
Judging Details

Judge System

Your programs will be judged on the system once it’s submitted.

● Your program must read input data from the standard input, and write its output to the standard
output.

● Other outputs, e.g. writing to the standard error, will not be used for judging.

● You will never have to write to (open) a file, and are not allowed to do so.

Your programs will be run inside a sandboxed environment, i.e. with protections to prevent the system
from being damaged. Specifically:

● Memory usage is limited to 2 GB in the environment. Note it is the total amount, not the
amount you can use exclusively in your programs.

● The stack size is set unlimited (in C/C++), only capped by the total memory limit.

● Multi-processing or multi-threading is discouraged and unlikely beneficial, though not
prohibited. Remember your programs will run on a single processor core. The total number of
processes is limited to 64, including ones the system may create outside your programs.

● It is never recommended to run external commands. It is technically possible but probably
does not work as you expect.

If you have no idea about what these mean — no worries. Just remember your programs should use
the standard input and output, not files.

There are a couple more restrictions that apply:

● The total amount of source code must not exceed 256 KB in each submission.

● Your program must compile within 30 seconds.

See the DOMjudge team manual for more details about these restrictions.

Note about Platform

The judge system is running on Google Compute Engine, C2 machine type (c2-standard-4). For
more information about Google Compute Engine, please visit

https://cloud.google.com/compute/docs/cpu-platforms

1

https://cloud.google.com/compute/docs/cpu-platforms

Compilers & Options

The judge system uses the following compilers and execution environments (e.g., interpreters) with
the following options. "$@" is substituted with your source file(s); "$DEST" is the name of the binary
(which is “./a.out” by default) and is chosen arbitrarily by the system.

The "Run" commands indicated in the following table are for non-interactive problems. For interactive
problems, standard input and output are connected to a judge program. See the "Note on Interactive
Problems" section below for the details.

C

Version gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0

Compile gcc -g -O2 -std=gnu11 -static -o "$DEST" "$@" -lm

Run "$DEST" < infile > outfile

C++

Version g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0

Compile g++ -g -O2 -std=gnu++17 -static -o "$DEST" "$@"

Run "$DEST" < infile > outfile

Java

Version openjdk version "11.0.17" 2022-10-18
OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu220.04)

Compile javac -encoding UTF-8 -sourcepath . -d . "$@"

Run1 java -Dfile.encoding=UTF-8 -XX:+UseSerialGC -Xss64m -Xms1920m -Xmx1920m
MainClass < infile > outfile

Python 3 (PyPy)

Version Python 3.8.13 (7.3.9+dfsg-1~ppa1~ubuntu20.04, Apr 02 2022, 00:30:03)
[PyPy 7.3.9 with GCC 9.4.0]

Compile2 pypy3 -m py_compile "$@"

Run pypy3 "$@" < infile > outfile

Kotlin

Version kotlinc-jvm 1.7.10 (JRE 11.0.17+8-post-Ubuntu-1ubuntu220.04)

Compile kotlinc -d . "$@"

Run1 kotlin -Dfile.encoding=UTF-8 -J-XX:+UseSerialGC -J-Xss64m -J-Xms1920m
-J-Xmx1920m MainClass < infile > outfile

2 Python’s “Compile” commands only verify the syntax. *.pyc files will not be used in the real run.

1 DOMjudge will detect the main class automatically; you do not have to name it Main. See the DOMjudge team
manual for details.

2

The compilers and the execution environments are also available on your workstation as the following
commands:

● C compilegcc (no “run” command)
● C++ compileg++ (no “run” command)
● Java compilejava / runjava
● Python 3 compilepython3 / runpython3
● Kotlin compilekotlin / runkotlin

Submission Results

Your submissions will eventually be responded with one of the following results:

Accepted

● CORRECT — Your program ran successfully and passed all test cases.

Rejected with 20-minute penalty

● TIMELIMIT — Your program did not finish within the time limit for some test case.

● RUN-ERROR — Your program crashed with some test case or otherwise exited with a non-zero
exit status (e.g. because of missing “return 0;” in C/C++).

