Running the Race for CAD Protection in Diabetes: Status 2019

Rajeev Gupta, MD, PhD

Preventive Cardiology & Internal Medicine, Eternal Heart Care Centre & Research Institute, Mount Sinai New York Affiliate, Jaipur. Academic Research Development Unit, Rajasthan University of Health Sciences, Jaipur.

Resurgence in Diabetes-Related Complications in USA

JAMA. Published online April 15, 2019. doi:10.1001/jama.2019.3471

Cardiovascular Diseases and Diabetes Emerging Themes in 2019

- **1. Renewed focus on healthy lifestyles**
- 2. Tight diabetes control and new evidence (drugs) for prevention
- 3. Hypertension control
- 4. Lipid management: LDL-C, Triglycerides
- 5. Aspirin and CVD prevention

Adherence to Healthy Lifestyle

Strategies to decrease the impact of cardiovascular diseases in diabetes

It is vital that people with type 2 diabetes understand their **increased risk of CVD** and **what they can do** about it.

International Diabetes Federation

www.idf.org/takingdiabetes2heart Source: Taking Diabetes to Heart Survey. International Diabetes Federation, 2018 taking diabetes to heart

www.idf.org/cvd

Therapeutic Lifestyle Changes

Parameter	Treatment Goal
Weight loss (for overweight & obese patients)	Reduce by 5% to 10%
Physical activity	 150 min/week of moderate-intensity exercise(eg, brisk walking) plus flexibility and strength training
Diet	 Eat regular meals and snacks; avoid fasting to lose weight Consume plant-based diet (high in fiber, low calories/glycemic index, and high in phytochemicals/antioxidants) Understand Nutrition Facts Incorporate beliefs and culture into discussions Use mild cooking techniques instead of high-heat cooking Keep physician-patient discussions informal

Intensive Glucose Control

T2 Diabetes Mellitus: Effect of Intensive Glycemic Control (UKPDS)

3,867 patients with DM randomized to intensive therapy with a sulphonylurea or insulin (mean HbA_{1C} 7.0%) or conventional therapy (mean HbA_{1C} 7.9%)

Intensive glycemic control in DM reduces the risk of microvascular complications

UKPDS Group. Lancet 1998;352:837-853

T2DM: Effect of Good Glycemic Control

Intensive glycemic control in DM reduces the long-term risk of MI

Holman RR et al. NEJM 2008;359:1577-1589

Anti-Diabetic Drugs for CV Protection and Prevention

Cardiovascular Outcome Trials for Various Anti-Diabetes Drugs

Quinquennium	Trial Name	Drugs Evaluated
Pre-1995	DCCT UKPDS	Insulin Metformin
1995-1999	UKPDS	Hypoglycemic drugs
2000-2004	STOP-NIDDM PRO-ACTIVE	Insulin Pioglitazone
2005-2009	ACCORD, ADVANCE VADT	Hypertension trials, Multiple drugs
2010-2014	ORIGIN, DEVOTE EXAMINE, SAVOR-TIMI TECOS	Insulin DPP4i
2015+	EMPAREG, CANVAS, DECLARE-TIMI, CREDENCE ELIXA, LEADER, EXSCEL, LEADER	SGLT2i GLP1RA

SGLT-2 Inhibitors and CAD Prevention Meta-Analysis

	Patients		Events	Events per 1000 patie	nt-years	Weight (%)	н	R	HR (95% CI)
	Treatment (n/N)	Placebo (n/N)		Treatment	Placebo				
Patients with athero	sclerotic cardiova	ascular disease							
EMPA-REG OUTCOME	4687/7020	2333/7020	772	37.4	43·9	29.4			0.86 (0.74-0.99)
CANVAS Program	3756/6656	2900/6656	796	34·1	41·3	32.4		Secondary	0.82 (0.72-0.95)
DECLARE-TIMI 58	3474/6974	3500/6974	1020	36.8	41 ·0	38.2	-8-	14% RRR	0.90 (0.79-1.02)
Fixed effects model f	or atheroscleroti	c cardiovascul	ar disease	e (p=0·0002)			+	,.	0.86 (0.80-0.93)
Patients with multip	le risk factors								
CANVAS Program	2039/3486	1447/3486	215	15.8	15.5	25.9		— —	0.98 (0.74-1.30)
DECLARE-TIMI 58	5108/10186	5078/10186	539	13·4	13.3	74·1		Primary	1.01 (0.86–1.20)
Fixed effects model f	or multiple risk fa	actors (p=0·98	3)					► ·	1.00 (0.87-1.16)
						0.35	0.50 1.0	00 2·50	
							Favours treatment	Favours placebo	

