ESTIMACIÓN DE FACTORES DE CORRECCIÓN RESPECTO A LA ALTURA DEL PISO, LA ORIENTACIÓN Y SUS EFECTOS SOBRE EL VALOR DE LOS APARTAMENTOS EN LA CIUDAD DE SANTIAGO DE CHILE

ÍNDICE GENERAL

ÍNDIOE OENEDAL	Pág
ÍNDICE GENERAL	2
ÍNDICE DE TABLAS	3 3 3
ÍNDICE DE FIGURAS	3
ÍNDICE DE GRÁFICAS	
RESUMEN	4
INTRODUCCIÓN	5
CAPÍTULO I: EL PROBLEMA	_
I.1 Planteamiento del Problema	5
I.2 Objetivos	6
I.3 Justificación	6
I.4 Alcances	6
I.5 Limitaciones	6
CAPÍTULO II: MARCO TEÓRICO	_
II.1 Antecedentes	6
II.2 Bases Teóricas	7
II.2.1 Modelos Econométricos	7
II.2.2 Homogeneización por factores	8
CAPÍTULO III: MARCO METODOLÓGICO	_
III.1 Procedimiento General	8
III.2 Descripción de la Zona de Estudio	8 9
III.3 Muestra de datos comparables	9
III.3.1 Obtención de la Muestra	9
III.3.2 Definición del área de Estudio	10
III.3.3 Ubicación Espacial de los Inmuebles	10
III.4 Determinación del Modelo Econométrico de Regresión	
Múltiple	10
III.4.1 Definición de las Variables	10
III.4.2 Determinación del Modelo de Regresión Lineal	
Múltiple vía SPSS	11
III.4.3 Validación del Modelo de Regresión Lineal Múltiple	12
CAPÍTULO IV: ANÁLISIS DE RESULTADOS	
IV.1 Modelo de Regresión Lineal Múltiple	12
IV.2 Modelo de Regresión Exponencial Múltiple	14
IV.3 Determinación del factor global de corrección (Fng)	14
IV.4 Interpretación de los Resultados	15
IV.4.1 Influencia y efectos de las variables en el valor de los	
apartamentos	15
IV.4.2 Ejemplos de aplicación	16
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES	
V.1 Conclusiones	16
V.2 Recomendacioneș	17
REFERENCIAS BIBLIOGRÁFICAS	17
ANEXOS	18

ÍNDICE DE TABLAS

		Pág.
Tabla 1.	Linderos Generales de la comuna de Providencia	7
Tabla 2.	Definición de las variables binarias ordinales	11
Tabla 3.	Resumen del análisis de regresión lineal múltiple	12
Tabla 4.	Ecuación y descripción del factor global de corrección para	
	la comuna de Providencia	15
	<u>ÍNDICE DE FIGURAS</u>	
		Pág.
Figura 1.	Ubicación de la comuna de Providencia	8
Figura 2.	Ubicación georeferencial de los proyectos comparables en	
_	la comuna de Providencia	10
	<u>ÍNDICE DE GRÁFICAS</u>	
		Pág.
Gráfica 1.	Comportamiento del precio respecto a las variables área	Ū
	total y altura de piso	14
Gráfica 2.	Distribución de los datos por tipología y altura de piso	14
Gráfica 3.	Distribución de los datos por orientación	15
Gráfica 4.	Histograma de residuos tipificados y diagrama de	
	dispersión de los residuos tipificados vs. valores calculados tipificados	16

RESUMEN

El presente trabajo está enfocado a la estimación de factores de corrección que complementen el análisis de comparación directa de mercado mediante el proceso de homogeneización; esto se realizó a partir de la creación de un modelo econométrico aditivo representativo del mercado de apartamentos nuevos en la comuna de Providencia en la ciudad de Santiago de Chile, donde se observó el comportamiento de las variables área útil (privada), área balcón (abierta), número de habitaciones, número de baños, la altura del piso (nivel) y la orientación del apartamento. Posteriormente, el modelo se adecuó a uno de tipo multiplicativo, donde se pudo analizar e interpretar de primera mano los efectos que las variables generan sobre los inmuebles siguiendo el concepto ceteris paribus. Finalmente, se obtuvo como resultado final una ecuación general que combina los efectos de las variables consideradas y cuya función es corregir los datos comparables, como paso previo para realizar un análisis univariante de comparación directa de mercado apoyado en la homogeneización por factores, con el fin de disminuir el sesgo en los dictámenes de valoración cuando se utilizan pocos datos.

Palabras clave: Econometría, Homogeneización, Valoración, Estadística.

INTRODUCCIÓN

En los últimos años, explicar y/o predecir el valor de un inmueble ha requerido de herramientas, técnicas y métodos cada vez más precisos que intenten recoger de la forma más completa posible los elementos que aportan valor a dicho inmueble. Frecuentemente nos avocamos a desarrollar y/o detallar las variables tradicionales, sin embargo, una práctica cada vez más frecuente es la inclusión de nuevas variables (cualitativas o cuantitativas) que de forma objetiva y científica se ha determinado que sí generan efectos sobre el valor. En las principales urbes de Latinoamérica existen grandes bases de datos que asocian diversas variables que según cada entorno son importantes en el valor del inmueble, si con estas bases de datos realizamos "experimentos" creando modelos econométricos, podríamos determinar si las variables que por nuestra experiencia entendemos que sí aportan valor, realmente lo hagan. Sin embargo, ya sea por premura, por formatos predeterminados, entre otras razones, el análisis univariante con pocos datos es lo recurrente en el día a día del tasador latinoamericano. Por ello, se pretende aportar una herramienta que recoja la influencia de las variables no tradicionales, se optimicen los dictámenes de valoración y se aumente la calidad del producto final. El trabajo de investigación que se presenta quedó estructurado de la siguiente manera:

Capítulo I: El planteamiento del problema, objetivos, justificación, alcances y limitaciones.

Capítulo II: Los antecedentes y las bases teóricas.

Capítulo III: Descripción de las metodologías aplicadas.

Capítulo IV: Análisis de resultados de lo desarrollado en el capítulo III.

Capítulo V: Conclusiones y recomendaciones.

I. EL PROBLEMA

I.1 PLANTEAMIENTO DEL PROBLEMA

El valor de los bienes inmuebles viene dado por la suma de los componentes parciales que contribuyen a interpretar la creación de dicho valor. Asimismo, las exigencias de los usuarios para adquirir un inmueble son cada vez más específicas, en Chile una de estas características es la orientación, fenómeno que tal vez en otros países del continente no tiene mayor importancia, por cuestiones de temperatura interna del inmueble y/o proyección de la luz solar se prefiere la orientación norte sobre la sur o la este sobre la oeste, traduciéndose en un plus o una contra al momento de ofertar o adquirir dicho inmueble. Ahora bien, a diario los propietarios, arrendatarios, corredores y tasadores reconocen de este fenómeno y aunado a esto, la altura del piso, una particularidad mucho más tradicional donde normalmente se prefieren los inmuebles más altos sobre los más bajos, sin embargo, no se conoce una herramienta que cuantifique este efecto al momento de determinar el valor de un inmueble. La actividad cotidiana de la valoración urbana nos obliga a realizar análisis univariantes con pocos datos (≤10), de forma "rápida y confiable", ésta última pauta queda en entredicho cuando estudiando una sola variable no se tiene en cuenta el efecto de otras variables que no pueden ser introducidas de forma directa, para ello nos apoyamos en los modelos de homogeneización, donde intentamos ajustar o corregir los comparables para hacerlos más semejantes al inmueble tasado con el fin de realizar un mejor análisis de comparación directa y minimizar el error en el dictamen de valoración. Por lo tanto, se plantea con base en la interpretación de un modelo econométrico de tipo multiplicativo la determinación de factores de corrección que combinen los

efectos de la altura del piso, la orientación, áreas asociadas, entre otros, en el cálculo del valor de los apartamentos ubicados en la comuna de Providencia, Chile.

I.2 OBJETIVOS

I.2.1 Objetivo General

 Proponer factores de corrección por altura del piso, orientación, áreas asociadas y analizar los efectos sobre el valor de los apartamentos. Caso: Comuna de Providencia, Santiago de Chile, Chile.

I.2.2 Objetivos Específicos

- Determinar el modelo econométrico para la comuna de Providencia bajo el método de regresión lineal múltiple y exponencial múltiple.
- Estimar los factores de corrección por altura de piso, orientación y áreas asociadas.
- Comprobar los resultados obtenidos.

I.3 JUSTIFICACIÓN

Los formatos preestablecidos de los bancos, la premura de los clientes, entre otras razones, hacen que tradicionalmente utilicemos análisis univariantes con pocos datos en los avalúos, pero cuando los inmuebles tienen más variables que realmente tienen efecto sobre el valor y no se realiza una corrección o ajuste por dichos efectos, incurrimos en graves errores, que se traducen en sobrevalorar o infravalorar un inmueble, siendo esto un detrimento a la hora de una garantía bancaria, disputa judicial, entre otros escenarios. Actualmente, no se tiene una herramienta que ayude a corregir los comparables para realizar un mejor análisis de comparación directa, de allí que esta investigación quiere ser un punto de partida para el desarrollo de factores de corrección que si bien es cierto no son estáticos en el tiempo, ciertamente son fácilmente actualizables. La comuna de Providencia es un sector ideal para evaluar las variables altura de piso, orientación y áreas asociadas, donde si determinamos factores de corrección de estos efectos sobre el inmueble podemos llegar a dictámenes más confiables.

I.4 ALCANCES

El alcance de esta investigación es la determinación de factores de corrección por altura del piso, orientación, áreas asociadas y los efectos sobre el valor de los apartamentos al considerar dichas variables, en la comuna de Providencia, Santiago de Chile, Chile.

I.5 LIMITACIONES

La investigación se realizó con datos comparables que componen una muestra de corte transversal disponibles al mes de junio de 2017 provenientes de las ofertas publicadas en la página web www.portalinmobiliario.com, sobre un polígono definido dentro de los límites de la comuna de Providencia, Santiago de Chile.

II. MARCO TEÓRICO

II.1 ANTECEDENTES

La comuna de Providencia en la ciudad de Santiago de Chile es uno de los sectores de mayor interés residencial y comercial de la Región Metropolitana donde el auge en el desarrollo de proyectos habitacionales ha sido considerable. El Plan Regulador Comunal (Ordenanza) se observa uniforme, donde — por ejemplo — la altura de los edificios residenciales no sobrepasa los 12 pisos (salvo zonas excepcionales). Asimismo, dicha comuna tiene un eje comercial importante hacia el límite norte sobre la Avenida Providencia y Nueva

Providencia, por donde pasa la Línea 1 del Metro de Santiago, y por sus límites este y oeste las Líneas 5 y 4, respectivamente, así como su interrelación con el sistema de transporte público de buses, por lo que su conectividad desde y hacia otras comunas es buena. En cuanto a las tipologías existentes, se observa en el norte de la comuna gran desarrollo de edificios de oficinas y habitacionales, de allí hacia el sur se observa una combinación de edificios de alta, mediana y poca antigüedad junto con viviendas de uso habitacional y comercial. Dentro del método de comparación de mercado, en la homogeneización tal como compilan Aznar, González, Guijarro y López (2012), existen tantos factores de corrección como variables que impactan en el valor de un inmueble (la edad, estado de conservación, vecindario, calidad, frente-fondo, vista, topografía, entre muchos otros), factores desarrollados por diversos autores a lo largo del continente que han servido de apoyo para disminuir la incertidumbre y los errores de los dictámenes de valoración ante variables o fenómenos que no pueden ser introducidas de forma directa por el tasador en los análisis univariante.

