

PAT MINI MOCK

DUKES EDUCATION

1. Sketch $\frac{x^2+2}{1-x^2}$, and hence or otherwise find the values of x for which $\frac{x^2+2}{1-x^2}>-2$

2. Two resistors, R_1 and R_2 , are placed in parallel.

Is their total combined resistance

- **A** Larger than either R_1 or R_2
- **B** Between R_1 and R_2
- **C** Smaller than either R_1 or R_2
- ${\bf D}\,$ Impossible to say without knowing R_1 and R_2

3. A row of N blocks, each of mass m, are placed against one anothe. A force F is applied to the leftmost block, and the row of blocks accelerates. The contact force between the i^{th} and $(i + 1)^{\text{th}}$ is denoted $F_{i,i+1}$.

(a) i. What is the net force on each block? [1]
ii. Using this, find an expression for F_{i,i+1}, the contact force between the ith and (i + 1)th blocks. [5]

[2]

- (b) Plot $F_{i,i+1}$ against *i* (*i* can only take integer values, but pretend it is a continuous number for this plot, i.e draw a smooth plot).
- (c) Suppose N is very large, and the blocks are very small. Then what object does the row of blocks [2] begin to resemble? What do our results tell us about the forces in this object if we push it?