SMBG/FGM/CGM

WHICH WILL HELP THE PATIENTS MOST?

Prof Sarita Bajaj MD (Med), DM (Endo, AllMS) FRCP (London, Glasgow, Edinburgh) Consultant Endocrinologist

Director-Professor & Head of Medicine, MLN Medical College, Allahabad

Past President RSSDI

Past President API (UP Chapter)

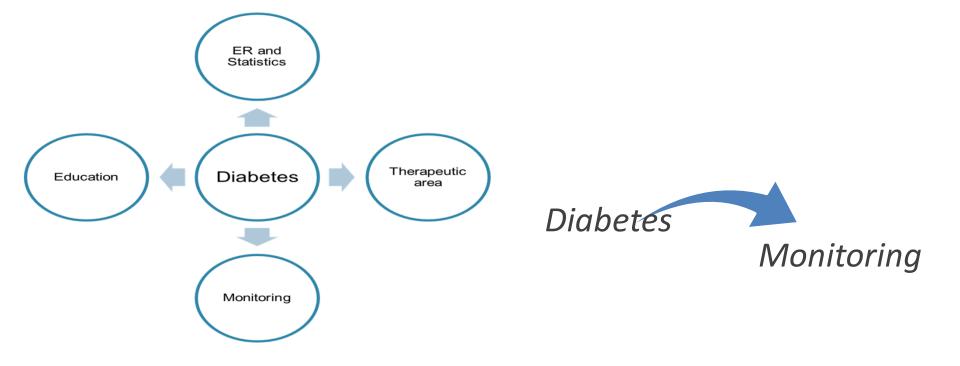
President Women in Endocrinology and Diabetes (WENDI)

Founder President South Asian Federation of Endocrine Societies

Past President Endocrine Society of India

Intensification

- ➤ Type 1
- > Type 2
- > GDM



Aim to keep A1C < 7%</p>

> ??? Achievable

Poor control

HbA1c < 7%

Improving Glycemic Control TREAT TO TARGET

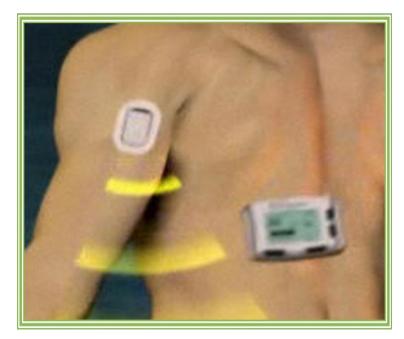
"Change the way you see your blood sugar"

Who should monitor glycemia?

Patient Self-monitoring of blood glucose

Healthcare professionals Regular monitoring of A1C

Diabetes care team Combined synergistic efforts of team are crucial to ensure effective monitoring of blood glucose



Glucose Monitoring

an<u>T</u>cient method

modern method

BG Test-strip Technology:Enzyme/mediator Systems

- Glucose oxidase: specific for glucose but susceptible to pO2 effect
- GDH-PQQ: eliminates oxygen effect but is less specific, but also detects maltose and galactose
- HK-G6PDH: eliminates oxygen effect but is more sensitive to heat and humidity
- Mediators ('electron transfer molecules') : Key Breakthrough Help to minimize interference especially when using low potential mediators, improved with a third electrodes

102

G

ACCU-CHEK

Embrace Talking Blood Glucose Meter

Product ID: PMEOMH01AB0200 Manufacturer: OMNIS HEALTHCARE Manufacturer Part Number: H01AB0200

Invacare® TrueTrack[™] Smart Stytem Blood Glucose Monitoring System Product ID: INVISG172200

Manufacturer: Invacare® Supply Group Manufacturer Part Number: ISG172200 Packaging: Each

Accu-Chek® Compact™ Blood Glucose Meter Kit

Product ID: INVBIO3149137 Manufacturer: Boehringer Mannheim Manufacturer Part Number: BIO3149137

FreeStyle® Freedom Lite **Blood Glucose Monitoring System**

Product ID: INVTSI70914 Manufacturer: Abbott Diabetes Care Manufacturer Part Number: TSI70914 Packaging: Each

ONE TOUCH® UltraSmart[™] System Kit

Product ID: INVLFS020524 Manufacturer: LifeScan Manufacturer Part Number: LFS020524 ONE TOUCH® UltraSmart™ System Kit More...

Embrace Meter Kit with 3 Months of Supplies

Product ID: PMEEMBRACEMETERKIT Manufacturer: OMNIS HEALTHCARE Manufacturer Part Number: EMBRACEMETERKI1 Packaging: 1, 2, 3, 4 Times Daily

Fora V10 Meter Kit with 3 Months of

Supplies New

Product ID: PMEFORAV10METERKIT

Product ID: INVBIO3184501 Manufacturer: Roche Diagnostics Manufacturer Part Number: BIO3184501 Packaging: Each

ASCENSIA® BREEZE 2[™] Blood Glucose Monitoring System

Product ID: INVAMS1440 Manufacturer: Bayer Diagnostic Manufacturer Part Number: AMS1440 Packaging: Each

Ascensia® CONTOUR™ Blood Glucose Monitoring System

Product ID: INVAMS7151 Manufacturer: Bayer Diagnostic Manufacturer Part Number: AMS7151 Packaging: Each

One TOUCH® Ultra Blood Glucose **Monitoring System**

Product ID: INVLFS020247 Manufacturer: LifeScan Manufacturer Part Number: LFS020247 One TOUCH® Ultra Blood Glucose Monitoring System