II.2 BASES TEÓRICAS

II.2.1 Modelos Econométricos

Gujarati (2010), describe en su texto la econometría como el análisis cuantitativo de fenómenos económicos reales, basados en el desarrollo simultáneo de la teoría y la observación, relacionados mediante métodos apropiados de inferencia. En función de lo anterior, en su interpretación del análisis de los modelos econométricos, específicamente de los modelos de regresión, tratan del estudio de la relación de una variable dependiente respecto a unas variables independientes o explicativas, con el objeto de estimar y/o predecir un valor promedio de la primera en términos de los valores conocidos de las últimas. La función de regresión lineal general se puede escribir de la siguiente forma:

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \dots + \beta_n * X_n$$

De este modelo de tipo aditivo, Guijarro (2013) explica que: "Y es la variable dependiente (el valor de los inmuebles en nuestro caso), βo es la constante o intercepto, X_i es la i-ésima variable explicativa, y β_i es el coeficiente asociado a la i-ésima variable explicativa. El coeficiente β₀ se interpreta como el valor de la variable dependiente cuando todas las variables independientes son igual a cero. El coeficiente β; se interpreta como el incremento experimentado por la variable Y cuando la variable Xi se incrementa en una unidad, manteniendo constantes el resto de variables, siguiendo el principio ceteris paribus. Asimismo, los modelos de regresión lineal múltiple (de dos o más variables) tienen diversos medios de verificación respecto a su capacidad explicativa y predictiva, por ejemplo, el coeficiente r² ajustado y la validación cruzada. El estudio de otros factores complementarios tales como el p-value o nivel de significancia de las variables, la multicolinealidad, la heterocedasticidad y la eliminación de outliers por residuos estándares o por distancia mahalanobis, deben ser considerados durante el análisis de los modelos de regresión. Estos conceptos son explicados suficientemente por el autor citado en su texto.

Dentro de los modelos econométricos existen los de tipo multiplicativo, donde en ellos se puede ver de forma directa la relación porcentual en la que aumenta o disminuye una variable en función del valor que tome, un ejemplo de este tipo de modelos es la regresión exponencial múltiple, cuya ecuación general se escribe como sigue:

$$Y = \beta_0 * \beta_1^{X_1} * \beta_2^{X_2} * ... * \beta_n^{X_n}$$

Donde, Y es la variable dependiente, β_0 es la constante, β_1 ... β_n los parámetros de la ecuación de regresión y X_i la i-ésima variable explicativa.

II.2.2 Homogeneización por factores

Las técnicas de homogeneización o corrección vienen dadas por realizar ajustes o correcciones para hacer comparables dos o más bienes que de acuerdo con sus particularidades son parecidos, pero no exactamente iguales. Aznar, González, Guijarro y López (2012), definen como factor de corrección a una cifra numérica que establece la diferencia entre dos bienes del mismo género, con base en sus características para hacerlos comparables entre sí. Este factor puede ser mayor o menor que uno, dependiendo de la condición del dato comparable respecto al bien tasado.

Camacaro (2016) expone que, para corregir un dato comparable, el valor original de dicho dato debe multiplicarse por el correspondiente factor de homogeneización referido al inmueble a valorar. Asimismo, una forma de cálculo de factor de homogeneización a partir de un modelo econométrico multiplicativo viene dada por la división de los resultados provenientes de la sustitución en el modelo econométrico de los valores que componen el inmueble comparable sobre el inmueble que se quiere valorar. El desarrollo matemático se encuentra ampliamente explicado por el autor citado en su respectivo texto.

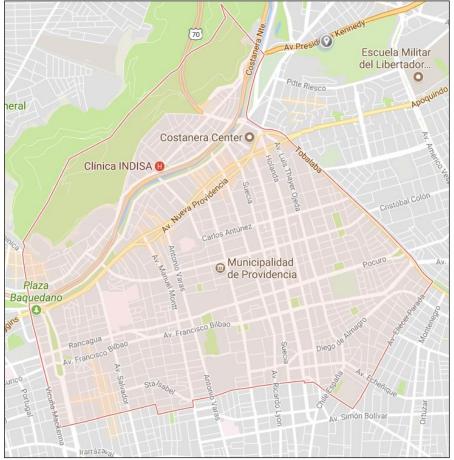
Una vez corregida la muestra, se procede a realizar un análisis estadístico para determinar el valor probable del bien. Existe amplia bibliografía al respecto para el tratamiento de una muestra determinada, siendo datos agrupados o no y utilizando los estimadores clásicos de tendencia central o los no paramétricos.

III. MARCO METODOLÓGICO

III.1 PROCEDIMIENTO GENERAL

- Compilación, saneamiento, organización y procesamiento de la información referente a los datos comparables.
- Definición y tratamiento de las variables.
- Desarrollar y validar el modelo de regresión lineal múltiple en el programa SPSS.
- Desarrollar el modelo de regresión exponencial múltiple en Excel.
- Comprobar los resultados obtenidos a través de ejemplos reales.

III.2 DESCRIPCIÓN DE LA ZONA DE ESTUDIO


La zona de estudio se encuentra ubicada en la ciudad de Santiago de Chile, Región Metropolitana. La historia contemporánea de la comuna de Providencia inicia en 1910 con la construcción de las principales vías para la época y con la creación de fundos. El vertiginoso crecimiento de la ciudad de Santiago de Chile la ha transformado, desde mediados del siglo XX, en una comuna residencial, y más recientemente, centro de una dinámica actividad comercial y financiera que se articula en torno a las avenidas Providencia y Nueva Providencia. Durante las décadas de los años 1990, 2000 y 2010 se desarrolló un gran crecimiento comercial en torno al sector norte de la comuna y en el barrio Sanhattan, donde se ubica el Costanera Center y el World Trade

Center Santiago, principales atractivos de la comuna. Los límites generales de la comuna de Providencia son los siguientes:

Tabla 1. Linderos Generales de la comuna de Providencia. Fuente: Propia

NORTE:	Línea cumbre del Cerro San Cristóbal
SUR:	Calles E. Parada, Pedro Lautaro Ferrer, Diagonal Oriente, M. Montt, entre otras
ESTE:	Río Mapocho
OESTE:	Av. Vicuña Mackenna

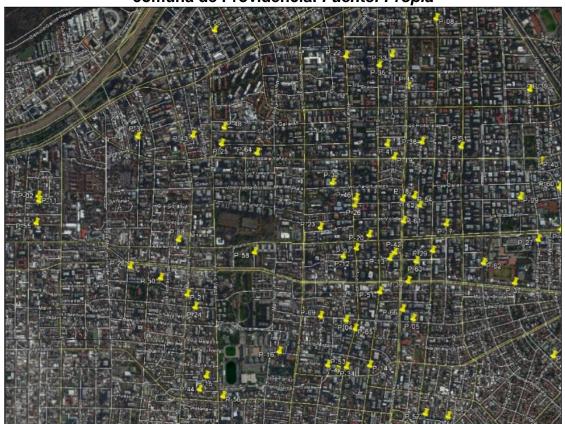
Figura 1. Ubicación de la comuna de Providencia. Fuente: Propia

III.3 MUESTRA DE DATOS COMPARABLES III.3.1 Obtención de la muestra

La fuente de donde se obtuvo la muestra son las publicaciones de ofertas de inmuebles en toda la comuna. Esta información fue extraída del portal web www.portalinmobiliario.com. La muestra es de corte transversal referida a consulta realizada en mes de junio de 2017. El criterio general de búsqueda establecido fue su localización, es decir, que los datos se encontraran dentro de los límites de la comuna de Providencia.

Los datos comparables registrados para el período considerado, está compuesta por mil trescientos treinta y cuatro (1334) referenciales o datos comparables con la siguiente información: índice / código del proyecto PI, Nº de habitaciones, Nº de baños, identificación del apartamento, altura del piso,

orientación, área útil (m²), área de balcón (m²), área total (m²), precio de venta (UF). (Ver Anexo Nº 1).


III.3.2 Definición del área de estudio

Para considerar un dato como comparable, éste debe ubicarse en un área con pocas diferencias en cuanto a equipamiento urbano, seguridad, nivel sociocultural, entre otros. En cuanto a la comuna de Providencia, su tipología es similar en prácticamente toda su extensión, observándose diferencias puntuales en la zona norte por su marcada de tendencia comercial combinada con el entorno residencial.

III.3.3 Ubicación georeferencial de los inmuebles

Una vez definida la muestra, se ubicaron los edificios a los que pertenecen, sobre un plano general de la comuna. Para ello, se utilizó como herramienta, la plataforma de Google Earth. Finalmente, cada proyecto quedó ubicado geográficamente obteniéndose las coordenadas UTM de cada uno de ellos (Ver Anexo Nº 2).

Figura 2. Ubicación georeferencial de los proyectos comparables en la comuna de Providencia. *Fuente: Propia*

III.4 DETERMINACIÓN DEL MODELO ECONOMÉTRICO DE REGRESIÓN MÚLTIPLE.

III.4.1 Definición de las Variables

Las variables que forman parte del análisis de regresión múltiple se componen de dos tipos: las dependientes y las independientes. De acuerdo con lo anterior, las variables fueron definidas como sigue: **Dependiente:** Valor de los Apartamentos

Independientes: #Habitaciones, #Baños, Área Útil (interior / espacio

cerrado) - Área de Terraza (balcón / espacio abierto) - Altura del piso - Orientación - Latitud (UTM) - Longitud

(UTM)

Asimismo, las variables cuantitativas o también llamadas de tipo numéricas a introducir en el modelo serán: #Habitaciones, #Baños, Área Útil, Área de Terraza y Altura de piso, mientras que en el caso de la Orientación al ser de naturaleza cualitativa requerirá una transformación adicional a dicotómica para poder introducir dicha cualidad al modelo. Guijarro (2013) describe ampliamente estos procedimientos en su texto.

En función de lo anterior, las variables #Habitaciones, #Baños y Orientación fueron transformadas a "variables ficticias" según el principio G-1. Entonces, si una variable puede tomar 4 valores o niveles ordinales; se dice que posteriormente por cada variable ordinal con n niveles diferentes, se deben definir o construir n - 1 variables binarias (Guijarro 2013, p.80), por lo tanto, para el caso del Nº de Habitaciones se deben crear tres (3) variables binarias, las variables a crear pueden verse en la Tabla Nº 2.

Tabla 2. Definición de las Variables Binarias Ordinales. Fuente: Propia

Variable	Toma valores iguales a:	Número	Variables binarias
ordinal:		de niveles:	creadas:
#Habitaciones	1 , 2, 3, 4	4	Hab2, Hab3, Hab4
#Baños	1 , 2, 3	3	Baños2, Baños3
Orientaciones	N, S, E, O, NE, SE, NO,	13	N, S, E, O, NE, SE,
	SO, NEO, SEO, NSE,		NO, SO, NEO, SEO,
	NS, NSO		NSE, NS

Por ejemplo, si un comparable tiene un valor de Nº de Habitaciones igual a tres (3), se dice que Hab2 = 0, Hab3 = 1 y Hab4 = 0. Las variables destacadas en "negrita", se les conoce como variables de referencia o variables base, con el cual se compararán el resto de variables binarias.

En Chile, las orientaciones Este y Oeste se le conocen como Oriente y Poniente, respectivamente; por lo que originalmente se introdujeron al software tal cual la fuente de origen, sin embargo, fueron adaptadas a los términos comunes del resto de países.

III.4.2 Determinación del Modelo de Regresión Lineal Múltiple vía SPSS

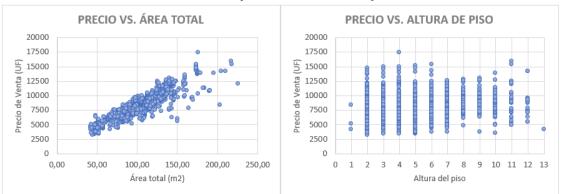
El procedimiento para determinar el modelo de regresión lineal múltiple a través de la utilización del software estadístico SPSS, es el siguiente:

- Se Ingresan los datos con sus valores tal cual fueron registrados en el Data Editor en el SPSS.
- Verificar si existen variables que necesiten ser transformadas.
- El apartado para el análisis de regresión en el SPSS se encuentra en el menú *Analyze*, posteriormente se ingresa a la opción *Regression* y una vez allí, se selecciona la opción *Linear*.
- Al ejecutar la opción *Linear*, se desprende un cuadro donde se debe seleccionar la variable dependiente y las correspondientes variables independientes; y posteriormente, se selecciona la opción *Enter*.
- Finalmente, el software muestra los coeficientes que acompañan a cada variable para generar la ecuación final. Además, de otros datos de interés tales como los pesos de las variables sin normalizar, el nivel de significancia y el factor

de inflado de la varianza, éste último, como indicador alternativo para identificar la multicolinealidad entre las variables independientes del modelo.

III.4.3 Validación del Modelo de Regresión Lineal Múltiple

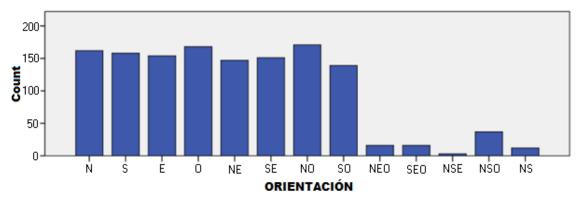
La validación del modelo pasa por realizar los siguientes pasos:


- Verificación de multicolinealidad entre las variables independientes vía matriz de correlación.
- Identificación y exclusión del análisis de los datos atípicos (outliers).
- Verificación del nivel de significancia del modelo y de las variables que forman parte del análisis.
- Comprobación si hay presencia de heterocedasticidad.

