Rationale use of SGLT2 Inhibitors in Diabetes

Prakash Deedwania, MD, FACC, FACP, FAHA, FESC, FHFSA

Professor of Medicine, UCSF School of Medicine, San Francisco, Director, Cardiovascular Research, UCSF Program, Fresno, CA Clinical Professor of Medicine, Stanford University, Palo Alto, CA

A 50-year old with Diabetes dies ~6 years earlier than an individual without Diabetes.

Causes of Death in Diabetes

Emerging Risk Factors Collaboration NEJM 2011. 364: 829-841. Wang et al. Circulation 2016. 133: 2459-2502.

Non-CVD 35%

Coronary Heart Disease 40%

Stroke 10%

Heart Failure 15%

Diabetes increases the risk of CHD and Stroke.

	Number of cases	HR (HR (95% CI)		
Coronary heart disease*	26 5 0 5		2·00 (1·83–2·19)	64 (54-71)	Cł
Coronary death	11 556	_	2·31 (2·05–2·60)	41 (24-54)	HR
Non-fatal myocardial infarction	14 741		1·82 (1·64–2·03)	37 (19-51)	
Stroke subtypes*					
Ischaemic stroke	3799		2·27 (1·95–2·65)	1 (0–20)	lsch
Haemorrhagic stroke	1183	_	1.56 (1.19–2.05)	0 (0–26)	Str
Unclassified stroke	4973		1·84 (1·59–2·13)	33 (12–48)	HR
Other vascular deaths	3826		1·73 (1·51–1·98)	0 (0–26)	
	-		4		

Diabetes increases the risk of Heart Failure.

Role of Diabetes in Congestive Heart Failure: The Framingham Study

WILLIAM B. KANNEL, MD, FACC MARTHANA HJORTLAND, PhD* WILLIAM P. CASTELLI, MD

Framingham, Massachusetts Bethesda, Maryland

The incidence of congestive heart failure was determined in relation to prior diabetic status in 5,209 men and women aged 30 to 62 years followed up for 18 years in the Framingham study. Men aged 45 to 74 years had more than twice the frequency of congestive failure as their nondiabetic cohorts, and diabetic women had a fivefold increased risk. This excessive risk appears to be caused by factors other than accelerated atherogenesis and coronary heart disease. Even when patients with prior coronary or rheumatic heart disease were excluded, the diabetic subjects had a four- to fivefold increased risk of congestive heart failure. In women (but not men) with prior coronary disease, diabetes also imposed a threefold increased risk of congestive failure. Furthermore, the increased risk of heart failure in the diabetic patients persisted after taking into account age, blood pressure, weight and cholesterol values as well as coronary heart disease. Women with diabetes appeared to be especially vulnerable and, irrespective of coronary disease status, had twice the frequency of congestive heart failure as men. The excessive risk of heart failure among diabetic subjects was confined to those treated with insulin. The data suggest that diabetes is another discrete cause of congestive heart failure and that some form of cardiomyopathy is associated with diabetes, as a result of either small vessel disease or metabolic disorders.

Congestive heart failure is a common end stage of heart disease due to a variety of causes. The incidence is far from trivial. The annual rate is 2.3/1,000 men and 1.4/1,000 women aged 30 years and over.1 Despite the availability of potent glycosides and diurctic agents, congestive heart failure continues to be a lethal process, and half of the patients die within 5 years of onset.¹ Previous study¹ revealed that hypertension and coronary heart disease were the dominant causes, but 14 percent of men and 26 percent of women with congestive failure also had diabetes, an apparent excess. The purpose of this report is to explore the role of diabetes in the development of congestive heart failure and to assess its contribution taking into account the presence of coronary heart disease and atherogenic factors such as hypertension, high serum cholesterol levels, overweight and increased age.