Figure 1: Meta-analysis of SGLT2i trials on the composite of myocardial infarction, stroke, and cardiovascular death (major adverse cardiovascular events) stratified by the presence of established atherosclerotic cardiovascular disease

Zelniker TA, et al. Lancet 2019;393:31-39

GLP1 Receptor Agonists and CAD Prevention Meta-Analysis

Trial (n)	Drug	Outcome	OR	95% CI
ELIXA	Lixisenatide	Primary	1.01	0.89-1.17
(n=6068)		Secondary-MACE	0.97	0.85-1.10
LEADER	Liraglutide	Primary	0.87	0.78-0.98
(n=9340)		Secondary-MACE	0.88	0.81-0.96
EXSCEL	Exenatide	Primary	0.91	0.83-1.00
(n=14752)		Secondary-MACE	0.88	0.76-1.02
SUSTAIN-6	Semaglutide	Primary	0.74	0.58-0.95
(n=3297)		Secondary-MACE	0.77	0.61-0.97

Blood Pressure Control

Diabetes Mellitus: Effect of Blood Pressure Control

United Kingdom Prospective Diabetes Study (UKPDS)

BP control yields greater CV risk reduction than glycemic control

UKPDS 38. *BMJ* 1998;317:703-713 UKPDS 33. *Lancet* 1998;352:837-853

Diabetes Mellitus: Effect of an ACE Inhibitor

Use of an ACE inhibitor in most trials of DM is associated with a reduction in adverse CV events

Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000; 355: 253-259 Fox KM et al. Lancet 2003; 362: 782-788 Patel A et al. Lancet 2007; 370: 829-840 Daly CA et al. Eur Heart J 2005;14:1347-1349 The PEACE Trial Investigators. NEJM 2004;351:2058-2068 ADVANCE Collaborative Group. NEJM 2008;358:2560-2572

Effect of Beta Blockade After an MI

Retrospective analysis of 45,308 patients with an acute MI to determine the impact of beta-blocker use on survival based on diabetic status

Beta-blocker use in DM is associated with a mortality benefit similar to that seen in those without DM

Chen J et al. JACC 1999;34:1388-1394

Diabetes Mellitus: Effect of Tight BP Control

Action to Control Cardiovascular Risk in Diabetes (ACCORD) Blood Pressure Trial

4,733 diabetic patients randomized to intensive BP control (target SBP <120 mm Hg) or standard BP control (target SBP <140 mm Hg) for 4.7 years

Intensive BP control in DM does *not* reduce a composite of adverse CV events, but *does* reduce the rate of stroke

ACCORD study group. NEJM 2010;362:1575-1585

Hypertension Management in T2D in India Multisite Prescription Audit: India Heart Watch-2 (n=8699)

Gupta R, et al. JAPI. 2018;66(9):12-17

Lipid Management

Diabetes Mellitus: Effect of an HMG-CoA Reductase Inhibitor

Collaborative Atorvastatin Diabetes Study (CARDS)

A statin reduces adverse CV events in diabetics

Colhoun HM et al. Lancet 2004;364:685-696

Statins in Diabetes Meta-Analysis 2008

Meta-analysis of 18,686 patients with DM randomized to treatment with a HMG-CoA Reductase Inhibitor