OneTouch® Ultra2 Blood Glucose Meter

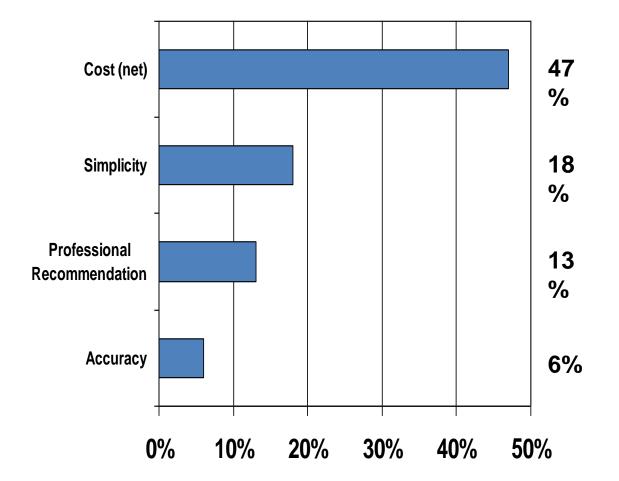
Product ID: INVLFS021098 Manufacturer: LifeScan Manufacturer Part Number: LFS021098 Packaging: Each OneTouch® Ultra2 Blood Glucose Meter, Kit,

Embrace Talking Blood Glucose Meter

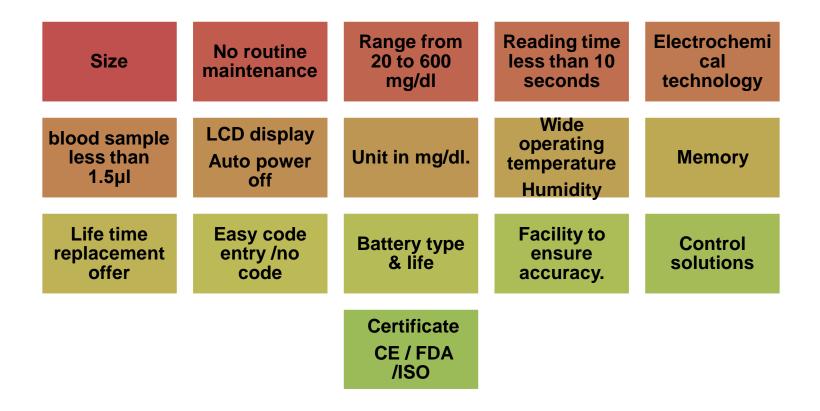
Product ID: PMEOMH01AB0200 Manufacturer: OMNIS HEALTHCARE Manufacturer Part Number: H01AB0200 Packaging: Each

Infinity Meter Kit with 3 Months of Supplies New

Product ID: PMEINFINITYMETERKIT


How to select a glucose meter

ACCU-CHIK


CONTON

Patient's Reasons for Selecting a BG Meter

2006 Roper Global US Diabetes Program at GFK NOP World Health, August – September 2006

Specifications we look for

Why you should invest on a good BGM system

Costeffective : Spend a little Save in millions

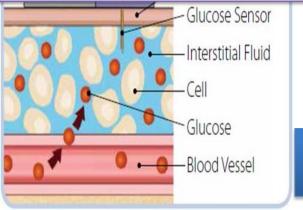
Prevent chronic complications (MI, stroke, amputations, eye disease, renal failure) Prevent acute complications hypos, DKA, HONK

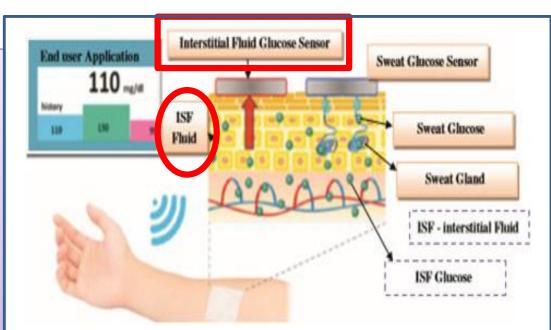
3

Type 1 Type 2 Gestational diabetes

Economics- SMBG at least 1/day could reduce financial risk to patients

Complication cost factor	Risk-adjusted cost for no SMBG cohort (INR)	Risk-adjusted cost for single SMBG per day cohort (INR)
Cost of complications		
Cardiovascular	127,997	115,172
Foot	461,635	311,466
Ocular	185,407	159,980
Renal	58,351	42,227
Hypoglycemia	5,123	5123
Cost of monitoring with SMBG		
Cost of 7 SMBG tests/week	0	82,832
Cost of SMBG meter	0	1540
Total costs over 10 years, discounted to present value	838,513	718,340