IV. ANÁLISIS DE RESULTADOS

IV.1 MODELO DE REGRESIÓN LINEAL MÚLTIPLE

La muestra utilizada para construir el modelo de regresión de la comuna está compuesta por 1334 datos en total. A continuación, se observa el comportamiento de las variables independientes de forma particular respecto a la variable dependiente y su distribución por espacios interiores:


Gráfica 1. Comportamiento del precio respecto a las variables área total y altura de piso. Fuente: Propia

Gráfica 2. Distribución de los datos por tipología y altura de piso. Fuente: Propia

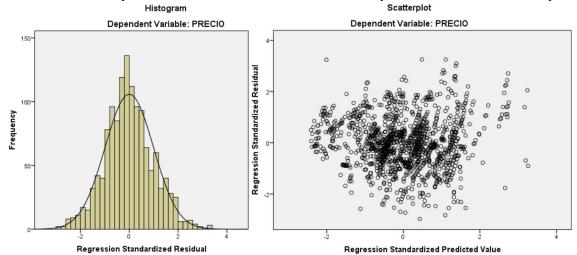
Gráfica 3. Distribución de los datos por orientación. Fuente: Propia

El modelo de regresión de mejor ajuste será el que cumpla con las condiciones que determinan su mejor capacidad explicativa r², outliers, VIF, entre otros.

Tabla 3. Resumen del análisis de regresión lineal múltiple. Fuente: Propia

MRLM-PROV (r^2 ajustado = 0,9160)

Valor apto. = -3287010,994 + 890,180xNORTE + 594,231xSUR + 779,431xESTE + 679,799xOESTE + 1008,000xNorESTE + 934,326xSurESTE + 907,250xNorOESTE + 702,281xSurOESTE + 751,518xNorEsteOeste + 516,033xSurEsteOeste + 1499,811xNorteSur + 50,357xPiso + 357,732xHAB2 + 550,446xHAB3 + 755,233xHAB4 + 68,844xÁREAutil + 37,959xÁREAbalcón + 0,521xLAT + 0,10xLONG


Outliers

Los outliers de este modelo se identificaron vía residuos estándares (ZRE ≥ 3) y vía distancia mahalanobis (MAH > 300), de un total de 1334 datos se encontraron 17 datos atípicos que representan el 1,27% de la muestra (cumpliéndose la condición de que la cantidad recomendada de outliers identificados debe ser menor al 5% del total de la muestra)

Observaciones

- El modelo es significativo (F >> Fo).
- Todas las variables son significativas al cumplirse la condición Sig. < 0,05; excepto la variable Longitud, sin embargo, no se retiró del análisis.
- La variable de orientación NSE fue retirada por falta de información (datos que contenían dicha variable se encontraron dentro de los datos atípicos).
- La variable #Baños fue retirada por presentar multicolinealidad respecto al Área útil.
- No se observa alguna tendencia clara que indique la presencia de heterocedasticidad (Ver Gráfica Nº4).

Gráfica 4. Histograma de residuos tipificados y Diagrama de dispersión de los residuos tipificados vs. valores calculados tipificados. Fuente: Propia

IV.2 MODELO DE REGRESIÓN EXPONENCIAL MÚLTIPLE

Primeramente, tomando la muestra depurada del análisis anterior, se procede a generar el modelo de regresión exponencial múltiple vía Excel, como sigue:

$$\begin{aligned} \textit{Valor apto.} &= 1,0289x10^{-193}*1,1092^N*1,0735^S*1,0934^E \\ &* 1,0795^O*1,1435^{NE}*1,1313^{SE}*1,1284^{NO}*1,0919^{SO} \\ &* 1,0937^{NEO}*1,0808^{SEO}*1,1887^{NS}*1,0068^{PISO} \\ &* 1,1167^{HAB2}*1,1115^{HAB3}*1,0884^{HAB4}*1,0090^{\acute{A}REAutil} \\ &* 1,0043^{\acute{A}REAbalc\acute{o}n}*1,0000716691^{LAT.} \\ &* 1,0000023540^{LONG.} \end{aligned}$$

Asimismo, el r² ajustado de la regresión exponencial obtenida es igual a 0.9234; básicamente sin variación alguna respecto a la regresión lineal múltiple.

IV.3 DETERMINACIÓN DEL FACTOR GLOBAL DE CORRECCIÓN (Fng)

El modelo anterior fue desarrollado para determinar de forma directa del valor de un apartamento en unidades monetarias globales, sin embargo, la práctica común es utilizar los datos comparables expresados en términos unitarios, específicamente el precio unitario útil, calculado de la siguiente forma:

$$P.U.\acute{\mathbf{u}}til = \frac{PV_C}{AU_C + AB_C * 0.50}$$

Donde:

P.U.útil: Precio unitario útil en UF/ m²

PVc : Precio de venta del dato comparable en UF AUc : Área privada del apartamento comparable en m²

AB_C: Área balcón / abierta del apartamento comparable en m²

Ahora bien, la ecuación a utilizar para calcular el factor de corrección a aplicarse a los datos comparable que contiene la combinación de todos los efectos que generan las variables sobre el valor de los apartamentos, es la siguiente:

Tabla 4. Ecuación y descripción del Factor Global de corrección para la comuna de Providencia (Fngprov). Fuente: Propia

$$Fng_{PROV} = \frac{\frac{o_{T}*1,0068^{PISO}_{T*H_{T}*1,0090^{AU}_{T*1,0043^{AB}_{T*XY_{T}}}}{AU_{T}+AB_{T}*.50}}{\frac{o_{C}*1,0068^{PISO}_{C*H_{C}*1,0090^{AU}_{C*1,0043^{AB}_{C*XY_{C}}}}{AU_{C}+AB_{C}*.50}}$$

Fngprov	Factor global de corrección para la comuna de Providencia										
От	$=1,1092^{N_T}*1,0735^{S_T}*1,0934^{E_T}*1,0795^{O_T}*1,1435^{NE_T}*$										
	$1,1313^{SE_T}*1,1284^{NO_T}*1,0919^{SO_T}*1,0937^{NEO_T}*1,0808^{SEO_T}*$										
	$1,1887^{NS_T}$										
	Término referido a la orientación del apartamento a valorar, donde										
	se debe sustituir en el exponente la variable binaria correspondiente.										
	Ejemplo: si la orientación es Norte, N=1 y el resto igual a cero.										
Pisot	Altura del piso (nivel) del apartamento a valorar. Ejemplo: 4, 7, 10.										
Hτ	$= 1,1167^{HAB2_T} * 1,1115^{HAB3_T} * 1,0884^{HAB4_T}$										
	Término referido al número de habitaciones del apartamento a										
	valorar, donde se debe sustituir en el exponente la variable binaria										
	correspondiente. Ejemplo: si el apartamento tiene 2 habitaciones,										
	HAB2=1 y el resto igual a cero.										
ΑUτ	Área útil del apartamento a valorar.										
ABT	Área de balcón del apartamento a valorar.										
XY_T	$=1,0000716691^{LAT_{\cdot T}}*1,0000023540^{LONG_{\cdot T}}$										
	Término referido a las coordenadas UTM del apartamento a valorar,										
	donde se debe sustituir en el exponente las coordenadas										
	correspondientes. =1, $1092^{N_C} * 1,0735^{S_C} * 1,0934^{E_C} * 1,0795^{O_C} * 1,1435^{NE_C} *$										
Oc	$=1,1092^{NC}*1,0735^{SC}*1,0934^{SC}*1,0795^{SC}*1,1435^{NEC}*1,1313^{SE_C}*1,1284^{NO_C}*1,0919^{SO_C}*1,0937^{NEO_C}*1,0808^{SEO_C}*$										
	, , , , , , , , , , , , , , , , , , , ,										
	1, 1887 ^{NS} c										
Diag	Término referido a la orientación del apartamento comparable.										
Pisoc	Altura del piso (nivel) del apartamento comparable. $= 1,1167^{HAB2}c * 1,1115^{HAB3}c * 1,0884^{HAB4}c$										
Hc											
	Término referido al número de habitaciones del apartamento comparable.										
AUc	Área útil del apartamento comparable.										
ABc	Área de balcón del apartamento comparable.										
XYc	=1,0000716691 $^{LAT.c}$ * 1,0000023540 $^{LONG.c}$										
AIC	Término referido a las coordenadas UTM del apartamento										
	comparable.										
	comparable.										

IV.4 INTERPRETACIÓN DE LOS RESULTADOS

IV.4.1 <u>Influencia y efectos de las variables en el valor de los apartamentos</u> Del modelo expuesto en el apartado IV.2, podemos identificar e interpretar

los siguientes comportamientos siguiendo el concepto ceteris paribus:

• Si el apartamento tiene una orientación NorteSur (NS), el valor del apartamento aumenta en promedio en toda la comuna en un 18,87% respecto a la orientación de referencia NorteSurOeste (NSO),

- observándose la mayor diferencia, por el contrario, la menor diferencia resulta cuando el apartamento tiene una orientación Sur (S), donde el valor del apartamento aumenta sólo en 7,35%.
- Por cada piso que aumenta el apartamento, el valor del apartamento aumenta en 0,68%; es decir, un apartamento en el piso 12 vale 6,80% más que un apartamento que esté en el piso 2.
- Tomando como referencia un apartamento de 1 dormitorio, un apartamento de 2 habitaciones vale 11,67% más, uno de 3 habitaciones vale 11,15% más y uno de 4 habitaciones vale 8,84% más, respectivamente.
- La relación de crecimiento de valor entre el área de balcón y el área útil es de 0,477 en promedio en toda la comuna de Providencia, lo que confirma la práctica común de valorar en 50% el área abierta respecto al área privada.

IV.4.2 Ejemplos de aplicación

Para validar la ecuación de factor global de corrección (Fng), se realizaron 6 ejemplos reales de valoración con menos de 10 datos en puntos al azar de la comuna de Providencia (Ver Anexo Nº 3). Para ello, se utiliza la plantilla anexa donde se ingresan los datos de los inmuebles comparables y del inmueble a valorar, en ella se realizan los cálculos de forma automática con el correspondiente análisis estadístico de la muestra presentada. Asimismo, en la plantilla se presentan dos valores probables a considerar: el primero, la media aritmética luego de la eliminación de datos atípicos (outliers) vía criterio de Chauvenet y el segundo; la mediana, estimador de posición al igual que la media pero que no se ve afectada o alterada por valores atípicos y que no sigue una distribución normal, en ambos casos los resultados son similares, sin embargo, el autor se decanta por la segunda opción puesto que no comparte la práctica de eliminar datos en una muestra con pocos datos v que no siempre las muestras con pocos datos siguen una distribución normal. Cabe destacar que la tendencia en dichos ejemplos es que el valor obtenido luego de la homogeneización es más confiable y cercano al que se obtendría si se aplicara el modelo econométrico

V. CONCLUSIONES Y RECOMENDACIONES

V.1 CONCLUSIONES

La exigencia por conocer y analizar el comportamiento de las cualidades propias o externas al inmueble se hacen cada vez mayor, dependiendo del país, la provincia o el sector de la ciudad, las variables que son importantes en una, tal vez no lo sean en otra, de ahí la gran dinámica del mercado. El modelo econométrico nos ha permitido ver la dinámica general de una comuna (municipio) de la ciudad de Santiago de Chile, donde tomando como premisa las variables altura de piso, su orientación, áreas asociadas, entre otras variables, se pudo observar que sí indicen sobre el valor de los inmuebles y que dentro de las alternativas o escenarios que tomen dichas variables serán determinantes para que aumenten o disminuyan el valor de una forma importante. Con la finalidad de mejorar los dictámenes de valoración y de crear inquietud entre los tasadores deben considerarse los efectos de estas variables combinadas, puesto que en el día a día los análisis univariantes respecto al área total del inmueble no son suficientes para recoger lo que el resto aporta al valor. Como resultado de este trabajo, se generaron dos modelos econométricos: uno aditivo

y más simple (regresión lineal múltiple) que explican el comportamiento del mercado en la comuna de Providencia, pudiendo utilizarse para valorar un apartamento cualquiera dentro de los límites descrito y así tener un valor de referencia respecto a toda la comuna, y un segundo modelo (regresión exponencial múltiple) que nos ayudó a interpretar los efectos que cada una de las variables generan sobre los inmuebles y finalmente la ecuación que genera un factor global de corrección para un mejor análisis de comparación directa de mercado. La metodología aplicada es similar para cualquier otra comuna de Santiago de Chile o del país, donde haya suficientes datos, sin embargo, cabe destacar que los modelos y ecuaciones generados en el presente trabajo son únicamente aplicables en la comuna de Providencia en la ciudad de Santiago de Chile.