Major vascular event	Event	s (%)					
and prior diabetes	Treatment	Control		RR (CI)			
Major coronary event			.				
Diabetes	776 (8·3%)	979 (10.5%)	- i -	0.78 (0.69–0.87)			
No diabetes	2561 (7·2%)	3441 (9·6%)	~~~	0.77 (0.73-0.81)			
Any major coronary event	3337 (7·4%)	4420 (9 ·8%)	\$	0-77 (0-74-0-80)			
Test for heterogeneity within subgro	oup: χ² ₁ =0·1; p=0·8		·				
Coronary revascularisation							
Diabetes	491 (5·2%)	627 (6.7%)	- é -	0.75 (0.64–0.88)			
No diabetes	2129 (6.0%)	2807 (7.9%)		0.76 (0.72-0.81)			
Any coronary revascularisation	2620 (5·8%)	3434 (7.6%)		0.76 (0.73-0.80)			
Test for heterogeneity within subgro	oup: χ²₃=0·1; p=0·8		·				
Stroke			.				
Diabetes	407 (4·4%)	501 (5·4%)	- 	0.79 (0.67–0.93)			
No diabetes	933 (2.7%)	1116 (3·2%)	÷	0.84 (0.76–0.93)			
Any stroke	1340 (3-0%)	1617 (3.7%)	\diamond	0-83 (0-77-0-88)			
Test for heterogeneity within subgro	oup: χ² ₁ =0·8; p=0·4		·				
Major vascular event			.				
Diabetes	1465 (15·6%)	1782 (19·2%)	#	0.79 (0.72-0.86)			
No diabetes	4889 (13·7%)	6212 (17·4%)		0.79 (0.76–0.82)			
Any major vascular event	6354 (14·1%)	7994 (17·8%)		0-79 (0-77-0-81)			
Test for heterogeneity within subgroup: $\chi_1^2 = 0.0$; p=0.9							
		г					
- RR (99% CI)		0.	5 1.0	1.5			
V KK (95% U) Ifeatment better Control better							

A statin reduces adverse CV events in diabetics

Cholesterol Treatment Trialists ' (CTT) Collaborators. Lancet 2008;37:117-125

Statins and CV Risk Reduction in Diabetes: 2016

	Presenting characteristics	Total number of MVEs	Annual event rate in control arm (% per year)		RR (CI) per 1 mmol/L reduction in LDL cholesterol	p value for heterogeneity or trend		
	Pre-treatment LDL cholesterol (mm <2.5 ≥2.5 to <3.0 ≥3.0 to <3.5 ≥3.5 Age (years) ≈65 ≈65 to ≈75 >75 Sex Male Female History of vascular disease	ol/L) 5256 4182 4604 10563 13623 9211 2123 19922 5035	4-3 4-0 4-1 3-9 3-6 4-6 5-5 4-4 3-0		0-78 (0-69-0-89) 0-77 (0-70-0-85) 0-76 (0-70-0-82) 0-80 (0-77-0-84) 0-78 (0-75-0-82) 0-79 (0-74-0-83) 0-87 (0-76-0-99) 0-78 (0-75-0-81) 0-84 (0-78-0-91)	p=0-22 p=0-14 p=0-02		
Diabetes							p=0.78	
Type 1 diabetes	337	6.0	_		_	0.77	(0·58–1·01)	
Type 2 diabetes	5621	5.1				0.80	(0.74-0.86)	
No diabetes	18862	4·0				0.78	6 (0.76–0.82)	
	Treated hypertension Yes No Smoking status Current smokers Non-smokers 5-year MVE risk <5% ≥5 to <10% ≥10 to <20% ≥20 to <30% ≥30% All patients 	13939 10471 5225 19728 421 1453 7810 9028 6245 24957	4-5 3-5 4-7 3-9 0-6 1-6 3-5 5-8 9-8 4-0		0.80 (0-77-0.84) 0-77 (0-73-0-81) 0-79 (0-73-0-85) 0-79 (0-76-0-82) 0-62 (0-47-0-81) 0-69 (0-60-0-79) 0-79 (0-74-0-85) 0-81 (0-77-0-84) 0-79 (0-77-0-81)	p=0.11 p=0.88 p=0.04	23% RRR T1D 20% RRR T2D	
			د.ن ا	LDL cholesterol LDL cholesterol lowering better lowering	→ esterol worse			

Collins R, et al. Lancet 2016;388:2532-61

2018

AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS /APhA/ASPC/PCNA Guidelines on the Management of Blood Cholesterol

In patients 40 to 75 years of age with diabetes mellitus and LDL cholesterol >70 mg/dl start moderate intensity statin therapy.

