ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem A

Rational Irrationals
Input: rational.txt

Rational numbers are numbers represented by ratios of two integers. For a prime number p,
one of the elementary theorems in the number theory is that there is no rational number equal
to \/p. Such numbers are called irrational numbers. It is also known that there are rational
numbers arbitrarily close to /p.

Now, given a positive integer n, we define a set @, of all rational numbers whose elements are
represented by ratios of two positive integers both of which are less than or equal to n. For
example, Q4 is a set of 11 rational numbers {1/1,1/2,1/3,1/4,2/1,2/3,3/1,3/2,3/4,4/1,4/3}.
2/2,2/4, 3/3, 4/2 and 4/4 are not included here because they are equal to 1/1, 1/2, 1/1, 2/1
and 1/1, respectively.

Your job is to write a program that reads two integers p and n and reports two rational numbers
x/y and u/v, where u/v < /p < x/y and there are no other elements of @, between u/v and
z/y. When n is greater than /p, such a pair of rational numbers always exists.

Input

The input consists of lines each of which contains two positive integers, a prime number p and
an integer n in the following format.

pn

They are separated by a space character. You can assume that p and n are less than 10000, and
that n is greater than ,/p. The end of the input is indicated by a line consisting of two zeros.

Output

For each input line, your program should output a line consisting of the two rational numbers
z/y and u/v (x/y > u/v) separated by a space character in the following format.

x/y u/v

They should be irreducible. For example, 6/14 and 15/3 are not accepted. They should be
reduced to 3/7 and 5/1, respectively.

Sample Input

25
3 10
5 100
00

Output for the Sample Input

3/2 4/3
7/4 5/3
85/38 38/17

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem B

Square Coins
Input: coins.txt

People in Silverland use square coins. Not only they have square shapes but also their values
are square numbers. Coins with values of all square numbers up to 289 (= 172), i.e., 1-credit
coins, 4-credit coins, 9-credit coins, ..., and 289-credit coins, are available in Silverland.

There are four combinations of coins to pay ten credits:

ten 1-credit coins,

one 4-credit coin and six 1-credit coins,

two 4-credit coins and two 1-credit coins, and
one 9-credit coin and one 1-credit coin.

Your mission is to count the number of ways to pay a given amount using coins of Silverland.

Input

The input consists of lines each containing an integer meaning an amount to be paid, followed

by a line containing a zero. You may assume that all the amounts are positive and less than
300.

Output

For each of the given amount, one line containing a single integer representing the number of
combinations of coins should be output. No other characters should appear in the output.

Sample Input

2
10
30
0

Output for the Sample Input

1

27

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem C

Die Game
Input: die.txt

Life is not easy. Sometimes it is beyond your control. Now, as contestants of ACM ICPC, you
might be just tasting the bitter of life. But don’t worry! Do not look only on the dark side of
life, but look also on the bright side. Life may be an enjoyable game of chance, like throwing
dice. Do or die! Then, at last, you might be able to find the route to victory.

This problem comes from a game using a die. By the way, do you know a die? It has nothing
to do with “death.” A die is a cubic object with six faces, each of which represents a different
number from one to six and is marked with the corresponding number of spots. Since it is
usually used in pair, “a die” is a rarely used word. You might have heard a famous phrase “the
die is cast,” though.

When a game starts, a die stands still on a flat table. During the game, the die is tumbled in
all directions by the dealer. You will win the game if you can predict the number seen on the
top face at the time when the die stops tumbling.

Now you are requested to write a program that simulates the rolling of a die. For simplicity, we
assume that the die neither slips nor jumps but just rolls on the table in four directions, that
is, north, east, south, and west. At the beginning of every game, the dealer puts the die at the
center of the table and adjusts its direction so that the numbers one, two, and three are seen
on the top, north, and west faces, respectively. For the other three faces, we do not explicitly
specify anything but tell you the golden rule: the sum of the numbers on any pair of opposite
faces is always seven.

Your program should accept a sequence of commands, each of which is either “north”, “east”,
“south”, or “west”. A “north” command tumbles the die down to north, that is, the top face
becomes the new north, the north becomes the new bottom, and so on. More precisely, the die is
rotated around its north bottom edge to the north direction and the rotation angle is 90 degrees.
Other commands also tumble the die accordingly to their own directions. Your program should
calculate the number finally shown on the top after performing the commands in the sequence.
Note that the table is sufficiently large and the die never falls off during the game.

