Prof.(Dr.) HEMRAJ B. CHANDALIA

Director, Endocrinology, Diabetes and Metabolism, Jaslok Hospital, Mumbai Director; Diabetes Endocrine Nutrition Management and Research Centre, Mumbai (DENMARC)

Faculty Positions :

- Faculty, University of Alabama Medical Centre, Birmingham, USA (1967-1970),.
- Faculty of Grant Medical College, Mumbai (1971 to 2000).

Publications :

- Eighty-two articles, originals and reviews in scientific journals.
- Twenty authorship, editorship or contributions to books

<u>Editorship :</u>

- Editor, International Jour. of Diabetes in Developing Countries
 1991-2012
- Editor, Diabetes Today since 1991.
- Editor-in Chief, RSSDI Textbook of Diabetes, 3rd Edition, 2015

Algorithm of treatment in T2DM: which drug after metformin?

Prof. Dr. H . B. CHANDALIA, M.D., FACP

- Director, Diabetes Endocrine Nutrition Management & Research Centre (DENMARC)
- Director, Endocrinology, Diabetes & Metabolism, Jaslok Hospital and Research Centre, Mumbai
- Honorary Professor of Medicine and Diabetes (retired), Grant Medical College, Mumbai

Conflict of Interest

• On speaker Bureau or advisory board of

NovoNordisk, Sanofi, Eli Lilly, Wockhardt,

Boehringer Ingelheim, Lupin, USV, MSD,

Janseen, Glenmark, Sun Pharma, Novartis, Cipla,

Astra Zeneca

Outline

- 1. Evolution of Guidelines and General Considerations
- 2. Metformin & Sulfonylureas -most frequently used drugs
- 3. Treatment choice after Metformin failure
 - Treatment modalities available-Pros &cons
- 4. Treatment choice after Metformin failure
 - DPP4i vs SGLT2i

ADA guidelines 2018: Updates

"Incorporate an agent proven to reduce major adverse cardiovascular events and cardiovascular mortality, after considering drug-specific and patient factors"

The updated guidelines recommend the use of the medications with potential cardiovascular (CV) benefit

New ADA-EASD Consensus Guidelines 2018

^{4.} Degludec or U100 glargine have demonstrated CVD safety

American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm

氇

Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2017

executive summary endocr pract. 2017 feb;23(2):207-238.

HbA1c Targets

Type 2 DM	Initial 2-5 years of disease	< 6.5 %
	5-10 years of disease	<7%
	>10 years of disease with cardiovascular, renal, retinal, neurological complications	< 8 %
Type 1 DM	With standard insulin therapy	<7.5%
	With intensified insulin therapy	<7%
	or insulin pump therapy	
Pregnancy	Gestational DM	< 6 %
	Pregestational, type 2 DM	< 6.5 %
	Type 1 DM	< 7 %

HYPOGLYCEMIC AGENTS vs ANTIHYPERGLYCEMIC AGENTS

Hypoglycemic agents	Antihyperglycemic agents
• Sulfonylureas	 Metformin
• Non-SU insulin	• Glitazone
secretagogues	 Nutrient blockers:
Repaglinide	acarbose,
Nateglinide	voglibose, miglitol
• Insulin	 GLP-1 analogues
	 DPP IV Inhibitors
	 SGLT2 blockers

Progression of T2DM parallels declining β -cell function

Indication to initiate insulin therapy

Unintentional weight loss is a clear indication for insulin therapy

To minimize hypoglycemia with insulin therapy

- 1. Improve insulin plan: stay close to normal physiology. Review injection technique.
- 2. Use multiple small doses of insulin (basal-bolus plan).
- 3. Use adequate dose of basal insulin.
- 4. Use insulins with lower co-efficient of variation.
- 5. Sensitize patient to insulin, as far as possible with an Anti Hyperglycemic agent.
- 6. Set realistic HbA1c and blood glucose targets.

Greater Contribution of Postprandial Hyperglycemia in Asian Patients with Type 2 Diabetes

Postprandial glycaemia a predominant contributor to excess hyperglycaemia in <u>early stage</u>

FPG, fasting plasma glucose; HbA_{1C}, glycosylated haemoglobin; PPG, postprandial glycaemia. 1. Monnier L *et al. Diabetes Care* 2003;26:881–885; 2. Wang JS *et al. Diabetes Metab Res Rev* 2011;27:79–84.