V.2 RECOMENDACIONES

En función de los modelos y las ecuaciones desarrolladas, se recomienda para futuros trabajos de investigación, estudiar estos mismos comportamientos en otras comunas de la ciudad de Santiago de Chile y realizar las correspondientes comparaciones. Además, un seguimiento al comportamiento de los factores de corrección generados en el presente trabajo, que aunque se entiende no son estáticos en el tiempo sí son actualizables de una forma sencilla bajo el mismo esquema mostrado.

REFERENCIAS BIBLIOGRÁFICAS

- Camacaro M. (2016). El método contributivo en los avalúos inmobiliarios.
 Miguel Camacaro Ediciones, Venezuela.
- Dantas R. (2002). *Ingeniería de tasaciones: Una introducción a la metodología científica*. Miguel Camacaro Ediciones, Venezuela.
- Guijarro F., (2013). Estadística aplicada a la valoración (1^a ed.).
 Universitat Politècnica de València, España.
- Gujarati D. y Porter D. (2010). *Econometría (5ª ed.)*. McGraw Hill Interamericana, S.A., México.

REFERENCIAS ELECTRÓNICAS

- http://www-01.ibm.com/software/analytics/spss/
- http://www.portalinmobiliario.com/
- https://es.wikipedia.org

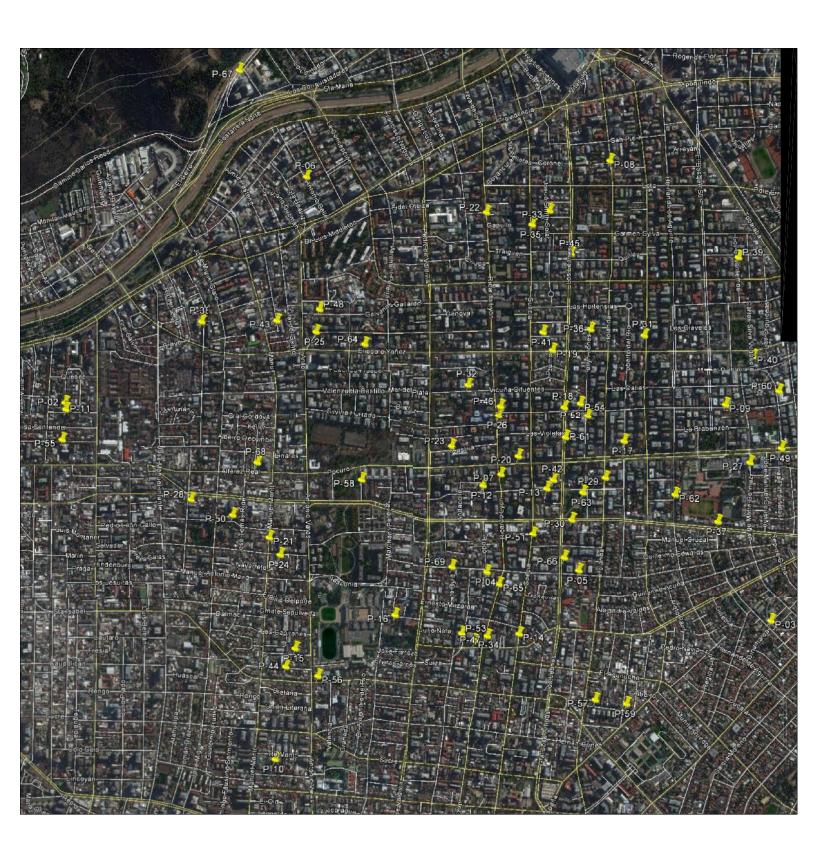
ANEXOS

ANEXO 1 BASE DE DATOS (EXTRACTO 236 DE 1334)

PROY.	PI	NOMBRE DEL PROYECTO	LINK
1	7232	SANTA VICTORIA 0245	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7232-santa-victoria-0245-nva
2	7231	TERRANOVA 295	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7231-terranova-295-nva
3	7143	ECO-BOUTIQUE PLAZA DINAMARCA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7143-edificio-ecoboutique-plaza-dinamarca-nva
4	7128	TERRA ATACAMA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7128-edificio-terra-atacama-nva
5	7125	BUSTOS	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7125-edificio-bustos-nva
6	7077	ВОТН	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7077-both-departamentos-nva
7	7026	LYON 1633	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7026-lyon-1633-nva
8	7004	HOLANDA 320	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7004-edificio-holanda-320-nva
9	6992	EL VERGEL 2825	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6992-edificio-el-vergel-2825-nva
10	6981	TENIENTE MONTT 1902	http://www.portalinmobiliario.com/venta/departamento/nunoa-metropolitana/6981-edificio-teniente-montt-1902-nva
11	6969	BERNARDA MORÍN	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6969-edificio-bernarda-morin-nva
12	6964	CALIFORNIA 2151	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6964-edificio-california-2151-nva
13	6958	CALIFORNIA 2336	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6958-edificio-california-2336-nva
14	6901	SUECIA 2455	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6901-edificio-suecia-2455-nva
15	6873	CENTINELA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6873-edificio-centinela-nva
16	6865	REFLEX	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6865-edificio-reflex-nva
17	6841	POCURO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6841-edificio-pocuro-nva
18	6794	EL VERGEL 2405	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6794-edificio-el-vergel-2405-nva
19	6770	PANORAMA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6770-edificio-panorama-nva
20	6678	POCURO VIEW	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6678-pocuro-view-nva
21	6602	MANUEL MONTT 1453	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6602-manuel-montt-1453-nva
22	6587	LYON 394	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6587-lyon-394-nva
23	6545	EL TIROL	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6545-edificio-el-tirol-nva
24	6526	CIRCUITO CLARO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6526-circuito-claro-nva
25	6512	ECO FUSIÓN	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6512-eco-fusion-nva
26	6503	LAS VIOLETAS I Y II	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6503-ricardo-lyon-edifico-las-violetas-i-y-ii-nva
27	6499	PARQUE POCURO JORGE MATTE 1827	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6499-parque-pocuro-jorge-matte-1827-nva
28	6463	ROMÁN DÍAZ 1155	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6463-roman-diaz-1155-nva
29	6461	HL23	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6461-hl23-nva
30	6456	DESIGN PRO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6456-design-pro-nva
31	6448	ESPACIO LUIS THAYER OJEDA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6448-espacio-luis-thayer-ojeda-nva
32	6445	MAR DEL PLATA EDIFICIO BOUTIQUE	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6445-mar-del-plata-edificio-boutique-nva
33	6436	NERCASSEAU 2300	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6436-edificio-nercasseau-2300-nva
34	6431	DIEGO DE ALMAGRO 2163	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6431-diego-de-almagro-2163-nva
35	6400	STOLT	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6400-edificio-stolt-nva
36	6388	LLEWELLYN JONES 1080	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6388-edificio-llewellyn-jones-1080-nva
37	6385	EL BOSQUE 1220	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6385-edificio-el-bosque-1220-nva
38	6374	PARQUE ROMÁN DÍAZ	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6374-parque-roman-diaz-nva
39	6365	LOS CRISANTEMOS	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6365-los-crisantemos-nva
40	6363	ESENCIA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6363-esencia-nva
41	6348	HENCKEL	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6348-henckel-nva
42	6313	CALIFORNIA 2362	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6313-edificio-california-2362-nva
43	6234	BLOOM	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6234-edificio-bloom-nva
44	6154	PEDRO LIRA 1404	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6154-edificio-pedro-lira-1404-nva

PROY.	PI	NOMBRE DEL PROYECTO	LINK
45	6153	METRO LOS LEONES	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6153-edificio-metro-los-leones-nva
46	6139	LYON	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6139-ricardo-lyon-edifico-lyon-nva
47	6135	LYON 2440	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6135-edificio-lyon-2440-nva
48	6077	VARAS GALLARDO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6077-edificio-varas-gallardo-nva
49	6041	DON SALVADOR	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6041-edificio-don-salvador-nva
50	6040	BILBAO BLANCO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6040-bilbao-blanco-nva
51	6035	SUECIA 23	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/6035-suecia23-nva
52	5953	EL VERGEL LLEWELLYN JONES	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5953-edificio-el-vergel-llewellyn-jones-nva
53	5831	WA78	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5831-wa78-nva
54	5829	ESPACIO VERGEL	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5829-espacio-vergel-nva
55	5797	PORTA ITALIA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5797-porta-italia-nva
56	5735	ETNIA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5735-etnia-nva
57	5724	FERRER 24	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5724-ferrer-24-nva
58	5668	PARQUE POCURO	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5668-edificio-parque-pocuro-nva
59	5613	LF35	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5613-lf35-nva
60	5589	REPÚBLICA DE CUBA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5589-republica-de-cuba-nva
61	5516	ESPACIO 1	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5516-espacio-1-nva
62	5484	HDA24	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5484-hda24-nva
63	5420	PLAZA LA ALCALDESA	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5420-edificio-plaza-la-alcaldesa-nva
64	5380	EY 32	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5380-edificio-ey-32-nva
65	5342	LYON 2121	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5342-lyon-2121-nva
66	5338	TERRANOVA LOS LEONES	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/5338-condominio-terranova-los-leones-nva
67	4981	NOW	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/4981-edificio-now-nva
68	4258	PRESIDENTE MONTT	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/4258-edificio-presidente-montt-nva
69	7295	DISTRITO BUSTOS	http://www.portalinmobiliario.com/venta/departamento/providencia-metropolitana/7295-distrito-bustos-nva

#	COD.	#HAB.	#BAÑOS	PISO	IDENTIF.	ORIENT.	ÁREA ÚTIL (m2)	ÁREA TERRAZA	ÁREA TOTAL	PRECIO DE VENTA
1	1.01	1	1	2	203	N	41.40	(m2) 5.37	(m2) 46.77	(UF) 3330
2	1.01	1	1	2	203	N N	42.21	5.37	47.58	3390
3	1.02	1	1	2	208	0	39.69	5.34	45.03	3350
4	1.04	1	1	2	210	S	42.70	9.62	52.32	3420
5	1.05	1	1	3	303	N	42.10	2.86	44.96	3510
6	1.06	1	1	3	304	N	42.95	2.86	45.81	3580
7	1.07	1	1	3	306	0	39.69	5.34	45.03	3570
8	1.08	1	1	3	308	S	42.70	9.62	52.32	3640
9	1.09	1	1	4	403	N	41.40	5.37	46.77	3740
10	1.10	1	1	4	406	N	42.21	5.37	47.58	3810
11	1.11	1	1	4	408	0	39.69	5.34	45.03	3770
12	1.12	1	1	4	410	S	42.70	9.62	52.32	3840
13	1.13	1	1	5	503	N	42.10	2.86	44.96	3880
14	1.14	1	1	5	504	N	42.95	2.86	45.81	3960
15	1.15	1	1	5	506	0	39.69	5.34	45.03	3960
16	1.16	1	1	5	508	S	42.70	9.62	52.32	4040
17	1.17	1	2	2	207	N	55.22	2.40	57.62	4260
18	1.18	1	2	3	305	N	55.22	2.40	57.62	4540
19	1.19	1	2	4	407	N	55.22	2.40	57.62	4790
20	1.20	1	2	5	505	N	55.22	2.40	57.62	5030
21	1.21	2	2	2	201	S	69.22	8.28	77.50	5160
22	1.22	2	2	2	202	N	66.15	4.55	70.70	5050
23	1.23 1.24	2	2 2	2	209 211	S S	75.51 76.31	15.28 15.28	90.79 91.59	5850 5910
25	1.24	2	2	3	301	S	69.22	8.28	77.50	5500
26	1.26	2	2	3	301	N N	66.77	2.44	69.21	5360
27	1.27	2	2	3	307	S	75.51	15.28	90.79	6240
28	1.28	2	2	3	309	S	76.31	15.28	91.59	6300
29	1.29	2	2	4	401	S	69.22	8.28	77.50	5800
30	1.30	2	2	4	402	N	66.15	4.55	70.70	5680
31	1.31	2	2	4	409	S	75.51	15.28	90.79	6570
32	1.32	2	2	4	411	S	76.31	15.28	91.59	6640
33	1.33	2	2	5	501	S	69.22	8.28	77.50	6090
34	1.34	2	2	5	502	N	66.77	2.44	69.21	5930
35	1.35	2	2	5	507	S	75.51	15.28	90.79	6910
36	1.36	2	2	5	509	S	76.31	15.28	91.59	6970
37	1.37	2	3	2	204	N	85.79	8.23	94.02	7320
38	1.38	2	3	2	205	N	85.59	8.23	93.82	7300
39	1.39	2	3	4	404	N	85.79	8.23	94.02	8220
40	1.40	2	3	4	405	N	85.79	8.23	94.02	8220
41	2.01	1	1	2	203	NO	44.29	8.93	53.22	4940
42	2.02	1	1	2	205	0	36.10	7.96	44.06	4040
43	2.03	1	1	2	207	SO	40.63	11.65	52.28	4880
44	2.04	2	2	2	204	0	69.48	8.84	78.32	5640