Input

The input consists of one or more command sequences, each of which corresponds to a single
game. The first line of a command sequence contains a positive integer, representing the number
of the following command lines in the sequence. You may assume that this number is less than
or equal to 1024. A line containing a zero indicates the end of the input. Each command line
includes a command that is one of north, east, south, and west. You may assume that no
white space occurs in any lines.

Output

For each command sequence, output one line containing solely the number on the top face at
the time when the game is finished.

Sample Input

1
north

north

east
south

Output for the Sample Input

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem D

Trapezoids
Input: trap.txt

If you are a computer user, you should have seen pictures drawn with ASCII characters. Such a
picture may not look as good as GIF or Postscript pictures, but is much easier to handle. ASCII
pictures can easily be drawn using text editors, and can convey graphical information using only
text-based media. Programs extracting information from such pictures may be useful.

We are interested in simple pictures of trapezoids, consisting only of asterisk (‘*’) characters
and blank spaces. A trapezoid (trapezium in the Queen’s English) is a four-sided polygon where
at least one pair of its sides is parallel. Furthermore, the picture in this problem satisfies the
following conditions.

1. All the asterisks in the picture belong to sides of some trapezoid.

2. Two sides of a trapezoid are horizontal and the other two are vertical or incline 45 degrees.
3. Every side is more than 2 characters long.

4. Two distinct trapezoids do not share any asterisk characters.

5. Sides of two trapezoids do not touch. That is, asterisks of one trapezoid do not appear in
eight neighbors of asterisks of a different trapezoid. For example, the following arrange-
ments never appear.

>k 3k %k x Xk %k k % 3k %k 5 X %

* * * k3 * *

%3k %k kokokkkkxk 3k %k %k %k
%3k %k kK% %3k %k
* * * *
%3k %k %k %k

Some trapezoids may appear inside others. For example, the following is a valid picture.

3k >k 3k sk k ok ok
%k

*
%k >k k
3k >k 3k sk k ok ok

* *
* *
* X *
* X *
* X *
* *
* *

Your task is to recognize trapezoids in the picture and to calculate the area of each trapezoid.
The area of a trapezoid is the number of characters on or inside its four sides, including the
areas of the trapezoids inside it, if any.

Input

The input contains several descriptions of pictures. Each of them starts with a line containing
an integer h (1 < h <1000), where h is the height (number of lines) of the picture. Each line of
the picture consists only of asterisk and space characters, and contains less than 80 characters.
The lines of the picture do not necessarily have the same length and may contain redundant
space characters at the end. After the last picture, an integer zero terminates the input.

Output

For each picture, your program should produce output lines each containing two integers m and
n in this order, which means there are n trapezoids of area m in the picture. Output lines for
one picture should be in ascending order on m and count all the trapezoids in the picture.

Output lines for two pictures should be separated by a line containing ten hyphen (‘=) characters.
This separator line should not appear before the output for the first picture nor after the output
for the last.

Sample Input

7
3k 3k %k 5k %k 5k Kk k
* *
X kokok *
X kX *
X kokok *
* *
k3K %k 5k k kK k
9
%k %k
* *
%k %k k %k % %k Xk %k %
* *
X%k * >k %k %k k
Xk
Xk
k% k
11
%k %k %k >k 3k >k 5k %k 3k %k 3k >k %k 5k %k 5k %k 5k %k 5k %k
>k 3k >k 5k %k 5k Xk %k Xk * *
>k %k %k %k %k * * %3k %k * >k %k >k 5k %k 5k Xk %k Xk *
X kkok * * * * * * *
%k %k X X * * %k %k >k %k >k %k Xk %k Xk * * kokk kkok * *
X % X kokokkk ok * * * * X % Xk * *
*k 3k k * * *k 3k k * * X%k X%k * *
%k 3k %k 5k > %k %k %k k * * *
** >k 3k 3k 3k >k >k 3k 3k 5k %k >k 3k 3k >k %k %k >k >k Xk %k %k :
3k 3K >k 3k >k 3k %k 3k >k 3k >k 3k 3k 3k 3k 3k 5k %k 3k %k 5k %k 5k %k %k >k %k k %k
0

(Spacing between lines in pictures is made narrower for better appearance. Note that a blank
line exists as the first line of the second picture.)