Early intervention with combination therapy allows proactive management of glycaemia

Early intensification involves combination of agents before up titration,

Outline

- 1. Evolution of Guidelines and General Considerations
- 2. Metformin & Sulfonylureas -most frequently used drugs
- 3. Treatment choice after Metformin failure
 - Treatment modalities available-Pros &cons
- 4. Treatment choice after Metformin failure
 - DPP4i vs SGLT2i

METFORMIN

Drugs, 2000, Nov, 60 (5) 1017-1028

In UKPDS, those treated with metformin had risk reductions of :

- 32% for any diabetes related end point
- 42% for diabetes related death
 - 36% for all cause mortality

MF and CVD

1) Advanced lipidomic studies showed different profile in MF vs Glipizide-treated T2DM

(Zhang, Diab Care, 2014)

 Cohort study: 5-year retrospective analysis: MF vs LSM; MF showed about 30% reduction in CVD events and all-cause mortality

(Fung, Cardiovasc Diabeto, 2015)

3) MF vs Glipizide: CV Outcomes in T2DM + CAD

N= ~ 150 each group; 3 yrs, prospective,

MF: HR 0.54, CI 0.3-0.9 (p= 0.026) for CV events

(Hong, Diab Care, 2013)

CONTRAINDICATIONS TO USE OF METFORMIN

Impaired renal function
 Safe to use in eGFR > 45 ml/min/1.73m²

Between eGFR 30-45 ml/min/1.73m² reduce MF dose by 50-75%

- Impaired hepatic function
- Cardiac failure
- Hypoxia of any origin, poor tissue perfusion, respiratory failure
- Proposed contrast studies
- Acutely ill patients with dehydration, hypotension, perioperative period
- Type 1 DM

Combination of SUs and Metformin may be Linked to Higher Risk for CVD and All-cause Mortality*

Cl=confidence interval; CVD=cardiovascular disease; met=metformin; NS=not specified; SU=sulfonylureas. *Composite end point of CVD hospitalizations or CVD mortality – only statistically significantly increased end point. *Rao A, et al. Diabetes Care. 2008;31:1672–1678*

Comparison of cardiovascular-related mortality between SUs using direct and indirect evidence

Newer SUs (Gliclazide and Glimepiride) were associated with a lower risk of all-cause and cardiovascular-related mortality compared with glibenclamide

SUs may be effective but not durable

ADOPT Study

∆ Glibenclamide 7.6- HbA_{1c} (%) O Metformin Rosiglitazone 7.2 average for metformin/ rosiglitazone 6.8 average for glibenclamide 6.4 6.0-2 3 0 1 4 Time (yr)

A Diabetes Outcome Progression Trial (ADOPT)

Giancarlo V.et. al ., A Diabetes Outcome Progression Trial (ADOPT) DIABETES CARE, VOLUME 25, NUMBER 10, OCTOBER 2002

ODYSSÉE: Duration of Maintenance of Initial Combination Therapy

CI=confidence interval; SU=sulfonylurea.

Valensi P et al. Treatment maintenance duration of dual therapy with metformin and sitagliptin in type 2 diabetes: The ODYSSEE observational study Diabetes and Metabolism 41(2015) 231-238

Outline

- 1. Evolution of Guidelines and General Considerations
- 2. Metformin & Sulfonylureas -most frequently used drugs
- 3. Treatment choice after Metformin failure
 - Treatment modalities available-Pros &cons
- 4. Treatment choice after Metformin failure
 - DPP4i vs SGLT2i

	Efficacy	Hypoglyc Weight		CV Effects		Cost	Oral/
		emia	Change	ASCVD	CHF		SQ
Sulfonylureas (2 nd Generation)	High	Yes	Gain	Neutral	Neutral	Low	Oral
SGLT-2 Inhibitors	Intermediate	Νο	Loss	Benefit: canagliflozin, empagliflozin	Benefit: canagliflozin, empagliflozin	High	Oral
DPP-4 Inhibitors	Intermediate	No	Neutral	Neutral	Potential Risk; saxagliptin, alogliptin	High	Oral

DPP-4 inhibitor- Dipeptidyl peptidase-4 inhibitors, SGLT2 -Sodium-glucose co-transporter 2