Methods

The Framingham study was initiated in 1949 to explore the epidemiology of cardiovascular disease in a general population sample of 5,209 men and women aged 30 to 62 years. These subjects have been followed up for the development of cardiovascular disease including congestive heart failure. At every biennial examination each participant has had, in addition to a history and physical evaluation, a 13 lead electrocardiogram, a chest X-ray film, tests of vital capacity, urinalysis, measurements of blood sugar, uric acid and cholesterol levels and determinations of Framingham relative body weight.

Detailed descriptions of the sampling procedure, response rate, methods of examination and laboratory procedures and the criteria for the outcome of disease have been reported previously.²

July 1974 The American Journal of CARDIOLOGY Volume 34

From the Framingham Heart Disease Epidemiology Study, Framingham, Mass., and the National Heart and Lung Institute,* National Institutes of Health, Bethesda, Md. Manuscript accepted February 27, 1974.

Address for reprints; William B. Kannel, MD. Framingham Heart Disease Epidemiology Study, 123 Lincoln St., Framingham, Mass. 01701.

TABLE IV

1000

.

Risk of Congestive Heart Failure According to Sex and Diabetic Status at Each Biennial Examination: 18 Year Follow-Up Study

	Incid		
Person Years At Risk	Crude Annual per 10,000	Age- Adjusted* per 10,000	Relative Risk
Men Aged	45 to 74 ye	ars	
26,988 1,226	31.87 89.72	32.14 75.98	2.36†
Women Ag	ed 45 to 74 y	/ears	
35,322 1,190	19.53 142.85	19.75 101.60	5.14 <u>†</u>
	Person Years At Risk Men Aged 26,988 1,226 Women Ag 35,322 1,190	Incid Crude Person Years Annual At Risk per 10,000 Men Aged 45 to 74 ye 26,988 31.87 1,226 89.72 Women Aged 45 to 74 ye 35,322 19.53 1,190 142.85	Incidence Crude Age- Person Years Annual Adjusted* At Risk per 10,000 per 10,000 Men Aged 45 to 74 years 26,988 31.87 32.14 1,226 89.72 75.98 Women Aged 45 to 74 years 35,322 19.53 19.75 1,190 142.85 101.60

Indirect method.

+ Significant at P < 0.05 (chi square = 6.50).

 \pm Significant at P < 0.01 (chi square = 12.53).

HF in Men HR 2.36

HF in Women HR 5.14

Initial presentations of cardiovascular disease in patients with Diabetes.

Shah et al. Lancet Diabetes Endocrinol 2015. 3: 105-13.

Competing risks of CHD, Stroke, and Heart Failure Deaths in Diabetes

Cardiovascular Cause of Death HR (95% CI) (Ref: Non-diabetes) 3.02 (2.38, 3.85) Coronary Heart Disease 2.30 (1.63, 3.24) Stroke Heart Failure 1.72 (1.05, 2.82)

Baena-Diez et al. Diabetes Care 2016. 39: 1987-1995.

Predictors of CHD, Stroke, and Heart Failure in Diabetes

Risks of CHD and Stroke vary by age and sex in Diabetes.

A Coronary heart disease						B Ischaemic	stroke					
	Number of partici- pants	Number of cases	HR (9	5% CI)	Interaction p value	Number of partici- pants	Number of cases	HR (9!	5% CI)	In P		
Sex												
Male	306 533	20 218		1.89 (1.73-2.06)	<0.0001	168 191	2193		2.16 (1.84-2.52)	0		
Female	223 550	6287		2.59 (2.29-2.93)		125 571	1606		2.83 (2.35-3.40)	I		
Age at survey												
40-59 years	410 833	17 686	_ e _	2.51 (2.25-2.80)	<0.0001	234 263	1729		3.74 (3.06-4.58)	0		
60–69 years	75785	5045		2.01 (1.80-2.26)		38 140	1134		2.06 (1.64-2.58)	1		
≥70 years	43 465	3774		1.78 (1.54-2.05)		21 359	936	-	1.80 (1.42-2.27)	1		
		1	2	4			 1	2 4	6			

Women and younger adults (40-59yo) have the highest risk of CHD and Stroke.

Emerging Risk Factors Collaboration. Lancet 2010;375:2215-2222.