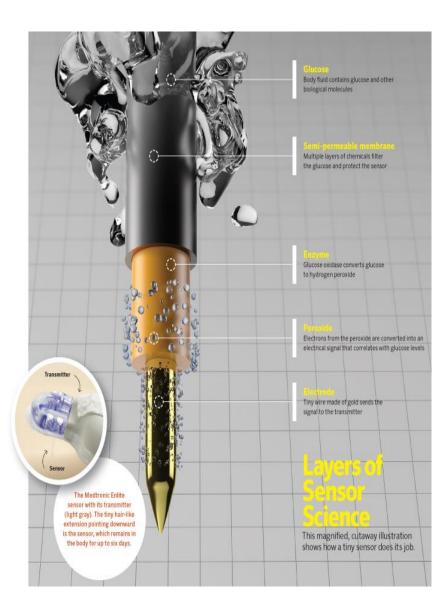

SMBG: Self-monitoring of blood glucose, INR: Indian rupee

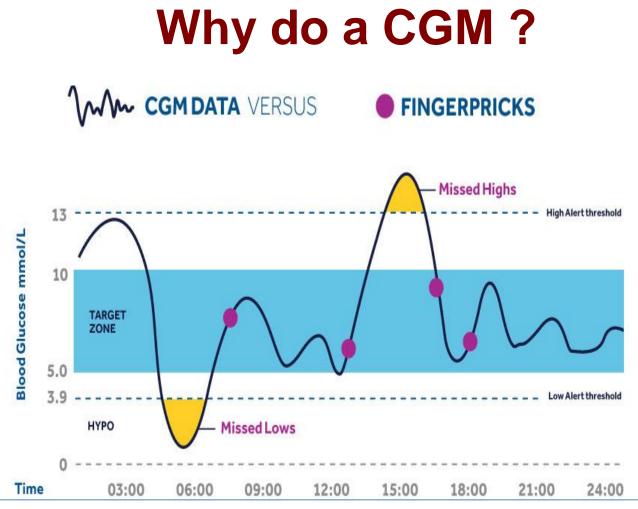

Component	Cost in INR	Source
Cost of monitoring with SMBG		
SMBG per test	26	JnJ India
SMBG (m)	1540	JnJ India
Cost of complications		
Severe hypoglycaemic event (event cost)	5070	Expert opinion (Indian physicians)
Cardiovascular complications (annual cost)	214,236	Kumpatla <i>et al.</i> 2013 ^[1]
Foot complications (annual cost)	160,677	Kumpatla <i>et al.</i> 2013 ^{[1:}
Eye complications (annual cost)	107,118	Kumpatla <i>et al</i> . 2013 ^{[1:}
Renal complications (annual cost)	107,118	Kumpatla et al. 2013 ^[15]

Mohan et al. Indian J Endocrinol Metab. 2018 Jul-Aug; 22(4): 461–465.

What is CGM ?

Continuous Glucose Monitoring (CGM) is a method to track glucose levels in interstitial fluid throughout the day and night. CGM systems take glucose measurements at regular intervals, 24 hours a day, and translate the readings into dynamic data, generating glucose direction and rate of change reports.


By using a continuous glucose monitor, your CGM system will automatically receive glucose readings every 5 minutes allowing you to fingerstick less often. CGM can be used with or without an insulin pump.¹


Glucose in the interstitial fluid hits the sensor causing an glucose – oxidation reaction to occur

CGM technology

- CGM estimates BG by measuring the concentration of glucose in the Interstitial Fluid (ISF)
- Signals from the ISF are calibrated to the fingerstick BG level
- The delay between the BG and the CGM is:

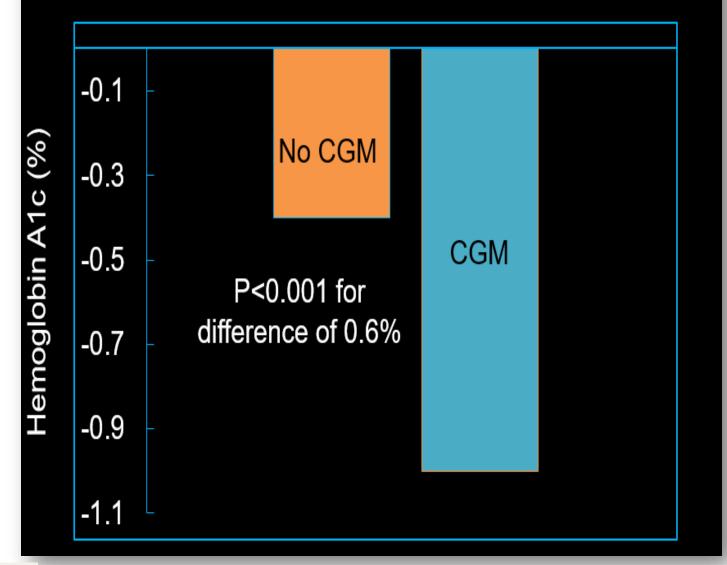
Lag between ISF and BG + Electrochemical sensor delay

Having this context helps CGM users manage glucose highs and lows, gives added insight into impacts that meals, exercise and illness may have on blood glucose levels CGM can also contribute to better diabetes management

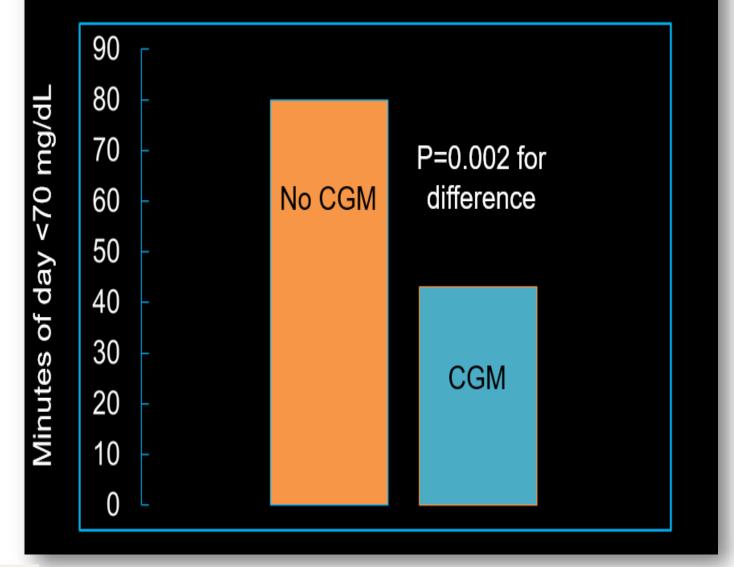
Continuous Glucose Monitoring

Subcutaneous sensor reads interstitial fluid glucose every few minutes

Attached transmitter sends values to receiver


Receiver displays glucose values in real time and provides trend arrows

Trend arrows show how quickly glucose is changing


Sensor is changed by patient every 6-7 days

Greater A1c reduction at 24 weeks with CGM

JAMA. 2017;317(4):371-378.