		Renal Effects	Additional Considerations
	Progression of CKD	Dosing/Use considerations	
Sulfonylureas (2 nd Generation)	Neutral	 Glyburide: not recommended Glipizide & glimepiride: initiate conservatively to avoid hypoglycemia 	•FDA Special Warning on increased risk of cardiovascular mortality based on studies of an older sulfonylurea (tolbutamide)
SGLT-2 Inhibitors	Benefit: canagliflozin, empagliflozin	 Canagliflozin: not recommended with eGFR <45 Dapagliflozin: not recommended with eGFR <60; contraindicated with eGFR <30 Empagliflozin: contraindicated with eGFR <30 	 FDA Black Box: Risk of amputation (canagliflozin) Risk of bone fractures (canagliflozin) DKA risk (all agents, rare in T2DM) Genitourinary infections Risk of volume depletion, hypotension 1 LDL cholesterol
DPP-4 Inhibitors	Neutral	 Renal dose adjustment required; can be used in renal impairment 	 Potential risk of acute pancreatitis Join pain

		Efficacy	Hypogly Weight		CV Effects		Cost	Oral/S
			cemia	cemia Change	ASCVD	CHF		Q
GLP-1	RAs	High	No	Loss	Neutral: lixisenatide, exenatide extended release	Neutral	High	SQ
					Benefit: liraglutide [#]			
Thiazo	olidinediones	High	No	Gain	Potential Benefit: pioglitazone	Increased Risk	Low	Oral
Insul in	Human Insulin	Highest	Yes	Gain	Neutral	Neutral	Low	SQ
	Analogs						High	SQ

			Renal Effects	Additional Considerations	
		Progression of CKD	Dosing/Use considerations		
GLP-1 RAs		Benefit: liraglutide	 Exenatide: not indicated with eGFR <30 Lixisenatide: caution with eGFR <30 Increased risk of side effects in patients with renal impairment 	 FDA Black Box: Risk of thyroid C-cell tumors (liraglutide, albiglutide, dulaglutide, exenatide extended release) Gastrointestinal side effects common (nausea, vomiting, diarrhea) Injection site reactions ?Acute pancreatitis risk 	
Thiazolidinediones		Neutral	 No dose adjustment required Generally not recommended in renal impairment due to potential for fluid retention 	 •FDA Black Box: Congestive heart failure [pioglitazone, rosiglitazone] •Fluid retention (edema; heart failure) •Benefit in NASH •Risk of bone fractures •Bladder cancer(pioglitazone •†LDL cholesterol (rosiglitazone) 	
Insulin	Human Insulin	Neutral	• Lower insulin doses required with a decrease in eGFR; titrate per clinical response	 Injection site reactions Higher risk of hypoglycaemia with human insulin (NPH or premixed 	
	Analogs		response	formulations) vs. analogs	

Outline

- 1. Evolution of Guidelines and General Considerations
- 2. Metformin & Sulfonylureas -most frequently used drugs
- 3. Treatment choice after Metformin failure
 - Treatment modalities available-Pros &cons
- 4. Treatment choice after Metformin failure
 - DPP4i vs SGLT2i

From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus

Ralph A. DeFronzo

DIABETES, VOL. 58, APRIL 2009

Pathogenesis of type 2 diabetes: implications for therapy

- 1) Effective treatment of type 2 diabetes requires <u>multiple</u> <u>drugs used in combination</u> to correct multiple pathophysiological defects.
- 2) Treatment should be <u>based on known pathogenic</u> <u>abnormalities</u> and <u>not simply on reduction of A1C</u>.
- 3) Therapy must be started early in the natural history of type 2 diabetes to prevent progressive β -cell failure.

Hit early, hit hard !!

DPP4i in CKD: Diverse profile

	Sitagliptin	Vildagliptin	Saxagliptin	Linagliptin
How the drug is handled	Minimally metabolized in body, excreted unchanged primarily via renal route	Extensively metabolized, primarily in the liver, inactive metabolite, largely excreted via renal route	Hepatic metabolism, Active metabolite, Primarily renal Excretion	Minimally Metabolized, Primarily biliary excretion
Change in drug concentration in Renal Impairment	Drug concentration increases	?Drug Concentration increases	Drug concentration increases	Change in drug concentration not clinically significant
Use in renal impairment	A lower dose is effective	A lower dose is effective	A lower dose is effective	Dose not changed
Indication	Indicated in all stages including ESRD	Indicated in all stages including ESRD	Indicated in all stages including ESRD	Indicated in all stages including ESRD

TECOS: non-inferiority of sitagliptin to placebo for the primary composite CV outcome*

- No significant between-group difference was reported for the secondary composite endpoint of CV death, non-fatal MI and non-fatal stroke
- Rates of HF hospitalization did not differ between treatment groups

*CV death, non-fatal MI, non-fatal stroke, hospitalization for unstable angina. A randomized, double-blind trial to determine the long-term effects of adding sitagliptin (100 mg daily [50 mg daily if baseline eGFR was \geq 30 and <50 mL per minute per 1.73 m²]) to usual care in patients with T2D and CV disease (N=14,671). Median follow-up was 3.0 years Green et al. N Engl J Med 2015;373:232–42.

