Interlink Software
Integration with

AppDynamics

& :
G \nerink

Contents
00731 (=T 5| N 1
Integration for APPDYNAMIUCScccuuuuuuuueeeieeeiieeieetieeeeeeeeeeeeeesannneseeeeesessssssssssssssssessessssnnnnns 2
OVEIVIEW ..iiiniiiiiieiiiiiteeitittteerteeateerttaneeetteasssssteesssssssennsssssssssssssssssssssssensssssssssssssssssnssssssssnsssssans 2
Configuration — Webhook SoIUtion (DIHTTP)cucueeeieiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e eeeens 2
Prer@UUISITEScuueieeeeiieiieiiiireeeteeetreeeeteeeeeeneeeeeansseeassssassssenssssnsssssassssenssssnssssenssssenssssnsssssnnsssensssenne 2
INSTAIIALION ... r et e et see e e e s e e e ennassssssssessesnnnssssssssssssssssnnnsssssssssssennns 2
Configure a piHTTP Message Channel as a Webhook Listener............c..ccoiiiuiiiiiinniiiiieencceneeeneceenens 2
Setup the CONFIGUIATION fIlE.........o oottt et et e e e e eae e eaeeeteeaeereeeaeens 3
LOGOING ceeuiinnieiineiieiieieueeteueereneeeenscersseeessassassessasssssssssssssssssssssssssssasssssnsssssnssssnsssssnssssnsssssnnsssanssssnne 4
[\ =) B =T o 1= TR 4
Configuration — Polling Solution (PIRESTCIIENt)...................ueeeeeeiiieeeeerrrirereeeeeeeeseeessrnreeseeeeeseanns 5
Prer@UISITESceuiieeeieeieieiieteecteeeteeeeteeeeeeeeeeraeeeeeasssaseesesssssnsssssasssssnssssssssssnssssssssssnsssssnnsssensassnns 5
INSTAIIALION ... rerteeteeeeee e e e eeettaeeeeeeeeeeeennsssssssssssseennnssssssssssssssssnnssssssssssssannne 5
Configuration of the PIRESTCHENtcoon it ce e eeee e e e e esaeeeeeesnnneeesennnnnnaees 5
Setup the CONFIGUIATION fIlE.........o ettt ettt e e eae e eteeeteeteeveeaeens 5
NEEP-METNOM ...ttt ettt e et e e et e e eateeetae e tee e abeeeeseeaaeeetseesnseesaseeentaeenreean 8
[0 BTSSP SRR 8
[T2T=To L] = SRS RRURRRPR 8
(o [N T o L= L = 1 g] (] TSRS 8
SP L EI-EXPIESSION ...ttt ettt et e et e et e e et e e e aeeeateeetee e taeeeateeeeaeeeteeetteeatteeerteeeaeeeareeeaareeenees 9
I EI-EXPIESSION ...ttt et e et e et e et e et e et e eaeeteeteeteeaeeteensseseeteeeteeeteeeteereenteens 9
T EMPIAING ettt e e e ree e e e eea e e et e aa e e et e aa e e e e e aa e e e e anaa e et eanraaeeaannnnaeeannnnneeann 10
ENCIYPRION ...ttt eeee e s eeaee e st eeneessesnsssssssnssssssssnssssssssnsssssssnssssssssnsssssssnnsssns 11
LOGOING ceuuiiniieiiniiiiieieueeteueeeteeeeeeseeeaseesessecssssssssssssessesssssssssssssssssssssssssnssssssssssnsssssnsssnnssssnnassnnsnnen 11
Receiving Alert Information from ApPPDYNAMICSceeeeeriiieemuueneeeeeeineeeerennnesceesssseeseennnnes 12

Interlink Software Services © Copyright 2021 1

'\ ‘
s 7

Integration for AppDynamics

Overview

There are two ways to integrate BES with the AppDynamics solution:

1. Configure AppDynamics to use a webhook on the Interlink BES server. To setup a webhook use
Interlinks HTTP Event tool, piHTTP.
2. Polling the AppDynamics REST API by using Interlinks REST client tool, piRestClient.

Configuration — Webhook Solution (piHTTP)

The piHTTP integration is installed on the BES and is configured to receive HTTP POST events in JSON or
XML format.

Prerequisites

e BES380+
o AppDynamics instance configured to forward health rule violations to the piHTTP webhook
e iss-bes-pihttp RPM within a Yum repository (you may use a local repository)

Installation
To run the install, logon to the BES server as root.