45	2.05	2	2	2	200		CO CO	0.04	70.53	F200
45	2.05	2	2	2	206	0	69.68	8.84	78.52	5380
46	2.06	2	2	3	301	NOP	79.34	12.15	91.49	6740
47	2.07	2	2	4	401	Р	66.52	11.82	78.34	6060
48	2.08	2	2	4	402	NOP	79.34	12.15	91.49	6990
49	2.09	2	2	4	406	P	65.31	12.32	77.63	5980
50	2.10	2	2	5	501	Р	66.52	11.82	78.34	6280
51	2.11	2	2	5	502	NOP	79.34	12.15	91.49	7250
52	2.12	2	2	5	506	Р	65.31	12.32	77.63	6200
53	2.13	2	2	6	601	Р	66.52	11.82	78.34	6500
54	2.14	2	2	6	602	NOP	79.34	12.15	91.49	7500
55	2.15	2	2	6	606	Р	65.31	12.32	77.63	6410
56	2.16	2	2	7	701	Р	66.52	3.23	69.75	6320
57	2.17	2	2	7	702	NOP	79.34	8.93	88.27	7610
58	2.18	2	2	7	706	Р	65.31	3.77	69.08	6860
59	2.19	3	2	3	302	0	87.64	8.98	96.62	7230
60	2.20	3	2	3	303	0	87.57	8.98	96.55	7570
61	2.21	3	2	3	304	SOP	89.15	17.35	106.50	8000
62	2.22	3	2	4	403	0	87.64	8.98	96.62	7500
63	2.23	3	2	4	404	0	87.57	8.98	96.55	7860
64	2.24	3	2	4	405	SOP	89.15	17.97	107.12	8330
65	2.25	3	2	5	503	0	87.64	8.98	96.62	7780
66	2.26	3	2	5	504	0	87.57	8.98	96.55	8140
67	2.27	3	2	5	505	SOP	89.15	17.97	107.12	8640
68	2.28	3	2	6	603	0	87.64	8.98	96.62	8050
69	2.29	3	2	6	604	0	87.57	8.98	96.55	8430
70	2.30	3	2	6	605	SOP	89.15	17.97	107.12	8940
71	2.31	3	2	7	703	0	87.64	8.98	96.62	8320
72	2.32	3	2	7	704	0	87.57	8.98	96.55	7920
73	2.33	3	2	7	705	SOP	89.15	7.61	96.76	8750
74	2.34	3	3	2	201	Р	82.93	85.17	168.10	9560
75	2.35	3	3	2	202	NP	89.23	70.07	159.30	9830
76	2.36	3	3	2	208	SP	91.07	70.96	162.03	10860
77	2.37	3	3	2	209	Р	91.80	84.46	176.26	10280
78	3.01	2	2	2	202	SO	65.36	5.60	70.96	7134
79	3.02	2	2	3	302	SO	65.36	5.94	71.30	7486
80	3.03	2	2	4	402	SO	65.35	5.94	71.29	7552
81	3.04	3	2	2	201A	NO	89.82	29.65	119.47	10829
82	3.05	3	2	2	201B	NO	94.89	29.84	124.73	11365
83	3.06	3	2	4	401A	NO	94.89	31.56	126.45	12213
84	3.07	4	3	4	401B	NO	138.01	37.73	175.74	17454
85	4.01	1	1	2	202	0	42.28	6.22	48.50	4535
86	4.02	1	1	2	206	Р	42.29	6.22	48.51	4442
87	4.03	1	1	3	302	0	42.39	6.32	48.71	4689
88	4.04	1	1	3	306	P	42.39	6.32	48.71	4594
89	4.05	1	1	4	402	0	42.59	6.32	48.91	4831
90	4.06	1	1	4	406	P	42.59	6.32	48.91	4725
91	4.07	1	1	7	702	0	42.59	6.32	48.91	6141
92	4.08	1	1	7	702	P	42.59	6.32	48.91	5982
JL	4.00	1	1	′	700	l r	44.33	0.32	40.31	J90Z

02	4.00	2	3	2	202	SO	00.12	12.12	102.26	7825
93	4.09				203		89.13	13.13	102.26	
94	4.10	2	3	2	205	SP	89.37	13.13	102.50	7687
95	4.11	2	3	3	303	SO	88.92	13.13	102.05	7977
96	4.12	2	3	3	305	SP	89.17	13.13	102.30	7839
97	4.13	2	3	4	403	SO	88.60	13.13	101.73	8050
98	4.14	2	3	4	405	SP	88.80	13.13	101.93	7909
99	4.15	2	3	5	503	SO	88.60	13.13	101.73	8161
100	4.16	2	3	5	505	SP	88.80	13.13	101.93	7967
101	4.17	2	3	6	603	SO	88.60	13.13	101.73	8266
102	4.18	2	3	6	605	SP	88.80	13.13	101.93	8072
103	4.19	2	3	7	703	SO	88.60	13.13	101.73	9539
104	4.20	2	3	7	705	SP	88.80	13.13	101.93	9345
105	4.21	3	3	2	201	NO	106.79	18.78	125.57	10005
106	4.22	3	3	2	207	NP	106.79	18.78	125.57	9710
107	4.23	3	3	3	301	NO	106.79	18.78	125.57	10215
108	4.24	3	3	3	307	NP	106.79	18.78	125.57	9915
109	4.25	3	3	4	401	NO	106.50	18.78	125.28	10296
110	4.26	3	3	4	407	NP	106.50	18.78	125.28	10023
111	4.27	3	3	5	501	NO	106.50	18.78	125.28	10428
112	4.28	3	3	5	507	NP	106.50	18.78	125.28	10107
113	4.29	3	3	6	601	NO	106.50	18.78	125.28	10575
114	4.30	3	3	6	607	NP	106.50	18.78	125.28	10228
115	4.31	3	3	7	701	NO	106.50	18.78	125.28	12132
116	4.32	3	3	7	707	NP	106.50	18.78	125.28	11785
117	5.01	2	2	2	202	S	59.63	16.92	76.55	5700
118	5.02	2	2	2	204	Р	77.43	20.86	98.29	7200
119	5.03	2	2	2	206	NP	98.34	18.36	116.70	7800
120	5.04	2	2	3	302	S	59.63	16.92	76.55	5900
121	5.05	2	2	3	305	Р	80.94	20.86	101.80	7800
122	5.06	2	2	3	308	0	80.94	20.86	101.80	7800
123	5.07	2	2	3	309	0	80.94	20.86	101.80	7800
124	5.08	2	2	4	402	S	59.63	16.92	76.55	6050
125	5.09	2	2	4	404	Р	77.43	20.86	98.29	7650
126	5.10	2	2	4	406	NP	82.33	18.36	100.69	8200
127	5.11	2	2	4	407	NO	82.33	18.36	100.69	8500
128	5.12	2	2	5	505	Р	80.94	20.86	101.80	8200
129	5.13	2	2	5	507	NO	80.94	18.36	99.30	8700
130	5.14	2	2	5	508	0	80.94	18.36	99.30	8200
131	5.15	2	2	5	509	0	80.94	20.86	101.80	8200
132	5.16	2	2	6	602	S	59.63	16.92	76.55	6350
133	5.17	2	2	6	604	P	77.43	20.86	98.29	8050
134	5.18	2	2	6	605	P	80.94	20.86	101.80	8400
135	5.19	2	2	6	606	NP	82.33	18.36	100.69	8600
136	5.20	2	2	6	607	NO	82.33	18.36	100.69	8900
137	5.21	2	2	7	702	S	59.63	16.92	76.55	6500
138	5.22	2	2	7	702	P	75.70	114.26	189.96	10800
139	5.23	2	2	7	705	P	79.24	111.46	190.70	10900
140	5.24	2	2	7	706	NP	80.83	103.06	183.89	11300
140	5.24	۷		/	700	INP	00.03	103.00	103.69	11200