VIVIDD: no difference in risk of HF hospitalization, CV death or worsening of HF with vildagliptin compared with placebo

European (EMA) label text: A clinical trial of vildagliptin in patients with New York Heart Association (NYHA) functional class I–III showed **that treatment with vildagliptin was not associated with a change** *in left-ventricular function or worsening of pre-existing congestive heart failure (CHF) versus placebo.* Clinical experience in patients with NYHA functional class III treated with vildagliptin is still limited and results are inconclusive

LVEF=left ventricular ejection fraction Krum et al. Poster presented at the 74th Scientific Sessions of the American Diabetes Association (ADA), 13–17 June 2014, San Francisco, CA, USA; European Medicines Agency (2012). Available at: <u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000771/WC500020327.pdf</u>

Serious Adverse events profile of Gliptins

Nasopharyngitis
 Skin rash
 Hypoglycemia (very rare)
 Pancreatitis (Very rare)
 Arthralgia (very rare)

SGLT-2 inhibitors Empagliflozin, Canagliflozin & Dapagliflozin

- All have shown improvement in 3 point MACE with (about 15%) some differences
- Reduced cardiovascular and all cause mortality, seen with Empagliflozin
- ➢All of them improve renal outcomes and heart failure (35-45%)

SGLT2 Inhibitors- CV benefits

EMPA-REG OUTCOME Trial

SGLT2 -Sodium-glucose co-transporter 2

HR - Hazard Ratio, ARR -Absolute risk reduction CV - Cardiovascular

Schernthaner G & Schernthaner GH. Herz 2016 · 41:208–216

In Subgroup Patients with Established CVD, \downarrow^{sed} CV Mortality Risk Not Observed in CANVAS Program Direct comparison of trials is not valid due to differences in study design, populations and methodology **CANVAS Program**, Mortality **EMPA-REG OUTCOME** Patients with H/o CVD (n = 7,020)Outcome (n = 6,656)Placebo Empagliflozin Canagliflozin Placebo Groups (2,333)(2,900) (4,687)(3,756)**CV** Death 12.4 20.2 14.8 16.8 (per 1000 ptyrs) **No Significant Reduction** 38% Reduction (p<0.001) - HR 0.86 (95% CI 0.70, 1.06) -HR 0.62 (95% CI 0.49, 0.77) Outcome

28.6

21.1

23.1

No Significant Reduction

HR_0.89 (95% CI 0.75, 1.07)

19.4

32% Reduction (p<0.001)

HR_0.68 (95% CI 0.57, 0.82

All-cause Death

Zinman B et al

(per 1000 pt-

Outcome

yrs)

EMPA-REG OUTCOME Findings Clinical Inferences for CVD Prevention

Clinical	Relative Risk Reduction	Absolute Risk Reduction
Outcome	(Hazard ratio, p-value)	(Number Needed to Treat [#])
3-point MACE	14% (0.86, p = 0.04)	1.6% (63 patients)
CV Mortality	38% (0.62, p <0.001)	2.2% (46 patients)
Hospitalizations for	35%	1.4%
Heart Failure	(0.65, p = 0.002)	(72 patients)
Hospitalizations for HF	34%	2.8%
or CV Mortality	(0.66, p <0.001)	(36 patients)
Incident or Worsening	39%	6.1%
Nephropathy	(0.61, p <0.001)	(17 patients)
≥40% sustained Decline	45%	1.4%
in eGFR	(0.55, p <0.001)	(72 patients)
All-cause Mortality	32% (0.68, p <0.001)	2.6% (39 patients)

[#]Number Needed to Treat: Number of patients to be treated with empagliflozin for 3 years, to prevent 1 additional event.