Then use the following command to install piHTTP:

yum install iss-bes-pihttp

If there are any issues reported from the install process, please contact Interlink Software Support for
assistance.

Configure a piHTTP Message Channel as a Webhook Listener

A default piIHTTP message channel is created during installation. This channel will need to be configured
as a webhook listener.

Note: For illustrative purposes, we shall use the default piHTTP message channel as a webhook for
AppDynamics to communicate with BES.

Interlink Software Services © Copyright 2021

mailto:support@interlinksoftware.com

" @ :
G \nerink

Setup the configuration file

During installation of the integration a default configuration file is copied to SPPHOME/cfg/piHTTP.cfg.
As the ppadmin user, update the configuration file to setup the piHTTP channel as a webhook listener.
Below is an example that configures the piHTTP channel as a webhook listener running on port 9000.

Port which the integration will Listen on
.listen.port = 9000

Whether to use HTTPS - True/False, optional, default = false
.useSsl = true

1f http.useSsl true, a JKS (Java Key Store) is required
.sslKeystore = /opt/ISS/config/security/kReystore. jks
.SsslKeystorePassword = myPassword

Logging at debug Llevel
.debug = true

Several formats can be set for the incoming events. Set the key to a string
which you would expect to see in the event, the corresponding format value will
then be used. The values in brackets should match JSON Keys from the event

Note: JSON values should be in []

The following maps the AppDynamics incoming JSON payload that is received by the
webhook
.1.key = controllerurl

.1.value = APPD WEBHOOK 1id = [action.id] | url = [controllerUrl] | name
[LatestEventDisplayName] / deepURL = [url] / applicationName
[LatestEventDisplayName] |

After updating the configuration file you will need to restart the piHTTP message channel:

ppCycle -n piHTTP

Interlink Software Services © Copyright 2021 3

& :
G \nerink

Logging
Logging configuration is set within the piHTTP-logging.xml file in the /opt/ISS/POWERpack/cfg folder.
The following example shows the settings within the piHTTP-logging.xml:

<configuration>
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${PPLOG}/${1logFileName}.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
<fileNamePattern>${PPLOG}/${logFileName}.%i.log.zip</fileNamePattern>
<minIndex>1</minIndex>
<maxIndex>9</maxIndex>
</rollingPolicy>
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
<maxFileSize>10MB</maxFileSize>
</triggeringPolicy>
<encoder>
<pattern>%date [%thread] %-5level %logger{36} - %msgkn</pattern>
</encoder>
</appender>

<root level="INFO">
<appender-ref ref="FILE" />
</root>
</configuration>

To change the logging level, update the root level to ERROR, WARN, INFO, DEBUG or TRACE.

Any changes to the file require a restart of the piHTTP message channel:

ppCycle -n piHTTP

Next Steps

Now that the webhook is configured please refer to the following section of this document “Receiving Alert
Information from AppDynamics”.

Interlink Software Services © Copyright 2021 4

'\ ‘
s 7

Configuration — Polling Solution (piRestClient)

Prerequisites

e BES380+

e AppDynamics instance running the REST API

e iss-bes-pirestclient RPM downloaded from ftp.interlistsoftware.com/rpms and added to a Yum
repository (you may use a local repository)

Installation
To run the install, logon to the BES server as root.

Then use the following command to install piRestClient:

yum install iss-bes-pirestclient

If there are any issues reported from the install process, please contact Interlink Software Support for
assistance.

Configuration of the piRestClient
The installation creates a default piRestClient message channel that will require configuration before use.

Note: For illustrative purposes, we shall use the default piRestClient message channel

Setup the configuration file

During installation of the integration a default configuration file is copied to the following location:
SPPHOME/cfg/piRestClient.yml

As ppadmin user, open the piRestClient.yml file and update the configuration to feed metrics data from
AppDynamics into BES, as shown in the example below.

Interlink Software Services © Copyright 2021

ftp://ftp.interlistsoftware.com/rpms
mailto:support@interlinksoftware.com

& :
G \nerink

Example Configuration for the piRestClient.yml|
workingDirectory: /var/spool/ISS/POWERpack
routing:

routes

- name: AppDMetricsRequest

enabled: true
schedule-milliseconds: 300000 ;gi
initialDelay: 25000
url: https://interlinksoftware-nfr.saas.appdynamics.com/controller/rest/applications/742/metric-data
http-method: get
headers:
query-parameters: (1
- key: "metric-path"
value: "Application Infrastructure Performance|*|Individual Nodes|* |Hardware Resources|CPU|%Busy"
- key: "time-range-type"
value: "BEFORE_NOW"
- key: "duration-in-mins"

value: "15"

type: "Basic Auth

username: interlinksoftware-nfr@interlinksoftware-nfr

password: ENC(SyttCmzlx/2WnHa8Vuayr7bc5fuB5iuy)
templating:

path: file:///opt/ISS/POWERpack/cfg/AppDMetricsRequest.vm

Interlink Software Services © Copyright 2021 6

'\ ‘
€ nierink

Item

a AN W N

10

11

12

13

14

15
16

Description

Integration work file location. This is where the duplicate message
processor will dump the duplicate message cache