142 5.26 2 2 7 709 0 79.24 111.46 190.70 10900 143 5.27 2 2.5 2 201 SO 98.34 16.92 115.26 8300 144 5.28 2 2.5 3 301 SO 98.34 16.92 115.26 8400 145 5.29 2 2.5 3 303 SP 98.34 16.92 115.26 8400 146 5.30 2 2.5 5 501 SO 98.34 16.92 115.26 8400 147 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8800 147 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8800 148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 12101 148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 12101 150 6.02 2 1 3 304 NO 42.37 5.99 48.36 42500 150 6.02 2 1 3 304 NO 42.37 5.99 48.36 4050 151 6.03 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NP5 57.71 4.61 62.32 5810 153 6.05 3 2 7 701 NP5 76.94 4.61 81.55 7300 154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7350 155 7.01 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 201 SO 6954 17.78 87.32 6835 157 7.03 2 2 2 202 N 56.76 7.96 64.72 5733 158 7.04 2 2 2 2 2 2 2 2 2	141	5.25	2	2	7	707	NO	80.83	103.06	183.89	11300
143											
144 5.28 2 2.5 3 301 SO 98.34 16.92 115.26 8500 145 5.29 2 2.5 3 303 SP 98.34 16.92 115.26 8900 146 5.30 2 2.5 5 501 SO 98.34 16.92 115.26 8900 147 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8900 147 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8900 148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 1210 149 601 2 1 3 304 NO 42.37 5.99 48.36 4200 150 60.02 2 1 3 305 SP 42.37 5.99 48.36 4200 151 60.3 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NPS 57.71 4.61 62.32 8810 153 6.05 3 2 7 701 NPS 76.94 4.61 81.55 7300 154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7455 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 2 201 SO 69.54 17.78 87.32 6835 157 7.03 2 2 2 2 201 SO 69.54 17.78 87.32 6835 157 7.03 2 2 2 2 202 N 56.76 7.96 64.72 5733 158 7.04 2 2 2 2 203 NS 68.49 19.93 84.70 84.70 159 7.05 2 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 11 1104 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1201 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 2 2 2 2 2 2											
145 5.29 2 2.5 3 303 SP 98.34 16.92 115.26 8400 146 5.30 2 2.5 5 501 SO 98.34 16.92 115.26 8900 148 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8900 148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 1210 149 6.01 2 1 3 304 NO 42.37 5.99 48.36 4200 150 6.02 2 1 3 305 SP 42.37 5.99 48.36 4200 151 6.03 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NPS 57.71 4.61 62.32 5810 153 6.05 3 2 7 702 NOP 77.31 4.64 81.55 7300 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 2 201 SO 69.54 17.78 87.32 6835 157 7.03 2 2 2 2 202 N 56.76 7.96 64.72 5739 158 7.04 2 2 2 2 2 2 2 2 2											
146											
147 5.31 2 2.5 5 503 SP 98.34 16.92 115.26 8900 148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 1210 150 6.01 2 1 3 304 NO 42.37 5.99 48.36 4200 151 6.03 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NPS 57.71 4.61 62.32 5810 153 6.05 3 2 7 701 NPS 57.71 4.61 62.32 5810 154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7450 155 7.01 1 1 2 200 NO 77.31 4.64 81.95 7450 157											
148 5.32 2 2.5 7 701 SO 96.30 129.72 226.02 1210 149 6.01 2 1 3 304 NO 42.37 5.99 48.36 4200 150 6.02 2 1 3 305 SP 42.37 5.99 48.36 4200 151 6.03 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NPS 57.71 4.61 62.32 5810 153 6.05 3 2 7 702 NOP 77.31 4.64 81.95 7450 154 6.06 3 2 7 702 NOP 77.31 4.61 81.95 7450 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156											
149											
150											
151 6.03 2 2 3 303 NOP 54.52 4.67 59.19 5675 152 6.04 2 2 5 501 NPS 57.71 4.61 62.32 5810 153 6.05 3 2 7 701 NPS 76.94 4.61 81.55 7300 154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7450 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 201 50 69.54 17.78 87.32 6835 157 7.03 2 2 2 202 N 56.76 7.96 64.72 5739 158 7.04 2 2 2 203 NS 68.49 19.93 88.42 7098 159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 110 110 5 54.14 5.84 59.98 5460 161 8.02 1 1 11 1104 5 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 5 54.14 5.84 59.98 5461 164 8.05 2 2 2 202 N 83.83 10.51 94.34 7649 166 8.07 2 2 2 202 N 83.83 10.51 94.34 7709 170 8.11 2 2 2 2 2 2 2 2 2											
152											
153 6.05 3 2 7 701 NPS 76.94 4.61 81.55 7300 154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7450 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 201 SO 69.94 17.78 87.32 6835 157 7.03 2 2 2 202 N 56.76 7.96 64.72 5739 158 7.04 2 2 2 206 NSP 71.55 16.47 88.02 693 159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 693 160 8.01 1 1 11 1100 S 54.14 5.84 59.98 5551 161 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
154 6.06 3 2 7 702 NOP 77.31 4.64 81.95 7450 155 7.01 1 1 2 205 N 44.27 5.83 50.10 4414 156 7.02 2 2 2 201 SO 69.54 17.78 87.32 6835 157 7.03 2 2 2 202 N 56.76 7.96 64.72 5739 158 7.04 2 2 2 203 NS 68.49 19.93 88.42 7088 159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 11 1101 S 54.14 5.84 59.98 5461 161 8.02 1 1 1 1201 S 54.14 5.84 59.98 5461 163 8.04 1											
155											
156											
157 7.03 2 2 2 202 N 56.76 7.96 64.72 5739 158 7.04 2 2 2 203 NS 68.49 19.93 88.42 7098 159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 11 1101 S 54.14 5.84 59.98 5406 161 8.02 1 1 11 1104 S 54.14 5.84 59.98 5461 162 8.03 1 1 12 1204 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 202 N 83.83 10.51 94.34 7180 166											
158 7.04 2 2 2 203 NS 68.49 19.93 88.42 7098 159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 11 1101 S 54.14 5.84 59.98 5406 161 8.02 1 1 11 1104 S 54.14 5.84 59.98 5461 162 8.03 1 1 12 1204 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7180 <t< td=""><td>156</td><td></td><td></td><td></td><td></td><td></td><td>SO</td><td></td><td></td><td></td><td>6835</td></t<>	156						SO				6835
159 7.05 2 2 2 206 NSP 71.55 16.47 88.02 6953 160 8.01 1 1 11 1101 S 54.14 5.84 59.98 5406 161 8.02 1 1 11 1104 S 54.14 5.84 59.98 5751 162 8.03 1 1 12 1201 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 202 N 33.83 10.51 94.34 7180 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 203 N 83.83 10.51 94.34 7649 167	_										5739
160 8.01 1 1 11 1101 S 54.14 5.84 59.98 5406 161 8.02 1 1 11 1104 S 54.14 5.84 59.98 5751 162 8.03 1 1 12 1201 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8	158		2	2		203	NS	68.49	19.93	88.42	7098
161 8.02 1 1 11 1104 S 54.14 5.84 59.98 5751 162 8.03 1 1 12 1201 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7649 166 8.07 2 2 2 2005 S 74.56 9.74 84.30 6632 167 8.08 2 2 2 2005 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8	159	7.05	2	2	2	206	NSP	71.55	16.47	88.02	6953
162 8.03 1 1 12 1201 S 54.14 5.84 59.98 5461 163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7180 166 8.07 2 2 2 203 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 304 N 83.83 10.51 94.34 7700 170 8.1	160	8.01	1	1	11	1101	S	54.14	5.84	59.98	5406
163 8.04 1 1 12 1204 S 54.14 5.84 59.98 5461 164 8.05 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7180 166 8.07 2 2 2 203 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13<	161	8.02	1	1	11	1104	S	54.14	5.84	59.98	5751
164 8.05 2 2 2 201 S 74.56 9.74 84.30 6632 165 8.06 2 2 2 202 N 83.83 10.51 94.34 7180 166 8.07 2 2 2 203 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 <td>162</td> <td>8.03</td> <td>1</td> <td>1</td> <td>12</td> <td>1201</td> <td>S</td> <td>54.14</td> <td>5.84</td> <td>59.98</td> <td>5461</td>	162	8.03	1	1	12	1201	S	54.14	5.84	59.98	5461
165 8.06 2 2 2 202 N 83.83 10.51 94.34 7180 166 8.07 2 2 2 203 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 </td <td>163</td> <td>8.04</td> <td>1</td> <td>1</td> <td>12</td> <td>1204</td> <td>S</td> <td>54.14</td> <td>5.84</td> <td>59.98</td> <td>5461</td>	163	8.04	1	1	12	1204	S	54.14	5.84	59.98	5461
166 8.07 2 2 2 203 N 83.83 10.51 94.34 7649 167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 404 N 83.83 10.51 94.34 7786 174 8.15 </td <td>164</td> <td>8.05</td> <td>2</td> <td>2</td> <td>2</td> <td>201</td> <td>S</td> <td>74.56</td> <td>9.74</td> <td>84.30</td> <td>6632</td>	164	8.05	2	2	2	201	S	74.56	9.74	84.30	6632
167 8.08 2 2 2 205 S 74.56 9.74 84.30 6632 168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 </td <td>165</td> <td>8.06</td> <td>2</td> <td>2</td> <td>2</td> <td>202</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7180</td>	165	8.06	2	2	2	202	N	83.83	10.51	94.34	7180
168 8.09 2 2 3 301 S 74.56 9.74 84.30 6861 169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 7170 177 8.18 </td <td>166</td> <td>8.07</td> <td>2</td> <td>2</td> <td>2</td> <td>203</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7649</td>	166	8.07	2	2	2	203	N	83.83	10.51	94.34	7649
169 8.10 2 2 3 303 N 83.83 10.51 94.34 7700 170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 </td <td>167</td> <td>8.08</td> <td>2</td> <td>2</td> <td>2</td> <td>205</td> <td>S</td> <td>74.56</td> <td>9.74</td> <td>84.30</td> <td>6632</td>	167	8.08	2	2	2	205	S	74.56	9.74	84.30	6632
170 8.11 2 2 3 304 N 83.83 10.51 94.34 7907 171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 </td <td>168</td> <td>8.09</td> <td>2</td> <td>2</td> <td>3</td> <td>301</td> <td>S</td> <td>74.56</td> <td>9.74</td> <td>84.30</td> <td>6861</td>	168	8.09	2	2	3	301	S	74.56	9.74	84.30	6861
171 8.12 2 2 3 306 S 74.56 9.74 84.30 6861 172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7273 <td>169</td> <td>8.10</td> <td>2</td> <td>2</td> <td>3</td> <td>303</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7700</td>	169	8.10	2	2	3	303	N	83.83	10.51	94.34	7700
172 8.13 2 2 4 401 S 74.56 9.74 84.30 6964 173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 <td>170</td> <td>8.11</td> <td>2</td> <td>2</td> <td>3</td> <td>304</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7907</td>	170	8.11	2	2	3	304	N	83.83	10.51	94.34	7907
173 8.14 2 2 4 403 N 83.83 10.51 94.34 7786 174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 8160 </td <td>171</td> <td>8.12</td> <td>2</td> <td>2</td> <td>3</td> <td>306</td> <td>S</td> <td>74.56</td> <td>9.74</td> <td>84.30</td> <td>6861</td>	171	8.12	2	2	3	306	S	74.56	9.74	84.30	6861
174 8.15 2 2 4 404 N 83.83 10.51 94.34 7993 175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 <	172	8.13	2	2	4	401	S	74.56	9.74	84.30	6964
175 8.16 2 2 4 406 S 74.56 9.74 84.30 6964 176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 </td <td>173</td> <td>8.14</td> <td>2</td> <td>2</td> <td>4</td> <td>403</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7786</td>	173	8.14	2	2	4	403	N	83.83	10.51	94.34	7786
176 8.17 2 2 5 501 S 74.56 9.74 84.30 7170 177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7376 184 8.25 </td <td>174</td> <td>8.15</td> <td>2</td> <td>2</td> <td>4</td> <td>404</td> <td>N</td> <td>83.83</td> <td>10.51</td> <td>94.34</td> <td>7993</td>	174	8.15	2	2	4	404	N	83.83	10.51	94.34	7993
177 8.18 2 2 5 503 N 83.83 10.51 94.34 7872 178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	175	8.16	2	2	4	406	S	74.56	9.74	84.30	6964
178 8.19 2 2 5 504 N 83.83 10.51 94.34 8079 179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	176	8.17	2	2	5	501	S	74.56	9.74	84.30	7170
179 8.20 2 2 5 506 S 74.56 9.74 84.30 7170 180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	177	8.18					N	83.83	10.51	94.34	7872
180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	178	8.19	2	2	5	504	N	83.83	10.51	94.34	8079
180 8.21 2 2 6 601 S 74.56 9.74 84.30 7273 181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	179	8.20	2	2	5	506	S	74.56	9.74	84.30	7170
181 8.22 2 2 6 603 N 83.83 10.51 94.34 7958 182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250	180	8.21				601		74.56	9.74		7273
182 8.23 2 2 6 604 N 83.83 10.51 94.34 8160 183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250											7958
183 8.24 2 2 6 606 S 74.56 9.74 84.30 7273 184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250											8160
184 8.25 2 2 7 701 S 74.56 9.74 84.30 7376 185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250											7273
185 8.26 2 2 7 703 N 83.83 10.51 94.34 8044 186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250											7376
186 8.27 2 2 7 704 N 83.83 10.51 94.34 8250											8044
											8250
187 8.28 2 2 7 706 S 74.56 9.74 84.30 7376											7376
											7479

100	0.20	2	2	8	002	N	02.02	10.51	04.24	0120
189	8.30				803		83.83	10.51	94.34	8130
190	8.31	2	2	8	804	N	83.83	10.51	94.34	8336
191	8.32	2	2	8	806	S	74.56	9.74	84.30	7479
192	8.33	2	2	9	901	S	74.56	9.74	84.30	7582
193	8.34	2	2	9	903	N	83.83	10.51	94.34	8216
194	8.35	2	2	9	904	N	83.83	10.51	94.34	8422
195	8.36	2	2	9	906	S	74.56	9.74	84.30	7582
196	8.37	2	2	10	1001	S	74.56	9.74	84.30	7686
197	8.38	2	2	10	1003	N	84.28	63.56	147.84	9866
198	8.39	2	2	10	1004	N	84.28	63.56	147.84	10073
199	8.40	2	2	10	1006	S	74.56	9.74	84.30	7686
200	8.41	3	2	2	204	0	99.45	27.26	126.71	9771
201	8.42	3	2	3	302	Р	99.45	29.31	128.76	10100
202	8.43	3	2	3	305	0	99.45	27.26	126.71	10100
203	8.44	3	2	4	402	Р	99.45	29.31	128.76	10210
204	8.45	3	2	4	405	0	99.45	27.26	126.71	10210
205	8.46	3	2	5	502	Р	99.45	29.31	128.76	10320
206	8.47	3	2	5	505	0	99.45	27.26	126.71	10320
207	8.48	3	2	6	602	Р	99.45	29.31	128.76	10430
208	8.49	3	2	6	605	0	99.45	27.26	126.71	10430
209	8.50	3	2	7	702	Р	99.45	29.31	128.76	10540
210	8.51	3	2	7	705	0	99.45	27.26	126.71	10540
211	8.52	3	2	8	802	Р	99.45	29.31	128.76	10650
212	8.53	3	2	8	805	0	99.45	27.26	126.71	10650
213	8.54	3	2	9	902	Р	99.45	29.31	128.76	10760
214	8.55	3	2	9	905	0	99.45	27.26	126.71	10760
215	8.56	3	2	10	1002	Р	99.45	29.31	128.76	10870
216	8.57	3	2	10	1005	0	99.45	27.26	126.71	10870
217	8.58	3	2	11	1102	Р	111.49	37.60	149.09	12024
218	8.59	3	2	11	1103	0	111.49	35.56	147.05	12024
219	8.60	3	2	12	1202	Р	115.22	95.19	210.41	13777
220	8.61	3	2	12	1203	0	115.22	89.32	204.54	13777
221	9.01	2	3	2	203	S	97.18	21.61	118.79	8535
222	9.02	2	3	2	204	S	94.07	19.92	113.99	8287
223	9.03	2	3	2	205	S	94.07	19.92	113.99	8287
224	9.04	2	3	3	303	S	97.18	21.61	118.79	8875
225	9.05	2	3	3	304	S	94.07	19.92	113.99	8493
226	9.06	2	3	3	305	S	94.07	19.92	113.99	8493
227	9.07	2	3	4	403	S	97.18	21.61	118.79	9081
228	9.08	2	3	4	404	S	94.07	19.92	113.99	8597
229	9.09	2	3	4	405	S	94.07	19.92	113.99	8597
230	9.10	2	3	5	503	S	97.18	21.61	118.79	9261
231	9.11	2	3	5	504	S	94.07	19.92	113.99	8772
232	9.12	2	3	5	505	S	94.07	19.92	113.99	8772
233	9.13	2	3	6	603	S	97.18	21.61	118.79	9308
234	9.14	2	3	6	604	S	94.07	19.92	113.79	8937
235	9.15	2	3	6	605	S	94.07	19.92	113.99	8937
236	9.16	3	3	2	201	SP	141.90	33.59	175.49	13205
230	3.10	3			201	ا عد	141.90	33.33	1/5.49	13203