EMPA-REG OUTCOME Consistent CV Protection in Patients Without CV Events

Data on file, Boehringer Ingelheim

Credence trial Summary of Key Renal and CV Outcomes

	Hazard rati	0	
	(95% CI)		P value
Primary composite outcome		0.70 (0.59–0.82)	0.00001
Doubling of serum creatinine		0.60 (0.48–0.76)	<0.001
ESKD		0.68 (0.54–0.86)	0.002
eGFR <15 mL/min/1.73 m ²		0.60 (0.45–0.80)	-
Dialysis initiated or kidney transplantation		0.74 (0.55–1.00)	-
Renal death		- 0.39 (0.08-2.03)	-
CV death	•	0.78 (0.61–1.00)	0.0502
CV death or hospitalization for heart failure		0.69 (0.57–0.83)	<0.001
CV death, MI, or stroke		0.80 (0.67–0.95)	0.01
Hospitalization for heart failure		0.61 (0.47–0.80)	<0.001
ESKD, doubling of serum creatinine, or renal death	.25 0.5 1,0	1 0.66 (0.53–0.81) 2.0 4.0	<0.001
Favor	rs Canagliflozin Fav	ors Placebo	

Perkovic V, et al. N Engl J Med. 2019. Epub ahead of print. doi: 10.1056/NEJMoa1811744.

SGLT2 Inhibitors- Concerns

SGLT2 -Sodium-glucose co-transporter 2

John M, Gopinath D, Jagesh R. Indian Journal of Endocrinology and Metabolism. 2016;20(1):22-31

SGLT2 Inhibitors- UTI pooled analysis

Increased risk of urinary tract infection With Dapagliflozin and more common in females

Safety data from 12 randomized, placebo-controlled trials were pooled to evaluate the relationship between glucosuria, urinary tract infection and Dapaglifozin SGLT2 -Sodium-glucose co-transporter 2

SGLT2 Inhibitors- Amputations

FDA: Black Box Warning Amputation Risk for Canagliflozin

Canagliflozin doubled the risk of amputation in patients with type 2 diabetes.

US FDA Adverse Event Reporting System

SGLT2 -Sodium-glucose co-transporter 2

Fadini G.P, Avogaro A. Diabetes and Endocrinology. (2017).5(9);680-681

SGLT2 Inhibitors- Volume depletion

The CV benefits is postulated to be via diuresis in case of Canagliflozin.

Studies have shown that there is an extra 375 ml of urine/day excreted with dapagliflozin 10 mg/day.

Volume depletion-related adverse effects were captured in trials of SGLT2 inhibitors:

- Reduced blood pressure
- Dehydration
- Postural dizziness
- Orthostatic hypotension
- Orthostatic intolerance syncope
- Reduced urine output.

SGLT2 -Sodium-glucose co-transporter 2

John M, Gopinath D, Jagesh R.. Indian Journal of Endocrinology and Metabolism. 2016;20(1):22-31.

SGLT2 Inhibitors-ketoacidosis

Diabetic ketoacidosis (DKA) with SGLT2 inhibitors in type 2 diabetes

Possible mechanism of euglycemic DKA by SGLT2 inhibitor

FFA, free fatty acid; ACC, acetyl-CoA carboxylase; CPT-I, carnitine palmitoyltransferase-I; DKA, diabetic ketoacidosis.

John M, Gopinath D, Jagesh R. Indian Journal of Endocrinology and Metabolism. 2016;20(1):22-31; Ogawa W et al. Journal of Diabetes Investigation. 2016;7(2):135-138; Singh AK. Indian Journal of Endocrinology and Metabolism. 2015;19(6):722-730.

PRIMIUM NON-NOCERE

Can we generalize the results of EMPA REG to entire T2DM population?

US outpatient registry

Patients with type 2 Diabetes 1 in 6 patients with T2D may meet the eligibility criteria for **EMPA-REG** outcomes Not on SGLT2 Inhibitors Treated with 96% SGLT2 Inhibitors Potentially Eligible 4% In such patients SGLT2i rarely used **Eligibility for EMPA-REG OUTCOME in DCR**

Tends to be prescribed in lower risk patients

and Use of SGLT2- inhibitors

CV - Cardio vascular, SGLT2i - Sodium glucose cotransporter-2 inhibitors,

Defining the potential 'real world' impact of the EMPA-REG outcome trial on improving cardiovascular outcomes: Observation from the diabetes collaborative registry. Available [Online] at URL: http://www.easdvirtualmeeting.org/resources/defining-the-potential-real-world-impact-of-the-empa-reg-outcome-trial-onimproving-cardiovascular-outcomes-observations-from-the-diabetes-collaborative-registry-dcr-199e17b4-cec2-4f5a-b558-d49262902cbc Accessed on 18 October 2016

CV Benefits of EMPA-REG OUTCOME Apply to Whom?