List of routes/rest endpoints that will be called
Name of the route (must not be empty and must be unique)
If false, this route will not be loaded at startup

The polling schedule on which this route will be called (default is
20000 and must be a positive number)

The initial delay in milliseconds before the first call to the route’s
endpoint will be made. After the first call, subsequent calls to the
endpoint will be made on the schedule-milliseconds interval. So if
initial-delay is 20000 and schedule-milliseconds is 10000 then the
application will wait 20 seconds on application startup before
making the first call and then each subsequent call will be every 10
seconds (default is 20000)

The path for the target endpoint

The method to use. Options are GET (default), POST and PUT (must
be set to one of the options and is case insensitive)

A list of key value pair headers to be passed to the endpoint
The query parameters to pass to the endpoint
The body to pass to the endpoint

A json or xml expression, as per the response content-type, within
the payload body that will be used to split the response into sub
messages

A json or xml expression, as per the response content-type, within
the payload body that will be used to filter the response

Indicates what content type to expect back from the APl being
queried (defaults to JSON)

Auth headers, if required

The template location used to format the endpoint response (must
not be empty)

Interlink Software Services © Copyright 2021

& :
G \nerink

http-method
Accepts POST, PUT or GET requests.

url

This is the url of the REST endpoint that will be called by the client application. The url must not contain
any query-parameters.

headers
A list of key value pair http headers to be passed to the endpoint.
For example, the following header,
Content-Type: application/json
would be specified in the config as:
- key: Content-Type

value: application/json

query-parameters
A list of key value pair query parameters to be passed to the endpoint.

For example, the following key value pairs:

url: https://interlinksoftware-nfr.saas.appdynamics.com/controller/rest/applications/742/metric-data

http-method: get
headers:
query-parameters:
- key: "metric-path"
value: "Application Infrastructure Performance|*|Individual Nodes|*|Hardware Resources|CPU|%Busy"
- key: "time-range-type"
value: "BEFORE_NOW"
- key: "duration-in-mins"

value: "15"

Would result in the following URL:

https://interlinksoftware-nfr.saas.appdynamics.com/controller/rest/applications/742/metric-data?metric-

path=Application%20Infrastrucuture’%20Performance%7C*%7CIndividual¥%20Nodes%7C*%7CHardware%20Resources%»7CCPU%7
C%25Busy&time-range-type=BEFORE_NOW&duration-in-mins=15

Interlink Software Services © Copyright 2021 8

& :
G \nerink

splitter-expression
A JSON or XPath expression to an array in the response payload body as per the returned content type.

The contents of the array will be taken as individual messages and passed into the rest of the pipeline and
processed as normal.
For example, if a rest endpoint returned:
<metric-datas>
<metric-data>

<metricId>123</metricId>

</metric-data>

<metric-data>

<metricId>456</metricId>

</metric-data>
<metric-data>

<metricId>789</metricId>

</metric-data>

</metric-datas>

With a splitter expression of the following:

splitter-expression: "/metric-datas/metric-data"

This would split the original message into three new messages, with each being one of the contents of
the foos array.

The messages are passed down the processing pipeline as normal and the original message is discarded.

filter-expression

A JSON or XPath expression within the payload body that will be used to filter the response.

The filter is particularly useful where a given APl is not able to allow filtering on some of its fields.
This is an inclusive filter and as such will only send down to BES the data that matches the filter.

If the payload has been split using a splitter-expression, then this filter-expression will be applied to each
split payload, otherwise it will be applied to the whole payload.

Interlink Software Services © Copyright 2021 9

& :
G \nerink

For example, if a rest endpoint returned:
<metric-datas>

<metric-data>

<metricId>123</metricId>

<metricValues>

<metric-value>

<occurrences>@</occurrences>

</metric-value>

</metricValues>

</metric-data>

</metric-datas>

A filter expression of the following:

filter-expression: “/metric-datas/metric-data/metricValues/metric-value/occurrences > 0"

Would prevent the payload from being passed down the processing pipeline and would be discarded.
Once you have finished configuring the message channel, start it using the following command:

ppStart -n piRestClient

Templating

The template file describes the mapping of a given API response payload to a pipe delimited BES payload.