● OUTPUT-LIMIT — Your program produced excessive output (> 8 MB) for some test case.

● WRONG-ANSWER — Your program neither crashed nor exceeded the time limit, but produced
incorrect output for some test case(s).

● NO-OUTPUT — Your program did not produce any output for some test case(s).

Priority of the rejected results

As mentioned in the DOMjudge Team Manual, the judges may have prepared multiple test files for
each problem. DOMjudge will report back the results with the following priority:

● if one of the test cases causes TIMELIMIT, RUN-ERROR, or OUTPUT-LIMIT, it will be returned
immediately.

● if not, and some test cases cause WRONG-ANSWER, it will be returned.

● if not, and some test cases cause NO-OUTPUT, it will be returned.

Rejected with no penalty

● COMPILE-ERROR — Your program did not compile on the judging environment. You can
consult the error message(s) on the submission details page.

● TOO-LATE — Your program was submitted after the contest was over.3

3 Note it does not mean your programs need to be judged before the end of the contest. Your programs will be
judged as long as submitted (“queued”) within the contest time.

3

Note on Interactive Problems

You may meet “interactive problems” in the contest. They are the same as other problems in a way that
your program will read from standard input and print results to standard output. The difference is, the
standard input and output are connected to a special program (judge program), with which you have to
communicate back and forth. Unlike other problems where the input text is fixed for each test case, the
input varies based on your previous outputs.

In most programming environments, program output is buffered to speed up I/O operations. With
interactive problems, it is crucial to make sure the output is actually sent from your program and not
simply stored in internal buffers. This typically means flushing the output buffers after each write.

● In C/C++ with stdio.h (cstdio), you can use fflush(stdout). Writing “\n” does not
mean it will get flushed.

● In C++ with iostream, an output stream is flushed automatically each time you write the
std::endl manipulator. When using other means or if you want to be sure, call
std::cout.flush().

● In Java and Kotlin, the System.out stream has so-called “auto-flush” functionality and its
buffer is therefore flushed automatically with each newline character. When using other
streams or if you want to be sure, invoke the flush() method of the stream.

● In Python, you can use sys.stdout.flush().

The time limit for an interactive problem is how much time your submission may spend; the time
spent by the judge program is not counted towards this. Note that if your program attempts to read
more input than can be provided currently (e.g., because you forgot to flush your previous output, or
because of some other reason), then the program will stall indefinitely and your submission will get
TIMELIMIT.

Note on Languages

The judges have solved all problems in languages from at least two of the three distinct language
groups (Java/Kotlin, C/C++, and Python). They do not guarantee that all problems can be solved in
any language.

Note to Python Users

Only syntax errors will be reported as COMPILE-ERROR. Other types of errors, such as NameError or
ModuleNotFoundError, will result in RUN-ERROR and incur a 20-minute penalty.

It is fine, though not needed, to start your scripts with an interpreter directive (line starting with “#!”,
also known as shebang).4

The full list of modules available in the judge system can be found in the following section.

4 Some past versions of DOMjudge refused scripts that contain a shebang.

4

Available Python Modules

__decimal
__exceptions__
__future__
__pypy__
_abc
_ast
_audioop_build
_audioop_cffi
_blake2
_bootlocale
_bz2
_cffi_backend
_cffi_ssl
_codecs
_codecs_cn
_codecs_hk
_codecs_iso2022
_codecs_jp
_codecs_kr
_codecs_tw
_collections
_collections_abc
_compat_pickle
_compression
_contextvars
_continuation
_cppyy
_crypt
_csv
_ctypes
_ctypes_test
_curses
_curses_build
_curses_cffi
_curses_panel
_dbm
_decimal_build
_distutils_system_mod
_dummy_thread
_ffi
_functools
_gdbm
_gdbm_build
_gdbm_cffi
_hashlib
_hpy_universal
_immutables_map
_imp
_io
_jitlog
_locale
_lsprof
_lzma
_lzma_build
_lzma_cffi