Output for the Sample Input

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem E

Mirror Illusion
Input: mirror.txt

A rich man has a square room with mirrors for security or just for fun. Each side of the room
is eight meters wide. The floor, the ceiling and the walls are not special; however, the room can
be equipped with a lot of mirrors on the walls or as vertical partitions.

Every mirror is one meter wide, as tall as the wall, double-sided, perfectly reflective, and ulti-
mately thin.

Poles to fix mirrors are located at the corners of the room, on the walls and inside the room.
Their locations are the 81 lattice points at intervals of one meter. A mirror can be fixed between
two poles which are one meter distant from each other. If we use the sign “+” to represent a
pole, the overview of the room can be illustrated as follows.

Let us denote a location on the floor by (x,y) in a rectangular coordinate system. For example,
the rectangular coordinates of the four corners of the room are (0,0), (8,0), (0,8) and (8,8),
respectively. The location (x,y) is in the room if and only if the conditions 0 < z < 8 and
0 <y < 8 are satisfied. If 7 and j are integers satisfying the conditions 0 <7 <8 and 0 < j <8,
we can denote by (7,) the locations of poles.

One day a thief intruded into this room possibly by breaking the ceiling. He stood at (0.75,
0.25) and looked almost toward the center of the room. Precisely speaking, he looked toward
the point (1, 0.5) of the same height as his eyes. So what did he see in the center of his sight?
He would have seen one of the walls or himself as follows.

e If there existed no mirror, he saw the wall at (8, 7.5).

e If there existed one mirror between two poles at (8, 7) and (8, 8), he saw the wall at (7.5,
8). (Let us denote the line between these two poles by (8, 7)—(8, 8).)

e If there were four mirrors on (8, 7)—(8, 8), (7, 8)—(8, 8), (0, 0)—(0, 1) and (0, 0)—(1, 0), he
saw himself at (0.75, 0.25).

e If there were four mirrors on (2, 1)—(2, 2), (1, 2)—(2, 2), (0, 0)—(0, 1) and (0, 0)—(1, 0), he
saw himself at (0.75, 0.25).

Your job is to write a program that reports the location at which the thief saw one of the walls
or himself with the given mirror arrangements.

Input

The input contains multiple data sets, each representing how to equip the room with mirrors.
A data set is given in the following format.

n
dy 11 J1
dy i3 Jo

The first integer n is the number of mirrors, such that 0 < n < 144. The way the k-th (1 < k < n)
mirror is fixed is given by dj and (i, ji). di is either ‘x’ or ‘y’, which gives the direction of the
mirror. If d is ‘x’, the mirror is fixed on (i, jx)—(ix + 1,7k). If dy is ‘y’, the mirror is fixed on
(ik, Jk)—(ik, jk + 1). The end of the input is indicated by a negative integer.

Output

For each data set, your program should output the location (z,y) at which the thief saw one
of the walls or himself. The location should be reported in a line containing two integers which
are separated by a single space and respectively represent = and y in centimeter as the unit of
length. No extra lines nor spaces are allowed.

Sample Input

< R K Y NY MY 1L O
O O N
O O 0 N

10

x 12
y 00
x 00

Output for the Sample Input

800 750
750 800
75 25
75 25

11

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem F

Heavenly Jewels
Input: jewels.txt

There is a flat island whose shape is a perfect square. On this island, there are three habitants
whose names are IC, PC, and ACM. Every day, one jewel is dropped from the heaven. Just as
the jewel touches the ground, IC, PC, and ACM leave their houses simultaneously, run with the
same speed, and then a person who first touched the jewel can get the jewel. Hence, the person
whose house is nearest to the location of the jewel is the winner of that day.

They always have a quarrel with each other, and therefore their houses are located at distinct
places. The locations of their houses are fixed. This jewel falls at a random point on the island,
that is, all points on the island have even chance.

When there are two or more persons whose houses are simultaneously nearest, the last person
in the order of

IC, PC, ACM

obtains the jewel.

Our interest is to know the probability for IC to get the jewel under this situation.