Hypoglycemic time cut in half with CGM use

JAMA. 2017;317(4):371-378.

Drawbacks of CGM

- Not a replacement to BGM!!!!
- Issues related to
 - Expensive in Indian context
 - Accuracy
 - Comfort
 - Convenience
 - Patient acceptance
- Most devices require frequent calibration

Flash Glucose Monitoring

- Measures plasma glucose in interstitial fluid
- BG values displayed when sensor is flashed with a reader device on demand
- Displays plot profile of last 8 hours
- Sensor can be worn for 14 days
- Has been shown to decrease time spent in hypoglycemia in type 1 and type 2 diabetes

FGM-Free Style Libre

- Pro approved in the US
- CGM standard in Europe
- 14 day use, factory calibrated
- 10 day use in the US with 12 hour warm up
- Touch screen reader device
- Real time glucose value, CGM on-demand
- Captures and stores readings

SMBG/CGM/FGM

COMPARISON OF THE TECHNOLOGY

- The BG meters work on electrochemistry, colorimetry or photometry¹
- The strips are biosensors, mostly based glucose oxidase/hexokinase enzyme¹
- Measure capillary blood glucose
- Measures spot glucose values
- Built-in memory
- Downloadable software/mobile app

CGM

 CGM sensors work on electrochemistry

technology

interstitial fluid

Glucose oxidase enzyme

Measures glucose from

Measures glucose values

continuously for 6 days

Measure glucose every 5

mins (288 readings/day)

Available as professional

Comprehensive reporting

& personal systems

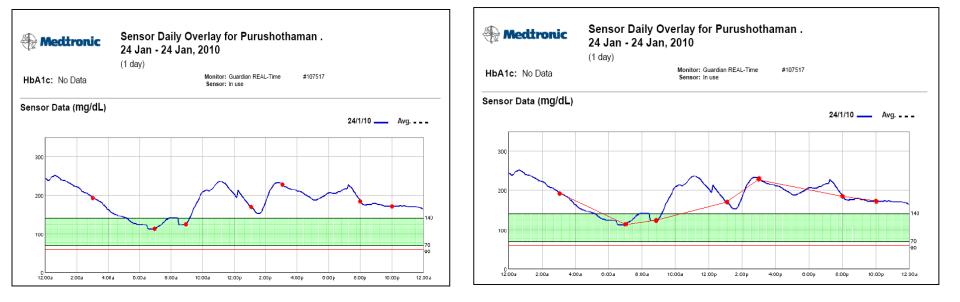
of trends & patterns

FGM

- FGM sensors work on electrochemistry
- Glucose oxidase enzyme technology
- Measures glucose from interstitial fluid
- Measures glucose values continuously for 14 days
- Measure glucose every 15 mins (90 readings/day)
- Available as professional system
- Comprehensive reporting of trends & patterns

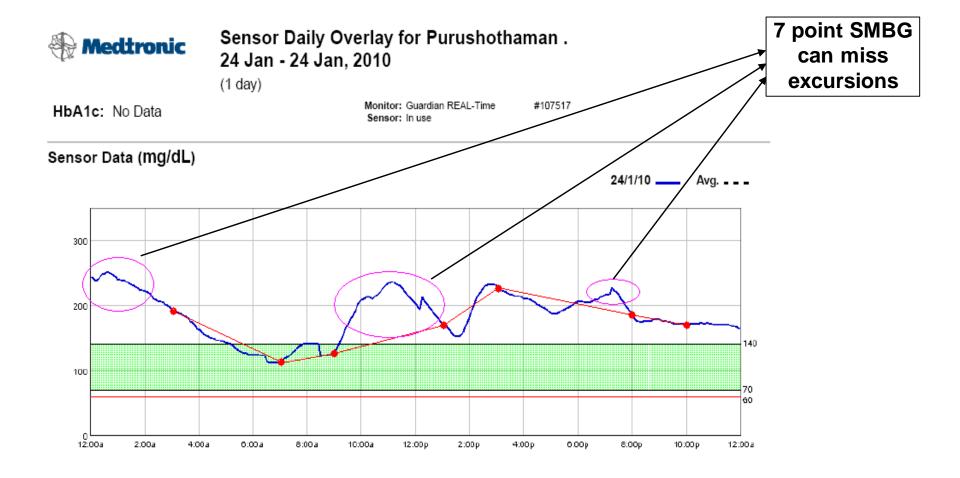
	Blood glucose monitoring	Flash glucose monitoring	Continuous glucose monitoring	CGM with an insulin pump
Frequency of glucose readings	Dependent upon how often the person pricks their finger.	Dependent on how often the sensor is scanned. Device automatically samples interstitial glucose every 15 minutes and stores in memory for 8 hours.	CGM automatically samples interstitial glucose every 5 minutes and shows readings on a graph.	CGM automatically samples interstitial glucose every 5 minutes and shows readings on a graph on the insulin pump.
Glucose trends shown	No. Some meters can show patterns if glucose checks are done at the same time over several days.	Yes. When sensor is scanned, transmitter displays past 8 hours of glucose levels.	Yes.	Yes.
Memory	Varies depending on meter chosen.	Device stores readings from the past 8 hours.	Device displays and stores up to 24 hours of glucose readings.	Device displays and stores up to 24 hours of glucose readings.
Time taken for glucose check	1-2 minutes. Varies depending on meter.	Scan takes 1 second. Inserting sensor takes a few minutes.	Data viewed on demand on smart device, receiver or insulin pump.	Data viewed on demand on insulin pump.
Alarms	No. Alerts (not alarms) can be shown on smart devices for low and high blood glucose levels.	No. Alerts (not alarms) are shown on device but only if scan is done at a time when glucose is low or high.	Yes. Devices can be programmed to alarm for low and high glucose levels.	Yes. Devices can be programmed to alarm for low and high glucose levels.
Body part used for sampling	Tips or sides of fingers.	Approved for use on upper arm.	Approved for use on stomach.	Approved for use on stomach.
Calibration	Some meters need intermittent calibration using a solution.	Not needed.	Finger prick calibration needed at least twice daily.	Finger prick calibration needed at least twice daily.