> 2018 ACC/AHA Multisociety Guidelines. JACC 2018 2019 ACC/AHA Prevention Guidelines. JACC 2019

Statin Use in Type 2 Diabetes in India India Heart Watch-2

Men n=5292

Women n=3407

Gupta R, et al. BMJ Open Diabetes; 2016;4:e00275

Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia: REDUCE-IT

Bhatt DL et al. N Engl J Med 2019:380:11-22

Aspirin for Primary Prevention: Dead!!

Aspirin in Diabetes: 2010 Meta-Analysis

Meta-analysis of 9 clinical trials evaluating the effect of aspirin on cardiovascular events among patients with diabetes mellitus

Aspirin does not provide cardiovascular benefit in diabetics

Pignone M et al. JACC 2010;55:2878-2886

Aspirin for Primary Prevention (in Diabetes) ARRIVE, ASPREE & ASCEND

Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial

Aspirin for Primary Prevention 14 Trials & Null Result

Trial (year)	Aspirin	Placebo	Hazard Ratio for All-Caus	e Mortality (95% CI)
	no. of deaths/total	no. of participants		
BMDT (1988)	270/3429	151/1710		0.89 (0.74-1.08)
PHS (1989)	217/11,037	227/11,034		0.96 (0.80-1.14)
ETDRS (1992)	340/1856	366/1855		0.93 (0.81-1.06)
HOT (1998)	284/9399	305/9391		0.93 (0.79-1.09)
TPT (1998)	113/1268	110/1272		1.03 (0.80-1.32)
PPP (2001)	62/2226	78/2269		0.81 (0.58-1.13)
WHS (2005)	609/19,934	642/19,942		0.95 (0.85-1.06)
JPAD (2008)	34/1262	38/1277	• +	0.91 (0.57-1.43)
POPADAD (2008)	94/638	101/638		0.93 (0.72-1.21)
AAA (2010)	176/1675	186/1675		0.95 (0.78-1.15)
JPPP (2014)	297/7220	303/7244		0.98 (0.84-1.15)
ASCEND (2018)	748/7740	792/7740		0.94 (0.85-1.04)
ARRIVE (2018)	160/6270	161/6276		0.99 (0.80-1.24)
ASPREE (2018)	558/9525	494/9589		1.14 (1.01–1.29)
Overall (I ² =0%, P=0.67)			•	0.97 (0.93–1.01)
			0.75 1.0	1.5
			Aspirin Better Placebo	Better

Ridker PM. N Engl J Med. 2018;379:1572-74

Conclusions: Emerging Themes for CVD Prevention in Diabetes: 2019

- Lifestyle choices:
 - No tobacco policy (no smoking, smokeless tobacco)
 - Healthy foods: fruits, vegetables, nuts, legumes, dairy
 - Avoid unhealthy foods: high GI, trans fats, sat fats
 - Regular exercise: >150min/week moderate intensity
- Pharmaceutical interventions:
 - Tight diabetes control. Emerging role for SGLT2i
 - BP control ≅130/80 (2018 ESC/ESH guidelines): RASi
 - Statins in all diabetics (2018 US lipid guidelines)
 - Omega-3 fatty acids high dose (REDUCE-IT)
 - No aspirin

2019: Artificial Intelligence in Medicine

- The promise of artificial intelligence in medicine is:
 - to provide composite panoramic view of individual's medical data,
 - -to improve decision making
 - to avoid errors such as misdiagnosis and unnecessary procedures
 - to help in ordering and interpretation of appropriate tests, and
 - to recommend appropriate treatment.

Eric Topol. Deep Medicine. 2019