The integration supports various templating engines. For the example below, we are using the Freemarker
template engine to demonstrate the field mapping.

Example templating file

MetricId=${body.metricId} | MetricName=${body.metricName} | Occurrences=${body.metricValues.metric\-

value.occurrences} | Current=${body.metricValues.metric\-value.current} | Min=${body.metricValues.metric\-
value.min} | Max=${body.metricValues.metric\-value.max} |

The key value pairs are pipe delimited and in the format of:

BES field=API Response field

Interlink Software Services © Copyright 2021 10

& :
G \nerink

Encryption

If you need to encrypt sensitive properties in the config file, use the following command:
piRestClient -e "somethingiwanttoencrypt"

This will return the encrypted property that can be added to the configuration file.

Logging

The integration has a configuration file piRestClient-logging.xml that describes the level of logging. The
file is located in the /opt/ISS/POWERpack/cfg directory.

Example Logging Configuration file

<configuration>
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${PPLOG}/${logFileName}.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
<fileNamePattern>${PPLOG}/${logFileName}.%i.log.zip</fileNamePattern>

<minIndex>1</minIndex>
<maxIndex>9</maxIndex>

</rollingPolicy>

<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
<maxFileSize>10MB</maxFileSize>

</triggeringPolicy>

<encoder>

<pattern>%date [%thread] %-5level %logger{36} - %msg¥n</pattern>

</encoder>

</appender>

<root level="INFO">
<appender-ref ref="FILE" />
</root>

</configuration>

To change the logging level, update the root level field to INFO, DEBUG, WARN, ERROR or TRACE.

The log file for the integration is piRestClient.log and it is located | the /var/log/ISS/POWERpack (SPPLOG)
folder.

Any change to either the configuration yaml or logging xml files will require a restart of the message
channel using the following command:

ppCycle -n piRestClient

Interlink Software Services © Copyright 2021 11

'\ ‘
s 7

Receiving Alert Information from AppDynamics

Once the configuration is complete for the webhook or polling options and the message channels are
active, the solution will start to receive information from AppDynamics for events such as metrics data
and health rule violations.

Normalization rules should be created for the message channel using Interlinks SMARTView tool. Prior to
such rules being created the alerts will come through as “passthrough” alerts — the default alerts that
indicate the information has not been processed by any rules. These are light blue, as shown in the
following example:

integrationlD ¥ eld Y | severity Y operator S Btext 57
0000973303 0000973303 1 Metricld=1503099 | Metri PUI%Busy | Occ 0 | Current=6 | Min=5 | Max=18 |

Once the normalization rules are in place, the alerts will use colors to visually represent the severity of the
original alert from AppDynamics.

Below, we see a non-critical alert in green:

integration|D v eld Y severity Y operator T text id

As well as feeding metrics data to BES we can also feed health-rule violations. The following is an example
of two “passthrough” alerts originating from AppDynamics Memory and Disk health-rule violations.

integrationID Y eld Y severity Y operator Y text Y id h 4

0000928558 0000928558 1 Integrationld=13650751 | Status=.. 2321303 -
lemory Usage is too high contin...
All of the following conditions we...
For Node doc01.interlinksoftware...
LR Hardware ResouroeslMemnryI -
sed %'s value was greater than t...
| Severity=CRITICAL | Url=https:. I/l...
0000928542 0000928542 1 Integrationld=13647603 | Status=.. 2321300
Disk Usage continues to violate ...
All of the following conditions we...
For Node docO1.interlinksoftware...
1) Condition 1
sed (%)'s value was greater than...
| Severity=CRITICAL | Url=https:/i...

After creating normalization rules for these, we can see the entries represented as critical alerts in red:

Y BESMC Y | occurrences v dateUpdated Y dateCreated Y text

Interlink Software Services © Copyright 2021 12

'& :
s 7

The below image shows a combination of the webhook events and the polled events within the AID.

22:02:28

Interlink _
ppadmin

°° R B Create Selector Edit Selector v AlertQuery~- Bulk Action total @ =

Y dateCreated Y originkey

For more information about the AppDynamics integration visit.

To discover more about Interlink Software’s products visit.

Interlink Software Services © Copyright 2021 13

https://www.interlinksoftware.com/appdynamics
https://www.interlinksoftware.com/overview