_markupbase
_marshal
_md5
_minimal_curses
_multibytecodec
_multiprocessing
_opcode
_operator
_osx_support
_overlapped
_pickle_support
_posixshmem
_posixshmem_build
_posixshmem_cffi
_posixsubprocess
_pwdgrp_build
_pwdgrp_cffi
_py_abc
_pydecimal
_pyio
_pypy_interact
_pypy_irc_topic
_pypy_openssl
_pypy_testcapi
_pypy_util_build
_pypy_util_cffi
_pypy_util_cffi_inner
_pypy_wait
_pypy_winbase_build
_pypy_winbase_cffi
_pypy_winbase_cffi64
_pypyjson
_random
_rawffi
_resource_build
_resource_cffi
_scproxy
_sha1
_sha256
_sha3
_sha512
_signal
_sitebuiltins
_socket
_sqlite3
_sqlite3_build
_sqlite3_cffi
_sre
_ssl
_ssl_build
_string
_strptime
_struct
_structseq
_sysconfigdata

_syslog_build
_syslog_cffi
_testcapi
_testing
_testmultiphase
_thread
_threading_local
_vmprof
_warnings
_weakref
_weakrefset
_winapi
abc
aifc
antigravity
appdirs
argparse
array
ast
asynchat
asyncio
asyncore
atexit
audioop
base64
bdb
binascii
binhex
bisect
builtins
bz2
cProfile
cachecontrol
calendar
certifi
cffi
cgi
cgitb
chardet
chunk
cmath
cmd
code
codecs
codeop
collections
colorama
colorsys
compileall
concurrent
configparser
contextlib
contextlib2
contextvars
copy

5

copyreg
cpyext
crypt
csv
ctypes
ctypes_support
curses
dataclasses
datetime
dbm
decimal
difflib
dis
distlib
distro
distutils
doctest
dummy_threading
easy_install
email
encodings
ensurepip
enum
errno
faulthandler
fcntl
filecmp
fileinput
fnmatch
formatter
fractions
ftplib
functools
future_builtins
gc
genericpath
getopt
getpass
gettext
glob
greenlet
grp
gzip
hashlib
heapq
hmac
html
html5lib
http
identity_dict
idlelib
idna
imaplib
imghdr
imp
importlib
inspect
io

ipaddr
ipaddress
itertools
json
keyword
lib2to3
linecache
locale
lockfile
logging
lzma
macpath
macurl2path
mailbox
mailcap
marshal
math
mimetypes
mmap
modulefinder
modules
msgpack
msilib
msvcrt
multiprocessing
netrc
nntplib
ntpath
nturl2path
numbers
opcode
operator
optparse
os
packaging
parser
pathlib
pdb
pep517
pickle
pickletools
pip
pipes
pkg_resources
pkgutil
platform
plistlib
poplib
posix
posixpath
pprint
profile
progress
pstats
pty
pwd
py_compile
pyclbr

pydoc
pydoc_data
pyexpat
pyparsing
pypy_tools
pypyjit
pyrepl
queue
quopri
random
re
readline
reprlib
requests
resource
retrying
rlcompleter
runpy
sched
secrets
select
selectors
setuptools
shelve
shlex
shutil
signal
site
six
smtpd
smtplib
sndhdr
socket
socketserver
sqlite3
sre_compile
sre_constants
sre_parse
ssl
stackless
stat
statistics
string
stringprep
struct
subprocess
sunau
symbol
symtable
sys
sysconfig
syslog
tabnanny
tarfile
telnetlib
tempfile
termios
test

6

textwrap
this
threading
time
timeit
tkinter
token
tokenize
toml
tputil
trace
traceback
tracemalloc

tty
turtle
turtledemo
types
typing
unicodedata
unittest
urllib
urllib3
uu
uuid
venv
warnings

wave
weakref
webbrowser
webencodings
wheel
wsgiref
xdrlib
xml
xmlrpc
zipapp
zipfile
zipimport
zlib

7