Prevalence of Coronary Atherosclerosis in Asymptomatic Patients of T2D	South Asians	Caucasians			
Coronary Artery Calcium +ve	66%	53%			
CAD (≥30% block in a coronary artery)	74%	59%			
Significant CAD (≥50% block)	41%	28%			
CV Benefits in EMPA-REG OUTCOME, Apply To Patients of T2D: ✓ With Documented CV Events (K/c/o ACS / Stroke / PAD)					

✓ >2 of 5 Asymptomatic patients of T2D (CAD with ≥50% block)

Roos CJ et al Am J Cardiol. 2014 Jun 1:113(11):1782-7. Zinman B et al. N Enal J Med 2015:doi:10.1056/NEJMoa1504720

T2DM and CAD equivalence

- T2 DM vs Non diabetic with Myocardial infarction
- Risk Of Myocardial infarction in T2DM is onehalf that of Non diabetic with myocardial infarction
- With 10 yrs of T2DM, the risk of MI is equal to that in Non diabetic with prior MI

(Rana JS, Liu JY, Moffet HH et al. Diabetes and prior CHD are not necessarily risk equivalent for future CHD events. J Gen Intern Med, 2016)

DM as CHD equivalent

(Rana et al, J Gen Intern Med, 2015)

N=1,586, 061 adults, Kaiser Permanente, North California Duration 10 yrs

Total CHD 80,012

HR:

CHD alone 2.8 (95% CI 2.7-2.85)

DM alone 1.7 (95% CI 1.66-1.74)

DM+CHD 3.9 (95% CF 3.8-4.0)

DM only Vs CHD only=12.2 Vs 22.5 per 1000 person-years

Only DM of >10 yr duration had CHD risk equal to those with CHD

SGLT2 inhibitors and DPP-4 inhibitors preferred treatment options

SGLT2 inhibitors

- Reduce hyperglycaemia in individuals with T2DM.
- Weight loss
- Moderate reductions in systolic >blood pressure
- No increase in hypoglycaemia risk

DPP-4 inhibitors

- Vital role in glucose homeostasis
- Inhibit glucagon secretion \succ
- Minimizes hypoglycaemia and \succ
- Weight-neutral \succ
- Improve β -cell function in vitro \succ and animal studies
- Benefits patients with impaired β-cell function, excessive hepatic glucose production, postprandial hyperglycaemia and overweight or obese

DPP-4 inhibitor- Dipeptidyl peptidase-4 inhibitors, SGLT2 -Sodium-glucose co-transporter 2

Complementary Actions

DPP4i

- Insulin (β cell) dependent
 mechanism
- ✓ ↓ Glucagon and Endogenous
 Glucose Production
- ✓ Weight neutral
- ✓ \uparrow GLP-1 levels
- \checkmark \downarrow FPG and PPG
- ✓ Minimal or no hypoglycemia

SGLT2i

- Insulin (β cell) independent
 mechanism
- ✓ ↑ Glucagon and Endogenous
 Glucose Production
- $\checkmark \downarrow$ Weight \downarrow BP
- ✓ ↑ GLP-1 levels
- \checkmark \downarrow FPG and PPG
- ✓ Minimal or no hypoglycemia
- 1. DeFronzo RA et al. Diabetes Care. 2015 Mar;38(3):384-93.
- 2. Aronson R. Single-pill combination therapy for type 2 diabetes mellitus: linagliptin plus empagliflozin.
- 3. Mathieu C. Diabetes Care. 2015 Nov;38(11):2009-17.
- 4. Ferrannini E et al. J Clin Invest 2014;124:499–508.

Pathophysiological Rx cocktail with minimum number of pills?

Individual agents added together:

- Met + SU/Pio + DPP4i (3 pills)
- Met + SU/Pio + DPP4i + SGLT2i (4 pills)

Fixed Dose Combinations

Met + DPP4i/SGLT2i FDC (2 pills)

Met/Pio FDC + DPP4i/SGLT2i FDC (2 pills)

INDIVIDUALISATION

Summary

- Guidelines for treatment of T2DM have evolved rapidly, mainly in the last decade due to advent of new drugs. Selection of drug is based on potential for hypoglycemia, weight gain and CV and renal protection. Cost considerations are also important.
- 2. MF monotherapy is treatment of choice initially. Thereafter, 6 options are open. Their Pros and cons need to be considered in each patient. Antihyperglycemic drugs are preferable to hypoglycemic drugs.
- 3. After metformin failure, closest competition is between DPP4i and SGLT2i.
- 4. Individualization is key to rational and successful treatment of T2DM.

Thank You