Input

The input describes one problem instance per line. Each line contains the z- and y-coordinates
of IC’s home, those of PC’s, and those of ACM’s in this order. Note that the houses of IC, PC
and ACM are located at distinct places. The end of the input is indicated by a line with six
Zeros.

The coordinates of the whole island are given by (0, 10000) x (0,10000) and coordinates of houses
are given in integer numbers between 1 and 9999, inclusive. It should be noted that the locations
of the jewels are arbitrary places on the island and their coordinate values are not necessarily
integers.

Output

For each input line, your program should output its sequence number starting from 1, and the
probability for the instance. The computed probability values should have errors less than 107>,

The sequence number and the probability should be printed on the same line. The two numbers
should be separated by a space.

12

Sample Input

2000 2000 8000 8000 9000 9500
2500 2500 7500 2500 2500 7500
0000O00O

Output for the Sample Input

1 0.50000
2 0.25000

13

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem G

Walking Ant
Input: ant.txt

Ants are quite diligent. They sometimes build their nests beneath flagstones.

Here, an ant is walking in a rectangular area tiled with square flagstones, seeking the only hole
leading to her nest.

O
\b

flagstone

a1 la 1o &
s J loe] |2"
X * @I ? puddle
. @ hole

The ant takes exactly one second to move from one flagstone to another. That is, if the ant is
on the flagstone with coordinates (z,y) at time ¢, she will be on one of the five flagstones with
the following coordinates at time ¢ + 1:

(CE, y)a (l‘ + 17 y)a (CE - 17 y)a (CE, Y+ 1)a (CE, Yy - 1)'

The ant cannot go out of the rectangular area. The ant can visit the same flagstone more than
once.

Insects are easy to starve. The ant has to go back to her nest without starving. Physical
strength of the ant is expressed by the unit “HP”. Initially, the ant has the strength of 6 HP.
Every second, she loses 1 HP. When the ant arrives at a flagstone with some food on it, she
eats a small piece of the food there, and recovers her strength to the maximum value, i.e., 6 HP,
without taking any time. The food is plenty enough, and she can eat it as many times as she
wants.

14

When the ant’s strength gets down to 0 HP, she dies and will not move anymore. If the ant’s
strength gets down to 0 HP at the moment she moves to a flagstone, she does not effectively
reach the flagstone: even if some food is on it, she cannot eat it; even if the hole is on that stone,
she has to die at the entrance of her home.

If there is a puddle on a flagstone, the ant cannot move there.

Your job is to write a program which computes the minimum possible time for the ant to reach
the hole with positive strength from her start position, if ever possible.

Input

The input consists of multiple maps, each representing the size and the arrangement of the
rectangular area. A map is given in the following format.

w h

diy diz diz -0 diy
da1 dyy daz -+ day
dpi dpa dpz -0 dpy

The integers w and h are the numbers of flagstones in the z- and y-directions, respectively. w
and h are less than or equal to 8. The integer d,, represents the state of the flagstone with
coordinates (z, y) as follows.

0: There is a puddle on the flagstone, and the ant cannot move there.

1, 2: Nothing exists on the flagstone, and the ant can move there. ‘2’ indicates where the ant
initially stands.

3: The hole to the nest is on the flagstone.

4: Some food is on the flagstone.

There is one and only one flagstone with a hole. Not more than five flagstones have food on
them.

The end of the input is indicated by a line with two zeros.

Integer numbers in an input line are separated by at least one space character.

Output

For each map in the input, your program should output one line containing one integer repre-
senting the minimum time. If the ant cannot return to her nest, your program should output
—1 instead of the minimum time.

15

Sample Input

10411041
10000001

11141113

8 5

12111114
10001001

14101101

10000301
11411111

87

12111111

11111114
11111111
11114111

41111111

11111111

11111113

8 8

11111111
11111111
11111111
14411111

14421100

11000003

11041111

11111111

8 8

11111111
11211111

11444111

11144101
11111101

11111103
11111111
11111111

00

16

Output for the Sample Input

17

ACM International Collegiate Programming Contest
Asta Regional Contest, Kyoto, 1999-12-0/

Problem H

Co-occurrence Search
Input: cooc.txt

A huge amount of information is being heaped on WWW. Albeit it is not well-organized, users
can browse WWW as an unbounded source of up-to-date information, instead of consulting
established but a little out-of-date encyclopedia. However, you can further exploit WWW by
learning more about keyword search algorithms.