Risk of Heart Failure varies by age and sex in Diabetes.

Rosengren et al. Diabetologia 2018. 61: 2300-2309.

	Model 1	Model 2
	NIGGELL	WOUGH 2
ents	HR (95% CI)	HR (95% CI)
34	5.69 (4.38, 7.40)	4.59 (3.50, 6.02)
120	2.06 (1.90, 2.23)	1.74 (1.60, 1.88)
172	1.23 (1.13, 1.33)	1.11 (1.02, 1.21)
98	2.63 (2.20, 3.14)	2.07 (1.73, 2.48)
208	1.71 (1.60, 1.82)	1.44 (1.35, 1.53)
083	1.23 (1.12, 1.35)	1.11 (1.01, 1.22)

Young women have the highest risk of Heart Failure.

We need effective treatments to address all CV risks in Diabetes.

Diabetes

Effective Treatments

Heart Failure

Controlling traditional risk factors reduces CV risk.

Gaede et al. Diabetologia 2016. 59: 2298-2307. Oellgaard et al. Diabetologia 2018. 61: 1724-33.

Large CV Outcomes Trials in Diabetes

Study	SAVOR	EXA	MINE	TECO	S	CARMELI		CAROLINA				
DPP-4- inhibitor	saxagliptin	aloę	gliptin	sitaglipti	n	linagliptin		linagliptin				
Comparator	NEUTLUO	NEU	RAL	NEUTR	AL	NEUTRAL		sulfonylurea				
n	16,500	5,	400	14,000		6,900		6,000				
Results	2013	20	013	2015		2017		2017		2017		2019
Study	EMPA-R	EG	СА	NVAS	DECLARE		AS DEC		VER	TIS CV Study		
SGLT-2 inhibitor	empaglific	ozin	cana	agliflozin dapagli		bagliflozin		ertugliflozin				
Comparator	CV BENE)	CV B	CV BENE		BENEFIT		placebo				
n	7300		4	,300	CN	22,200		8,000				
Results	2015		2	2017		2019		2019				
Study	LEADER	EL	IXA	SUSTAIN	6	EXSCE	Ľ	REWIND				
GLP-1 RA	liraglutide	lixise	natide	semaglut	semaglutide		LR	dulaglutide				
Comparator	CV BENEFIT	NEU ⁻	TRAL	CV BENEFIT		FINEUTRA		NEUTRAL		placebo		
n	16,500	14,	000	6,000	6,000			8,300				
Results	2015	20)15	2016		2017		2019				

Lee YJ, et al. Kidney Int Suppl 2007;106:S27–35; Hummel CS, et al. Am J Physiol Cell Physiol 2011;300:C14–21

Renal effects of SGLT2 inhibition (1)

Zelniker TA, Braunwald E. JACC 2018;72:1845

Renal effects of SGLT2 inhibition (2)

What Are We Missing in the Proximal Renal Tubule?

SGLT-2 Inhibitors for Treatment of T2DM

block reabsorption of filtered glucose in kidneys leads to glycosuria, improved glycemic control

Benefits

- Insulin-independent • action
- Decreased blood Calorie loss – possible weight loss pressure
- Low hypoglycemia
- Complement action of other
 - anti-diabetic agents
- Can be used regardless of diabetes duration

Specific considerations for individuals with existing renal insufficiency, the elderly, and those receiving loop diuretics

* Significance on patient outcomes is unclear at this time

Kim Y et al. Diabetes Metab Syndr Obes. 2012;5:313-327.