ANEXO 2 UBICACIÓN DE LOS PROYECTOS COMPARABLES

ANEXO 3 EJEMPLOS DE APLICACIÓN

		<u> </u>	HOIV	10GI	ENEIZ	ACIÓN POR F	ACTORES CO	MBINA	ADOS (ALT	JRA DE I	PISO, ORI	ENTACIÓ	ÓN, ÁREA,	#HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	45,05 - 1101	1	1	6	SE	6300304.10	350891.31	56.30	9.70	66.00	-	-	-	-	-	-
1	8,01 - 160	1	1	11	S	6300773.13	350952.87	54.14	5.84	59.98	5406	94.74	0.95	90.26	0.53	90.26
2	19,01 - 468	1	1	2	О	6299848.02	350927.81	36.90	8.95	45.85	3484	84.21	0.90	75.64	1.94	-
3	22,06 - 528	1	1	4	N	6300390.10	350456.60	44.76	2.88	47.64	4499	97.38	0.89	86.64	0.88	86.64
4	35,02 - 915	1	1	7	SO	6300391.00	350678.00	61.21	12.80	74.01	6626	98.00	1.07	104.69	0.87	104.69
5	39,02 - 1035	1	1	7	Е	6300492.27	351648.06	39.00	4.88	43.88	4950	119.45	0.82	97.65	0.19	97.65
6	18,05 - 447	1	1	3	NE	6299600.66	351054.78	65.80	14.10	79.90	6745	92.59	1.14	105.50	0.94	105.50
7	33,01 - 895	1	1	2	N	6300475.16	350740.43	42.34	9.10	51.44	5615	119.75	0.90	108.30	1.22	108.30
8	36,01 - 948	2	2	3	О	6299989.47	351073.05	65.89	14.92	80.81	6625	90.32	1.05	95.18	0.05	95.18
9	41,03 - 1058	2	2	7	N	6299916.67	350861.90	67.68	12.89	80.57	7166	96.67	1.01	97.63	0.18	97.63
10																
RES	UMEN:															
	P.Uútil Reg.	Ехр.	Múl	tiple	=	96.79	UF/M2					UF/M2		UF/M2		UF/M2
Val	or Reg. Exponer	ncial	Múl	tiple	=	5919	UF				PROM1	99.23	PROM2	95.72	PROM3	98.23
				latos		9	GL=	8			DESV1	12.30	DESV2	10.35	DESV3	7.60
	Punto crítico	•		,		1.88					CV1	12.40%	CV2	10.82%	CV3	7.73%
	lor del inmuebl	-					UF		dif/R.E.M							
Va	lor del inmuebl	-	_				UF		dif/R.E.M					UF/M2		
				nimo			UF		t(80,8) =				MEDIANA	97.63		
	V	alor	max	ximo	=	6480	UF		NC =	80%						

		<u> </u>	HOM	10GE	NEIZ	ACIÓN POR F	ACTORES CO	OMBINA	ADOS (ALT	URA DE I	PISO, ORI	<u>IENTACIÓ</u>	N, ÁREA,	#HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	47.01 - 1131	1	1	11	0	6298459.53	350990.93	44.33	10.57	54.90	-	-	-	-	-	-
1	14.02 - 389	1	1	4	0	6298509.47	351134.63	44.95	9.46	54.41	4745	95.51	1.05	99.81	0.14	99.81
2	30.01 - 831	1	1	6	N	6299099.82	351228.89	46.68	7.19	53.87	4622	91.93	0.97	89.19	0.66	89.19
3	13.06 - 356	1	1	7	NE	6299208.45	351076.57	53.65	0.00	53.65	5050	94.13	0.96	90.08	0.59	90.08
4	42.04 - 1067	1	1	7	0	6299255.28	351096.97	42.50	8.50	51.00	4305	92.09	0.94	86.35	0.87	86.35
5	7.01 - 155	1	1	2	N	6299216.64	350849.93	44.27	5.83	50.10	4414	93.55	0.95	89.28	0.65	89.28
6	53,05 - 1232	1	1	6	S	6298439.79	350869.04	50.90	5.90	56.80	4686	87.02	1.09	94.69	0.25	94.69
7	12,05 - 327	1	2	6	S	6299144.88	350781.29	63.00	7.00	70.00	6340	95.34	1.14	108.80	0.81	108.80
8	4,08 - 92	1	1	7	0	6298755.42	350907.39	42.59	6.32	48.91	5982	130.75	0.96	125.49	2.07	-
9																
10																
RES	UMEN:											-				
	P.Uútil Reg.	Ехр.	Múl	tiple	=	93.07	UF/M2					UF/M2		UF/M2		UF/M2
Valo	or Reg. Expone			•	=	4618	UF				PROM1	97.54	PROM2	97.96	PROM3	94.03
				atos		8	GL=	7			DESV1	13.69	DESV2	13.30	DESV3	7.88
	Punto crítico	•		•		1.84					CV1	14.03%	CV2	13.58%	CV3	8.38%
	lor del inmueb			•	=		UF		dif/R.E.M:							
Val	or del inmuebl	-	-		=		UF		dif/R.E.M:				BAEDIAN:	UF/M2		
				nimo ximo	=		UF		t(80,7) = NC =	1.4149 80%			MEDIANA	92.38		
	`	aior	ma	XIIIIO	=	5073	UF		NC =	80%						

		<u> </u>	HON	10GE	NEIZ	ACIÓN POR F	ACTORES (OMBINA	ADOS (ALT	URA DE	PISO, OR	IENTACIÓ	ÓN, ÁREA,	, #HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	25,31 - 662	2	2	10	0	6299636.70	349829.81	70.67	11.95	82.62	-	-	-	-	-	-
1	32,15 - 876	2	2	7	0	6299583.86	350587.99	77.45	11.96	89.41	7680	92.05	1.05	96.43	0.74	96.43
2	38,08 - 1011	2	2	10	SO	6299532.02	349285.65	78.62	19.35	97.97	9030	102.27	1.04	105.99	2.04	-
3	43,05 - 1080	2	2	6	0	6299637.10	349635.62	66.54	15.06	81.60	6236	84.19	1.02	85.62	0.73	85.62
4	48,15 - 1149	2	2	11	NO	6299742.34	349817.46	81.14	14.63	95.77	7770	87.84	0.98	86.05	0.67	86.05
5	64,07 - 1306	2	2	4	NE	6299641.41	350066.91	84.94	20.00	104.94	7664	80.72	1.03	83.49	1.02	83.49
6	68,02 - 1319	3	2	10	0	6298958.99	349718.18	69.27	12.77	82.04	6381	84.34	1.05	88.62	0.32	88.62
7	58,01 - 1268	2	2	5	S	6299009.14	350215.51	67.33	8.56	75.89	6257	87.38	1.06	92.79	0.25	92.79
8	23,01 - 617	2	2	2	S	6299283.53	350589.13	62.53	9.57	72.10	5759	85.55	1.04	88.74	0.30	88.74
9																
10																
RES	UMEN:															
	P.Uútil Reg.	Ехр.	Mú	ltiple	=	92.33	UF/M2					UF/M2		UF/M2		UF/M2
Valo	or Reg. Exponei	ncial	Mú	ltiple	=	7077	UF				PROM1	88.04	PROM2	90.97	PROM3	88.82
				latos	=	8	GL =	- 7			DESV1	6.63	DESV2	7.35	DESV3	4.47
	Punto crítico	•		•	=	1.84					CV1	7.53%	CV2	8.08%	CV3	5.03%
	lor del inmuebl	• •		•	=		UF		dif/R.E.M :							
Val	or del inmuebl	-	-		=		UF		dif/R.E.M :					UF/M2		
				nimo	=		UF		t(80,7) =				MEDIANA	88.68		
	\	/alor	r má:	ximo	=	7165	UF		NC =	80%						

		<u> </u>	ЮМ	IOGI	ENEIZ	ACIÓN POR F	ACTORES CO	OMBINA	ADOS (ALT	URA DE I	PISO, ORI	IENTACIÓ	ÓN, ÁREA,	#HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	27,05 - 751	2	2	4	SO	6299575.82	351964.49	90.60	22.90	113.50	-	-	-	-	-	-
1	62,03 - 1296	2	2	2	NO	6299339.00	351666.00	94.54	17.77	112.31	8239	79.66	1.00	79.55	0.57	79.55
2	49,04 - 1165	2	2	6	0	6299677.94	352088.28	76.34	16.97	93.31	6840	80.64	0.96	77.37	0.84	77.37
3	31,02 - 850	2	2	9	Е	6300028.66	351321.11	69.52	18.40	87.92	6795	86.32	0.89	76.74	0.92	76.74
4	17,04 - 413	2	2	4	NE	6299517.65	351368.95	88.95	18.53	107.48	8585	87.41	0.96	83.54	0.07	83.54
5	9,10 - 230	2	3	5	S	6299808.39	351781.05	97.18	21.61	118.79	9261	85.76	1.00	85.52	0.18	85.52
6	3,02 - 79	2	2	3	SE	6298875.69	352265.37	65.36	5.94	71.30	7486	109.56	0.92	101.02	2.13	-
7	18,24 - 466	2	2	7	0	6299600.66	351054.78	66.88	8.56	75.44	6925	97.32	0.91	88.51	0.56	88.51
8	61,01 - 1283	2	2	2	SE	6299463.37	351098.30	77.92	15.51	93.43	7179	83.79	0.96	80.41	0.46	80.41
9																
10																
RES	UMEN:											•				
	P.Uútil Reg.	Ехр.	Múl	tiple	=	84.45	UF/M2					UF/M2		UF/M2		UF/M2
Val	or Reg. Expone			•		8619	UF				PROM1	88.81	PROM2	84.08	PROM3	81.66
		_	de d			8	GL=	7			DESV1	9.97	DESV2	7.95	DESV3	4.36
	Punto crítico	•		•		1.84					CV1	11.23%	CV2	9.45%	CV3	5.34%
	lor del inmueb			.			UF		dif/R.E.M :							
Va	lor del inmuebl	•	_			8366	UF		dif/R.E.M :					UF/M2		
			r mír				UF		t(80,7) =				MEDIANA	81.97		
	\	/alor	máx	kimo	=	8798	UF		NC =	80%						