For example, if you want to get information on recent comparison between Windows and UNIX,
you may expect to get relevant description out of a big bunch of Web texts, by extracting texts
that contain both keywords “Windows” and “UNIX” close together.

Here we have a simplified version of this co-occurrence keyword search problem, where the text
and keywords are replaced by a string and key characters, respectively. A character string S of
length n (1 < n < 1,000,000) and a set K of k distinct key characters ay, ..., ar (1 <k < 50)
are given. Find every shortest substring of S that contains all of the key characters ay, ..., ag.

18

Input

The input is a text file which contains only printable characters (ASCII codes 21 to 7E in
hexadecimal) and newlines. No white space such as space or tab appears in the input.

The text is a sequence of the shortest string search problems described above. Each problem
consists of character string S; and key character set K; (i = 1,2,...,p). Every S; and K; is
followed by an empty line. However, any single newline between successive lines in a string
should be ignored; that is, newlines are not part of the string. For various technical reasons,
every line consists of at most 72 characters. Each key character set is given in a single line. The
input is terminated by consecutive empty lines; p is not given explicitly.

Output

All of p problems should be solved and their answers should be output in order. However, it
is not requested to print all of the shortest substrings if more than one substring is found in a
problem, since found substrings may be too much to check them all. Only the number of the
substrings together with their representative is requested instead. That is, for each problem 1,
the number of the shortest substrings should be output followed by the first (or the leftmost)
shortest substring s;1, obeying the following format:

the number of the shortest substrings for the i-th problem
empty line

the first line of s;1

the second line of s;;

the last line of sj
empty line for the substring termination

where each line of the shortest substring s;; except for the last line should consist of exactly
72 characters and the last line (or the single line if the substring is shorter than or equal to 72
characters, of course) should not exceed 72 characters.

If there is no such substring for a problem, the output will be a 0 followed by an empty line; no
more successive empty line should be output because there is no substring to be terminated.

19

Sample Input

Thefirstexampleistrivial.
mfv

AhugeamountofinformationisbeingheapedonWWW.Albeititisnot
well-organized,userscanbrowseWWWasanunboundedsourceof
up-to-dateinformation,insteadofconsultingestablishedbutalittle
out-of-dateencyclopedia.However,youcanfurtherexploitWWiWby
learningmoreaboutkeywordsearchalgorithms.Forexample,ifyou
wanttogetinformationonrecentcomparisonbetweenWindowsandUNIX,
youmayexpecttogetrelevantdescriptionoutofabigbunchofWeb
texts,byextractingtextsthatcontainbothkeywords"Windows"and"UNIX"
closetogether.

bWn
3.1415926535897932384626433832795028841971693993751058209749445923078164
pi
Wagner,Bach,Beethoven,Chopin,Brahms,Hindemith,Ives,Suk,Mozart,Stravinsky
Weary

ASCIIcharacterssuchas+,*,[,#,<,}, _arenotexcludedinagivenstringas
thisexampleillustratesbyitself.Youshouldnotforgetthem.0Onemorefact
youshouldnoticeisthatuppercaselettersandlowercaselettersare
distinguishedinthisproblem.Don’tidentify"g"and"G",forexmaple.
However,weareafraidthatthisexamplegivesyoutoomuchhint!

I[GsC_1

ETAONRISHDLFCMUGYPWBVKXJQZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

20

Output for the Sample Input

1
firstexampleistriv
7

nWWW.Alb

Wagner ,Bach,Beethoven,Chopin,Brahms,Hindemith,Ives,Suk,Mozart,Stravinsky

CIIcharacterssuchas+,*, [,#,<,},_arenotexcludedinagivenstringasthisexampl
eillustratesbyitself.Youshouldnotforgetthem.Onemorefactyoushouldnoticeis
thatuppercaselettersandlowercaselettersaredistinguishedinthisproblem.Don
’tidentify"g"and"G",forexmaple.However,weareafraidthatthisexamplegivesyo
utoomuchhint!

ETAONRISHDLFCMUGYPWBVKXJQZ

21