SGLT-2 inhibitors

Side effects

- **Recurrent UTI**
- Genital fungal infection
- Worsening of renal function[#]
- Increased hematocrit*
- Increased LDL-C*

The SGLT-2 Inhibitor Studies

ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman, M.D., Chris David Fitchett, M.D., Eric Michaela Mattheus, Di Odd Erik Johansen, M.D., Ph. and Silvio E. Inzucchi, M.D.,

Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes

Christoph Wanner, M.D., Silvio David Fitchett, M.D., Michaela Mattheus, Dipl. Bio Hans J. Woerle, M.D., Uli C. B for the EMPA-REC

- The EMPA-REG and CANVAS trials showed. that the SGLT-2 inhibitors empagliflozin and canagliflozin reduced the risk of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke.^{1,2}
- causes occurred less frequently compared with placebo (CANVAS-R trial).²
 - 1. Zinman B, et al. *N Engl J Med.* 2015;373:2117–2128
 - 2. Neal B, et al. *N Engl J Med.* 2017;377:644-657.
 - 3. Wanner C, et al. N Engl J Med. 2016;375:323-334.

ORIGINAL ARTICLE

ORIGINAL ARTICLE

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

Bruce Neal, M.B., Ch.B., Ph.D., Vlado Perkovic, M.B., B.S., Ph.D., Kenneth W. Mahaffey, M.D., Dick de Zeeuw, M.D., Ph.D., Greg Fulcher, M.D., Ngozi Erondu, M.D., Ph.D., Wayne Shaw, D.S.L., Gordon Law, Ph.D., Mehul Desai, M.D., and David R. Matthews, D.Phil., B.M., B.Ch., for the CANVAS Program Collaborative Group*

Empagliflozin also was associated with slower progression of kidney disease and lower rates of clinically relevant renal events.³ In patients receiving canagliflozin, the composite outcome of sustained 40% reduction in eGFR, need for renal-replacement therapy, or death from renal

HbA1c in EMPA-REG OUTCOME Trial

Placebo	2294 2272	2188 2133 2113	2063	2008	1967	1741	1456	1241	1109	962	705	420	151
Empagliflozin 10 mg	2296 2272	2218 2150 2155	2108	2072	2058	1805	1520	1297	1164	1006	749	488	170
Empagliflozin 25 mg	2296 2280	2212 2152 2150	2115	2080	2044	1842	1540	1327	1190	1043	795	498	195

All patients (including those who discontinued study drug or initiated new therapies) were included in this mixed model repeated measures analysis (intent-to-treat)X-axis: timepoints with reasonable amount of data available for pre-scheduled measurements

Zinman B *et al. N Engl J Med* 2015;373:2117

Week

EMPA-REG OUTCOME Primary outcome: 3-point MACE

Patients with event/analysed Empagliflozin Placebo

3-point MACE	490/4687	282/2333
CV death	172/4687	137/2333
Non-fatal MI	213/4687	121/2333
Non-fatal stroke	150/4687	60/2333

Zinman B et al. N Engl J Med 2015; 373: 2117-28

EMPA-REG OUTCOMES Empagliflozin and CV Outcomes

CI, confidence interval; CV, cardiovascular; HR, hazard ratio

Zinman B, et al. *N Engl J Med.* 2015;373:2217-2128.

CANVAS: MACE with Canagliflozin CV Death, Nonfatal Myocardial Infarction, or Nonfatal Stroke

Neal B, et al. *N Engl J Med.* 2017;377:644-657.

CANVAS and EMPA-REG Outcomes

CV death, nonfatal myocardial infarction, or nonfatal stroke

CV death

Nonfatal myocardial infarction

Nonfatal stroke

Hospitalization for heart failure

CV death or hospitalization for heart failure

All-cause mortality

Progression to macroalbuminuria*

Renal composite*

*CANVAS Program endpoints comparable with EMPA-REG OUTCOME.

Zinman Bet al. N Engl J Med. 2015 ;373(22):2117-2128. Wanner K et al. N Engl J Med. 2016;375(4):323-334.

- 1. Neal B, et al. *N Engl J Med* 2017;377:644-657.
- 2. Wanner C, et al. *N Engl J Med.* 2016;375:323-334.