SMBG/CGM/FGM

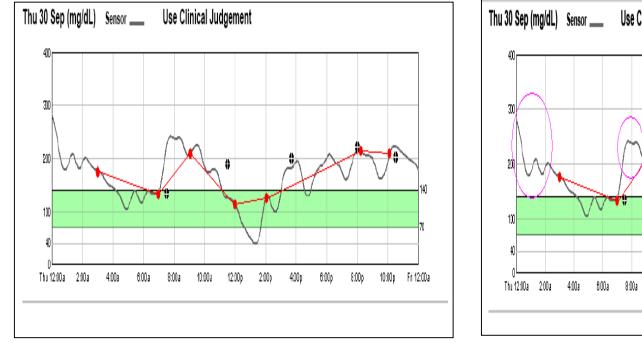

Features	SMBG	CGM	FGM
Time since being used	Time tested	Relatively new (approximately 15 years)	Very new (approximately 2 years)
Costs involved	Cheaper	Relatively expensive	Relatively cheaper
Accuracy	Very accurate	Better with newer sensors	Relatively accurate
Source of glucose measurement	Blood	ISF	ISF
Requirement of finger pricks	Always required	Required for calibration	Not required and hence virtually painless
Need of the device being attached to the body	No device attached to the body	Relatively big sensor attached to the body	Tiny sensor but still attached to the body
Volume of glucose data obtained	Provides a single glucose reading	Provides the glucose trend over several days (gives reading every 5 min for 5-7 days)	In addition to CGM, provides an AGP (gives reading every 15 min for 14 days)
Possible to access GV	Difficult	Yes	Yes
Level of motivation required	High	Moderate	Minimal
Level of subject interference required	Maximal	Moderate	Minimal and hence can capture glucose values of even those subjects who are not at all motivated

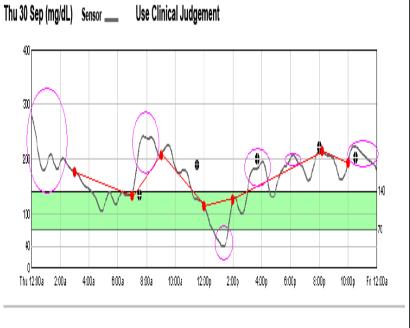
J Diabetol 2017;8:61-7.

7 POINT SMBG VS CGM

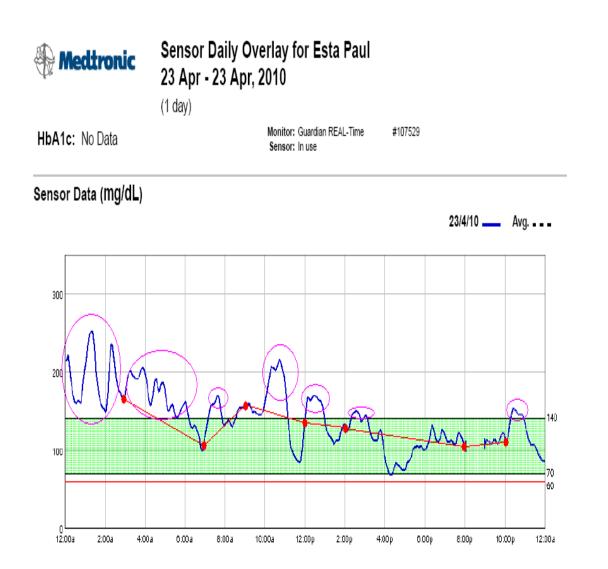

Overlay 7 point SMBG over CGM graph

Connect the SMBG values to get the trend




What do we miss?

7 POINT SMBG VS CGM

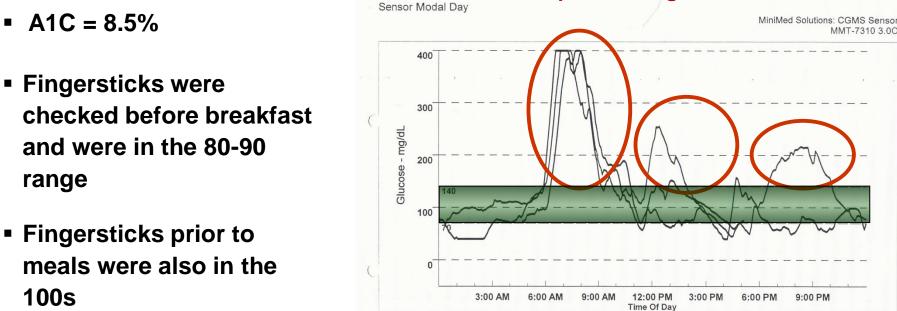


7 POINT SMBG VS CGM

7 POINT SMBG VS CGM

WHAT DOES SMBG MISS?

