front-facing images from our Alamo Square Dataset, alongside their transient object mask predicted by a pretrained
semantic segmentation model.

15

	. Introduction
	. Related Work
	. Large Scale 3D Reconstruction
	. Novel View Synthesis
	. Urban Scene Camera Simulation

	. Background
	. NeRF and mip-NeRF Preliminaries

	. Method
	. Block Size and Placement
	. Training Individual Block-NeRFs
	Appearance Embeddings
	Learned Pose Refinement
	Exposure Input
	Transient Objects
	Visibility Prediction

	. Merging Multiple Block-NeRFs
	Block-NeRF Selection
	Block-NeRF Compositing
	Appearance Matching

	. Results and Experiments
	. Datasets
	. Model Ablations
	. Block-NeRF Size and Placement
	. Interpolation Methods

	. Limitations and Future Work
	. Conclusion
	. Model Parameters / Optimization Details
	. Block-NeRF Size and Placement
	. Block-NeRF Overlap Comparison
	. Block-NeRF Interpolation Details
	. Structure from Motion (COLMAP)
	. Examples from our Datasets
	. Societal Impact
	. Methodological
	. Application