• CANVAS and CANVAS-R trial data showed increased risk of leg and foot amputations with canagliflozin vs placebo; higher fracture rate also observed with canagliflogizin¹

EMPA-REG OUTCOME and CANVAS: *Renal Outcomes*

RECENT RESULTS OF CREDENCE STUDY PROVIDES UNEQUIVOCAL EVIDENCE OF RENOPROTECTIVE EFFECTS OF CANAGLIFLOZINE

Adjusted Mean eGFR (ml/min/1.73 m²)

76-

72-

70-

68-

Baseline 4 12

28

52

Zinman B et al. N Engl J Med 2016; DOI: 10.1056/NEJMoa1515920

40%↓ eGFR, RRT, Renal Death

Neal B et al. N Engl J Med 2017. DOI: 10.1056/NEJMoa1611925

CVD-REAL How Do Data from Randomized Clinical Trials Compare with Real-world Clinical Practice?

- Investigational multi-country observational study using real-world clinical practice records from six countries
 - United States, United Kingdom, Germany, Sweden, Norway, and Denmark
- Patients were followed from the index date until end of the index treatment (for the on-treatment analysis), migration/leaving the practice/database, last date of data collection, outcome date, or censoring date (range from September 2015 in the US to November 2016 in Sweden)
- The outcome of hospitalization for heart failure was evaluated for all six countries
- The outcome of all-cause death was evaluated for the US, Denmark, Norway, Sweden, and the UK

CVD-REAL: Contribution of SGLT-2 Inhibitors All Countries Combined

Kosiborod M, et al. *Circulation*. 2017;136:249-259.

CVD-REAL: Hospitalization for Heart Failure *Primary Analysis*

Database	N	# of events
US	233,798	298
Norway	25,050	278
Denmark	18,468	167
Sweden	18,378	191
UK	10,462	16
Germany	2900	11 -
Total	309,056	961
		Hazard Ratio

P-value for SGLT-2 inhibitor vs other glucose-lowering drug: <0.001

Data are on treatment, unadjusted. Kosiborod M, et al. *Circulation*. 2017;136:249-259.

CVD-REAL: All-cause Death Primary Analysis

Database	Ν	# of events		HR (95% CI)
US	143,264	250		0.38 (0.29, 0.50)
Norway	25,050	364		0.55 (0.44, 0.68)
Denmark	18,468	323		0.46 (0.37, 0.57)
Sweden	18,378	317		0.47 (0.37, 0.60)
UK	10,462	80		0.73 (0.47, 1.15)
Total	215,622	1334	-	0.49 (0.41, 0.57)
		Hazard Ratio:	Favor SGLT2i ← 0.25 0.50 1.00	→ Favor oGLD 2.00
P-value for SGLT-2 inhibito	r vs other glu	cose-lowering c	Irug: <0.001 Heter	ogeneity <i>P</i> -value=0.089

Data are on treatment, unadjusted.

Kosiborod M, et al. *Circulation*. 2017;136:249-259.

SLGT2 Inhibitors in DM & CV Disease Mechanism for striking decrease in CV mortality?

- - Not anti-atherosclerotic effect?
 - Hemodynamic effects likely : Diuresis
 - Lowers BP
 - CHF effect (including subclinical)? Diureisis plus? – ? Direct Myocardial Effects (Remodelling/Energetics)
 - Weight loss?
 - Arrhythmia/sudden death effect?
 - Other action? Decreased uric acid
- Therapeutic role in treating CVD in diabetes?
 - CHF (HF-pEF or rEF?) EMPEROR Trials
 - Suboptimal BP control
- Therapeutic role in treating CVD w/o diabetes?
 - No hypoglycemia
- Class effect? Very likely at least for DM and CHF

GLYCEMIC CONTROL ALGORITHM

Garber AJ, et al. *Endocr Pract*. 2017;23:207-238. Used for educational purposes only.

Take Away Points

- Renal failure which are increasing in DM pts.
- drugs should improve the CV outcomes in DM.

• Risks of CHD, Stroke, and Heart Failure are very high in patients with diabetes, especially in younger women

 Newer drugs such as SGLT2i are safe and highly effective in reducing most CV complications, specially HFH and

Comprehensive risk factor control & use of these newer

THANK YOU!