60 year old patient with


type 1 diabetes

• A1C = 8.5%

range

Three critical areas meter readings often miss:

- Nocturnal glucose control
- Asymptomatic hypoglycemia
- Post-prandial glucose excursions
 - Shows that high glucose average is from postprandial highs

Nasr Cardiology: Maria

Sunday

Monday

Tuesday

Wednesday

Thursday

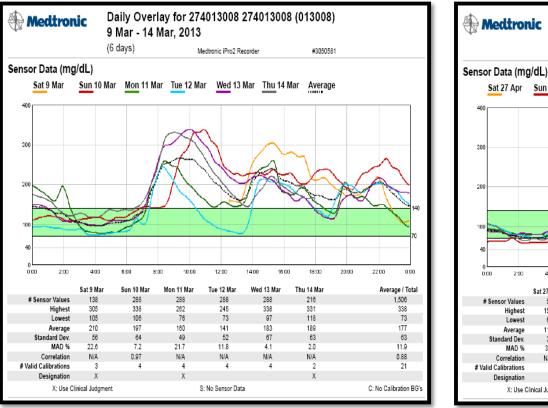
Friday

Saturday

Legend

Fingersticks prior to meals were also in the 100s

Report Printed: 22-Feb-07 11:52 AM


9:00 PM

MMT-7310 3 0C

CGMS-A THERAPY OPTIMIZER

Baseline CGM Graph

Post treatment CGM Graph

Daily Overlay for 274013008 274013008 (013008) 27 Apr - 2 May, 2013 (6 days) Medtronic iPro2 Recorder #3050635 Sun 28 Apr Mon 29 Apr Tue 30 Apr Wed 1 May Thu 2 May Average 4:00 6 10 8:00 10:00 12:00 14:00 15 10 18:00 20:00 22:00 010 Sat 27 Apr Mon 29 Apr Tue 30 Apr Wed 1 May Thu 2 May Average / Total Sun 28 Apr 56 288 288 288 288 224 1,432 156 140 141 150 170 159 170 58 74 71 64 58 60 75 113 88 104 100 104 99 100 31 25 18 18 23 23 23 3.3 11.4 5.6 2.7 12.1 2.2 6.9 N/A N/A N/A N/A N/A N/A N/A 20 2 4 4 4 4 2 Х S: No Sensor Data C: No Calibration BG's X: Use Clinical Judgment

Mohan et al. Use of Retrospective CGM For Optimizing Management of Type 2 Diabetes in India; Journal of the Association of Physicians of India, volume 64, April 2016

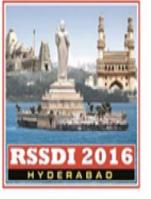
ORIGINAL ARTICLE

2

Use of Ambulatory Glucose Profile for Improving Monitoring and Management of T2DM

Banshi Saboo¹, Shruti V Sheth¹, Shashank Joshi², Sudhir Bhandari³, Jothydev Kesavadev⁴, Anuj Maheshwari⁵, Manish Agrawal¹, Dhruvi Hasnani¹, Feny Patel¹, Dharmendra Panchal¹, Rutul Goklani¹

Abstract


Aim: To demonstrate glycemic variability in type 2 diabetic patients and consequent control of the same.

Methods: 108 patients with type 2 diabetes with an HbA1c level of 7.5-8.5% were selected for the study. A Freestyle Libre Pro AGP sensor was applied to the patients after explaining the patient about the same. Next, they were called for follow up at 3^{rd} , 7^{th} , 11^{th} and 14^{th} days. Based on the readings and graph obtained, diet and treatment changes were made on various follow-up days. The sensor was removed at the end of 14 days.

Results: Out of the 108 subjects, 106 completed the study. There were no adverse device effects. 98 patients had therapy changes while the rest had diet and lifestyle modifications. The mean HbA1c decreased from 7.96% to 7.03% by the end of 15 days. The glycemic variability curves helped in recognizing and treating masked or asymptomatic hypoglycemic events. It also graphically shows intervals of optimal and sub-optimal glycemia.

Conclusion: AGP is one of the most recent, innovative developments that are being used to monitor Glycaemic variability in DM patients. AGP is generated from the Flash Glucose Monitoring device which is like a CGM device attached to the patient for a maximum period of 14 days, which checks the ISF glucose at every 15 minutes. We are able to get a Glycaemic variability curve, a median, a modal, various percentiles and statistical data generated through this.

AGP study in the patient provides the doctor with an opportunity to have a complete glycemic picture of the patient I. It offers a reliable, predictive, standardized visualization of the glucose data. We were able to not only reduce the Glycaemic variability but were also able to improve their Quality of Life by reducing the frequency of hypos. The data lead to breaking of the clinical inertia and provided a valuable insight into Glycaemic patterns. The achievement of near to normal Glycaemic status at the end of 14 days reflected the use of AGP as an interventional tool. AGP study in the patient provides the doctor with an opportunity to have a complete glycemic picture of the patient I. It offers a reliable, predictive, standardized visualization of the glucose data. We were able to not only reduce the Glycaemic variability but were also able to improve their Quality of Life by reducing the frequency of hypos. The data lead to breaking of the clinical inertia and provided a valuable insight into Glycaemic patterns. The achievement of near to normal Glycaemic status at the end of 14 days reflected the use of AGP as an interventional tool.