		<u> </u>	ЮМ	logi	ENEIZ	ACIÓN POR F	ACTORES CO	OMBINA	ADOS (ALT	URA DE I	PISO, ORI	ENTACIÓ	ÓN, ÁREA,	#HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	20,07 - 493	3	2	2	Е	6299320.00	350906.00	105.54	13.69	119.23	-	-	-	-	-	-
1	12,20 - 342	3	2	4	SO	6299144.88	350781.29	104.50	10.45	114.95	9560	87.13	1.00	87.13	1.26	87.13
2	42,10 - 1073	3	3	2	NE	6299255.28	351096.97	109.50	21.00	130.50	9615	80.13	0.96	76.82	0.41	76.82
3	63,01 - 1297	3	2	2	NE	6299235.40	351245.56	95.37	12.06	107.43	6990	68.93	0.96	65.95	2.18	-
4	61,04 - 1286	3	2	4	NE	6299463.37	351098.30	97.19	18.87	116.06	9301	87.23	0.93	81.39	0.33	81.39
5	23,07 - 623	3	2	2	S	6299283.53	350589.13	100.60	15.48	116.08	8117	74.92	1.02	76.56	0.45	76.56
6	26,36 - 729	3	2	3	NO	6299480.23	350765.25	94.23	19.01	113.24	9290	89.56	0.95	85.08	0.93	85.08
7	32,23 - 884	3	3	5	SE	6299583.86	350587.99	96.42	8.16	104.58	8840	87.96	0.92	81.30	0.32	81.30
8	54,01 - 1252	3	2	6	NE	6299637.89	351123.54	97.35	8.30	105.65	9189	90.53	0.90	81.88	0.41	81.88
9	52,01 - 1224	3	3	2	NO	6299588.97	351171.56	112.42	10.51	122.93	9685	82.30	0.95	78.04	0.21	78.04
10																
RES	UMEN:															
	P.Uútil Reg.	Ехр.	Múl	tiple	=	81.13	UF/M2					UF/M2		UF/M2		UF/M2
Val	or Reg. Exponer			•			UF				PROM1	83.19	PROM2	79.35	PROM3	81.02
		-	de d			9	GL=	8			DESV1	7.34	DESV2	6.16	DESV3	3.80
	Punto crítico	•		,		1.88					CV1	8.82%	CV2	7.76%	CV3	4.69%
	lor del inmuebl	• •		.			UF		dif/R.E.M:							
Val	or del inmuebl	-	_				UF		dif/R.E.M:				B45514411	UF/M2		
			r mín · máx				UF UF		t(80,8) = NC =	1.3968			MEDIANA	81.30		
	V	aioi	IIIdX	MIIIO	=	9541	UF		NC =	80%						

		<u> </u>	НОМ	OGI	ENEIZ	ACIÓN POR F	ACTORES CO	OMBINA	ADOS (ALT	JRA DE I	PISO, OR	ENTACIĆ	N, ÁREA,	#HAB)		
#	COD.	D	В	Р	ORI.	Y - LAT.	X - LONG.	ÚTIL (m2)	BALCÓN (m2)	TOTAL (m2)	PRECIO (UF)	PU_útil (UF/m2)	Fng	PU_útil* (UF/m2)	Dm/S	PU_útil* (UF/m2)
-	24.05 - 631	3	2	5	SE	6298567.23	349938.38	91.10	27.40	118.50	-	-	-	-	-	-
1	21.29 - 522	3	2	4	Е	6300390.10	350456.60	87.09	23.21	110.30	7627	77.28	0.91	70.13	1.23	70.13
2	28.26 - 778	3	2	5	NO	6298707.18	349459.90	112.90	15.70	128.60	9392	77.78	0.99	77.06	0.18	77.06
3	50.16 - 1184	3	2	5	SE	6298689.05	349671.40	94.45	5.25	99.70	7790	80.25	0.98	78.74	0.07	78.74
4	58.04 - 1271	3	2	7	SE	6299009.14	350215.51	89.12	17.83	106.95	9476	96.66	0.95	91.62	2.02	-
5	16.06 - 409	3	3	2	NE	6298441.31	350539.88	98.08	21.58	119.66	8824	81.05	1.02	82.51	0.64	82.51
6	15.04 - 401	3	2	2	SE	6298165.15	350119.33	97.87	15.75	113.62	7620	72.06	1.05	75.56	0.41	75.56
7	44.12 - 1096	3	2	7	SO	6298070.39	350098.79	91.25	18.42	109.67	7025	69.93	1.05	73.68	0.69	73.68
8	56.02 - 1255	3	2	5	0	6298067.45	350260.60	83.03	9.00	92.03	6873	78.52	1.05	82.84	0.69	82.84
9	68.01 - 1318	3	2	8	N	6298958.99	349718.18	72.13	9.34	81.47	6059	78.89	0.92	72.21	0.91	72.21
10																
RES	UMEN:											•				
	P.Uútil Reg.	Ехр.	Múl	tiple	=	80.96	UF/M2					UF/M2		UF/M2		UF/M2
Val	or Reg. Exponei	ncial	Múl	tiple	=	8485	UF				PROM1	79.16	PROM2	78.26	PROM3	76.59
			de d			9	GL=	8			DESV1	7.52	DESV2	6.62	DESV3	4.62
	Punto crítico	•		,		1.88					CV1	9.50%	CV2	8.46%	CV3	6.03%
	lor del inmueb	• •		.			UF		dif/R.E.M							
Val	or del inmuebl	_	_	-			UF		dif/R.E.M					UF/M2		
			r mín				UF		t(80,8) =				MEDIANA	77.06		
	\	/alor	máx	imo	=	8519	UF		NC =	80%						

ANEXO 4 INFO DE SALIDA SPSS

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method
1	X, P1, N0P, HAB4, NS, SOP, PISO, SP, BALC, NO, HAB2, S1, SO, O1, Y, ÚTIL, NP, HAB3, N1 b		Enter

a. Dependent Variable: PRECIO

b. All requested variables entered.

Model Summary^b

	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
ı	1	,958ª	,918	,916	586,85419

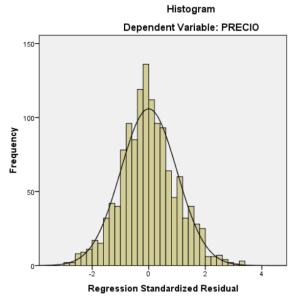
a. Predictors: (Constant), X, P1, NOP, HAB4, NS, SOP, PISO, SP, BALC, NO, HAB2, S1, S0, O1, Y, ÚTIL, NP, HAB3, N1

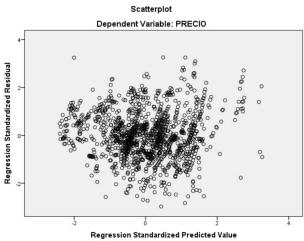
b. Dependent Variable: PRECIO

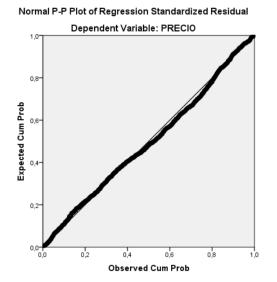
ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
	1	Regression	4969504830	19	261552885,8	759,450	,000 ^b
I		Residual	446683997,4	1297	344397,839		
ı		Total	5416188828	1316			

a. Dependent Variable: PRECIO


b. Predictors: (Constant), X, P1, NOP, HAB4, NS, SOP, PISO, SP, BALC, NO, HAB2, S1, SO, O1, Y, ÚTIL, NP, HAB3, N1


Coefficients^a


		l le stee de dies	1066	Standardized			Callinganit	04-4:-4:
		Unstandardized		Coefficients			Collinearity	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-3287010,994	160240,615		-20,513	,000		
	N1	890,180	118,043	,144	7,541	,000	,174	5,748
	S1	594,231	118,326	,095	5,022	,000	,177	5,653
	01	779,431	119,369	,123	6,530	,000	,179	5,595
	P1	679,799	119,422	,112	5,692	,000	,165	6,070
	NO	1008,000	116,341	,154	8,664	,000	,201	4,979
	SO	934,326	114,462	,147	8,163	,000	,197	5,086
	NP	907,250	115,582	,149	7,849	,000	,176	5,685
	SP	702,281	116,758	,105	6,015	,000	,207	4,827
	NOP	751,518	181,121	,041	4,149	,000	,664	1,506
	SOP	516,033	182,485	,028	2,828	,005	,654	1,528
	NS	1499,811	211,081	,064	7,105	,000	,779	1,284
	PISO	50,357	6,259	,070	8,046	,000	,850	1,176
	ÚTIL	68,844	1,283	,747	53,663	,000	,328	3,046
	BALC	37,959	1,305	,247	29,076	,000	,880	1,137
	HAB2	357,732	51,627	,088	6,929	,000	,394	2,537
	HAB3	550,446	70,871	,123	7,767	,000	,254	3,930
	HAB4	755,233	159,935	,046	4,722	,000	,684	1,463
	Υ	,521	,026	,186	20,166	,000	,749	1,334
	X	,010	,023	,004	,439	,661	,683	1,463

a. Dependent Variable: PRECIO

×	358	-,111	5 -,024	960'- 6	3 -,016	920'	680' 8	3 ,022	5 ,017	5 -,025	690'- 1		950' 1	950'- 2	0350	2 ,153	3 -,049	,046	-,016	,317	1,000
Υ	,311	,022	900'-	-,019	-,023	,031	-,038	,018	900'	,045	-,004		-,024	,297	110	,052	,128	.00	-,071	1,000	,317
HAB4	,195	-,047	-,046	-,045	-,047	-,003	-,045	,269	-,042	-,014	-,014		-,011	-,002	,219	,064	-,133	6/0'-	1,000	-,071	-,016
HAB3	805'	-,074	-,152	660'-	-,107	,104	990'	,120	,121	,083	175	٠	-,055	,017	,543	,126	629'-	1,000	6/0'-	,000	,046
HAB2	-,165	-,002	8/0'	780,	,102	260'-	-,027	-,108	-,023	-,035	-,119		,082	910	-,224	-,054	1,000	6/9'-	-,133	,128	-,049
BALC	,488	690'-	-,064	850'-	,038	090'	910	,073	,032	-,025	700,		,012	,092	,273	1,000	-,054	,126	,064	,052	,153
ÚTIL	788,	-,162	-,192	-,177	-,186	104	114	,182	,126	,063	,120	•	,062	-,065	1,000	,273	-,224	543	,219	110	350
PISO	100	090'-	,025	,023	,061	-,041	-,023	,024	,033	-,011	910,		-,039	1,000	-,065	,092	910,	710,	-,002	,297	850'-
NS	670,	-,033	-,032	-,032	-,033	-,030	-,031	-,033	000	-,010	-,010		1,000	-,039	,062	,012	,082	-,055	-,011	-,024	950'
NSO		•				•	•		-			000'1									
	780,	,042	041	040	.042	660,	-,040	-,042	-,038	-,012	000		-,010	910	,120	700,	-,119	175	,014	,004	690'
SOP	, 053	.042	,041		.042	. 650,	.040	,042	.038	000	,012 1,		010	.011	.063	,025	. 980,	.083		.045	,025
NOP				_	_		_	_	_	_			_		126	_				0, 200,),- 710,
SP	101,	3 -,127	-,125	9 -,123	3 -,130	-,118	3 -,122	-,130	1,000	-,038	-,038		00'- 8	t ,033		3 ,032	3 -,023	121,	9 -,042		
٩N	199	-,143	-,141	-,139	-,146	-,133	-,138	1,000	-,130	-,042	-,042		-,033	,024	,182	,073	-,108	,120	,269	.018	,022
SO	,110	-,135	-,133	-,130	-,138	-,125	1,000	-,138	-,122	-,040	-,040		-,031	-,023	,114	,018	-,027	950'	-,045	-,038	680'
ON	,137	-,130	-,128	-,126	-,133	1,000	-,125	-,133	-,118	-,039	-,039		-,030	-,041	,104	090'	-,097	,104	-,003	,031	920'
P1	-,156	-,143	-,141	-,139	1,000	-,133	-,138	-,146	-,130	-,042	-,042		-,033	,061	-,186	038	,102	-,107	-,047	-,023	-,016
10	-,157	-,136	-,134	1,000	-,139	-,126	-,130	-,139	-,123	-,040	-,040		-,032	,023	-,177	850'-	780,	660'-	-,045	-,019	960'-
S1	-,208	-,138	1,000	-,134	-,141	-,128	-,133	-,141	-,125	-,041	-,041	•	-,032	,025	-,192	-,064	870,	-,152	-,046	500'-	-,024
Z	-,132	1,000	-,138	-,136	-,143	-,130	-,135	-,143	-,127	-,042	-,042	•	-,033	090'-	-,162	690'-	-,002	-,074	-,047	,022	-,111
PRECIO	1,000	-,132	-,208	-,157	-,156	,137	110	199	101	.053	780,		670,	100	788,	.488	-,165	809	195	,311	358
	PRECIO	Ξ	S	01	7	9	80	₽	SP	NOP	SOP	NSO	SZ	PISO	ĴĘ,	BALC	HAB2	HAB3	HAB4	>	×
	Pearson Correlation																				