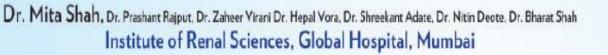
44th Annual Conference of Research Society for The Study of Diabetes in India

18 - 20 November 2016

Hyderabad International Convention Centre (HICC), Hyderabad, Telangana, India

- POSTER TITLE: Ambulatory Glucose Profile A Convenient Tool for Therapeutic Decision Making in Diabetes (Abstract ID 44)
- PRESENTER NAME: Dr Vishal Kastwar*, MD
- * Director, Shreedeep Medical Care Centre, Jabalpur, MP

AGP Utilisation in India


Glycemic Variability during Pregnancy can be detected by Ambulatory Glucose Profile using Freestyle Libre Pro Bhavana Sosale*, Aravind R Sosale** *MBBS,MD, **MBBS, DNB, FRCP (Glasgow and Edinburg), Diacon Hospital, Bangalore, India

Managing Hypoglycemia through the Novel Flash Glucose Monitoring System in Indian Diabetics

Author Block: YASHPAL MUNJAL, ANUPAM PRAKASH, GHANSHYAM PANGTEY, NAVNEET WADHWA, Delhi, India, Mumbai, India

Use of ambulatory glucose profile (AGP) for prevention and treatment of diabetic nephropathy

more to life

Different patient scenarios for CGM use in Indian patients

- A1C that does not match SMBG
- Elevated A1C
- Noncompliant patients
- Therapy adjustment
- Insulin adjustment
- High glucose variability
- Hypoglycemia patterns
- Hyperglycemia patterns
- Baseline assessment

Managing diabetes without CGM can feel like walking a tightrope with a blindfold on

International Consensus available on CGM

Diabetes Care Volume 40, December 2017

International Consensus on Use of Continuous Glucose Monitoring

Diabetes Care 2017;40:1631-1640 | https://doi.org/10.2337/dc17-1600

Continuous Glucose Monitoring: Evidence and Consensus Statement for Clinical Use

Andreas Liebl, M.D.,¹ Helmut R. Henrichs, M.D.,² Lutz Heinemann, Ph.D.,³ Guido Freckmann, M.D.,⁴ Eberhard Biermann, M.D.,⁵ and Andreas Thomas, Ph.D.,⁶ for the Continuous Glucose Monitoring Working Group of the Working Group Diabetes Technology of the German Diabetes Association

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326882978

2018 ISPAD Clinical Practice Consensus Guidelines MANAGEMENT AND SUPPORT OF CHILDREN AND ADOLESCENTS WITH TYPE 1 DIABETES IN SCHOOL

Article in Pediatric Diabetes - August 2018

DOI: 10.1111/pedi.12743

2017: ATTD, EASD and ADA Consensus Recommends AGP as Standard Report

International Consensus on use of CGM

International Consensus on Use of Continuous Glucose Monitoring

Diabetes Care 2017;40:1631–1640 | https://doi.org/10.2337/dc17-1600

2017: ATTD, EASD and ADA Consensus Recommends AGP as Standard Report

Achieving Guidelines on CGM Use

- International meeting before ATTD conference in Feb 2017 to make recommendations for appropriate use and interpretation of CGM
- "CGM should be considered in conjunction with HbA1c for glycemic status assessment and therapy adjustment in all patients with type 1 diabetes and patients with type 2 diabetes treated with intensive insulin therapy who are not achieving glucose targets, especially if the patient is experiencing problematic hypoglycemia"

International Consensus on Use of Continuous Glucose Monitoring

Diabetes Care 2017;40:1631–1640 | https://doi.org/10.2337/dc17-1600

Measurement of glycated hemoglobin (HbA_{1c}) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA_{1c} testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA_{1c} measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies. as

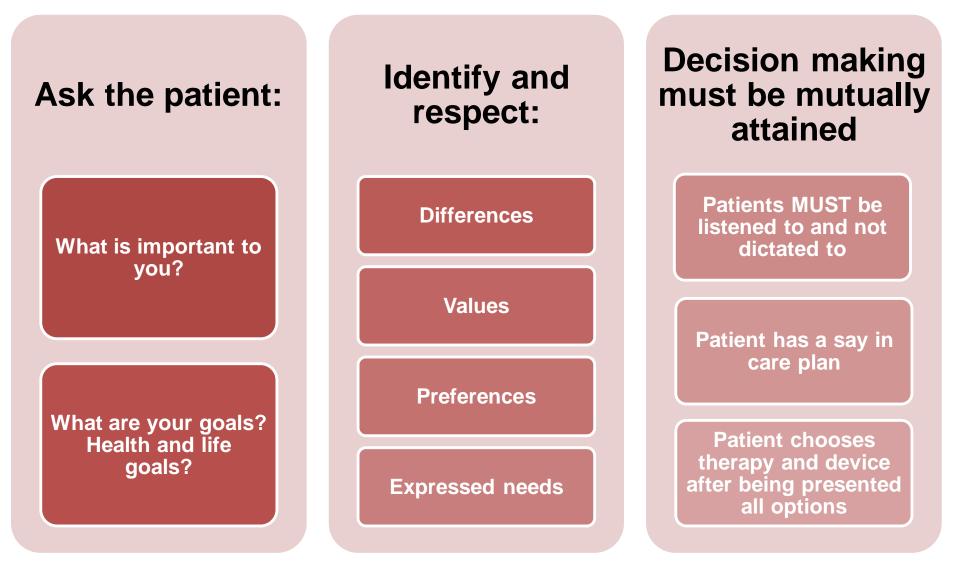
Thomas Danne,¹ Revital Nimri,² Tadej Battelino,³ Richard M. Bergenstal,⁴ Kelly L. Close,⁵ J. Hans DeVries,⁶ Satish Garg,⁷ Lutz Heinemann,⁸ Irl Hirsch,⁹ Stephanie A. Amiel,¹⁰ Roy Beck,¹¹ Emanuele Bosi,¹² Bruce Buckingham,¹³ Claudio Cobelli,¹⁴ Eyal Dassau,¹⁵ Francis J. Doyle III,¹⁵ Simon Heller.¹⁶ Roman Hovorka,¹⁷ Weiping Jia,¹⁸ Tim Jones,¹⁹ Olga Kordonouri,¹ Boris Kovatchev.²⁰ Aaron Kowalski.²¹ Lori Laffel,²² David Maahs,¹³ Helen R. Murphy,²³ Kirsten Nøraaard,²⁴ Christopher G. Parkin,²⁵ Eric Renard,²⁶ Banshi Saboo,²⁷ Mauro Scharf,²⁸ William V. Tamborlane,²⁹ Stuart A. Weinzimer,²⁹ and Moshe Phillip²

¹Diabetes Centre for Children and Adolescents, Children's and Youth Hospital "Auf Der Bult," Hannover, Germany ²The Myrtle and Henry Hirsch National Center

Indian perspective

Consensus Guidelines

Latest

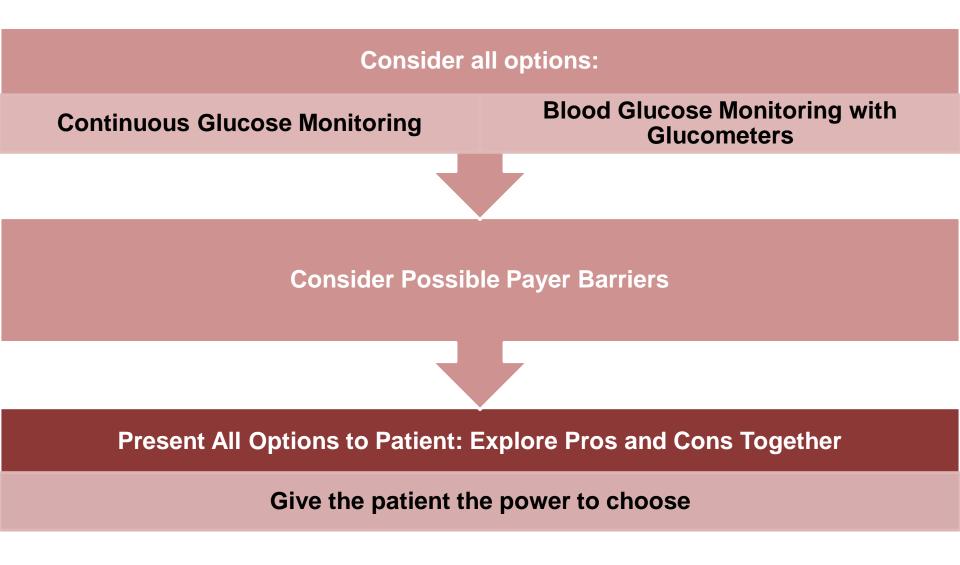

Consensus and Recommendations on Continuous Glucose Monitoring

Manoj Chawla, Banshi Saboo¹, Sujeet Jha², Sudhir Bhandari³, Prasanna Kumar⁴, Jothydev Kesavadev⁵, Yash Pal Munjal⁶, Viswanathan Mohan⁷, Ranjit Unnikrishnan⁷, Vishal Katswar⁸, Nanditha Arun⁹, Bhavana Sosale¹⁰, Ranjit Mohan Anjana⁷, Dhruvi Hasnani¹

LINA Diabetes Care Center, Mumbai, Maharashtra, ¹Department of Diabetology, Diacare- Diabetes Care & Hormone Clinic, Ahmedabad, Gujarat, ²Max Super Speciality Hospital, Max Hospital, ³Sawai Mansingh Hospital, Jaipur, Rajasthan, ⁴Bangalore Diabetes Hospital, ¹⁰Diabetologist Diacon Hospital, Bangalore, Karnataka, ⁵Jothydev's Diabetes and Research Center, Thiruvananthapuram, Kerala, ⁶Artemis Hospital, Gurgaon, Haryana, ⁷Department of Diabetology, Dr. Mohan's Diabetes Specialities Centre & Madras Diabetes Research Foundation, ⁹Consultant Diabetologist, Dr. A. Ramachandran's Diabetes Hospitals, Chennai, ⁸Consultant Diabetologist, Shreedeep Medical Institute, Jabalpur, Madhya Pradesh, India

Chawla M, Saboo B, Jha S, Bhandari S, Kumar P, Kesavadev J, et al. Consensus and recommendations on continuous glucose monitoring. J Diabetol 2019;10:4-14.

Patient-Centered Care



(Rubenfeld & Scheffer, 2010)

KEY TAKE AWAYS

- SMBG is relatively inexpensive, easy to train, provides an accurate measure of capillary glucose concentrations
- SMBG provides snap-shots of blood glucose concentration
- CGM provides a near-continuous read-out of interstitial glucose concentration, which adequately reflects blood glucose concentration and can help to identify trends and patterns in glucose
- CGM can be programmed to give alarms for highs or lows, allowing patients to treat these abnormal values

Planning Care for People with Diabetes

Thank you!

