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Abstract. Market fragmentation across multiple AMMs creates inef-
ficiencies such as costly arbitrage, high slippage, and vulnerability to
sandwich attacks. These inefficiencies increase trading costs, reduce liq-
uidity provider profits, and degrade overall market efficiency. We pro-
pose a modification of the CPMM pricing mechanism, the Global Market
Maker (GMM), that incorporates liquidity information from all AMMs
to mitigate these inefficiencies. Our theoretical and numerical analyses
demonstrate that the GMM increases profits for AMMs and traders by
eliminating arbitrage opportunities. It also lowers the profitability of
sandwich attacks and minimizes impermanent losses.
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1 Introduction

As cryptocurrentcies’ popularity grows, so it does the need to exchange them for
other cryptocurrencies and for fiat currencies. Crypto exchanges have emerged to
satisfy these needs. A crypto exchange is a platform that allows users to buy, sell,
and trade cryptocurrencies. Crypto exchanges can be centralized or decentral-
ized. Centralized EXchanges (CEXs) are owned and operated by a single entity,
which holds users’ funds and executes trades. Decentralized EXchanges (DEXs)
do not rely on a central authority to hold users’ funds or execute trades. Instead,
they use smart contracts running over a public blockchain such as Ethereum, to
automate the trading process. DEXs have become increasingly popular reaching
a daily trading volume of billions of dollars [1].

There are two main types of DEXs, namely, order book DEXs and Automated
Market Makers (AMMs). Order book DEXs were introduced first but nowadays
AMMs are the most common type of DEX. Order book DEXs are similar to
traditional order book exchanges. Users place orders to buy or sell assets, and
these orders are matched with each other to execute trades. AMMs work by
creating liquidity pools, which are essentially large baskets of assets that are
held by the exchange. When a user wants to trade an asset, they do not actually
trade with another user. Instead, they trade with the liquidity pool. The AMM
will then use a predetermined mathematical formula to determine the price of
the trade. One of the most widely used AMMs is the Constant Product MM
(CPMM). CPMMs use a constant product formula, that ensures that the product
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of the reserves of two assets in the liquidity pool remains constant. The CPMM’s
formula inputs the volume of the trade and the available liquidity and outputs
the price of the trade.

A key feature of the CPMM algorithm is that the price it computes reflects
the relative scarcity of an asset in the AMM’s liquidity pool. This effectively
translates traders’ demand into prices: when market sentiment about an asset’s
price rises, traders buy the asset from the AMM, reducing its availability in the
liquidity pool until the AMM’s price aligns with market sentiment.

Market fragmentation across multiple AMMs presents challenges, the most
notable being the reliance on costly arbitrage to equalize prices. Each CPMM
independently adjusts swap rates based on its own trading history, discovering
asset prices at different paces. If two CPMMs start with the same exchange
rate and one executes a trade, their rates will diverge, with larger trades caus-
ing greater price differences. These discrepancies create arbitrage opportunities,
systematically exploited by arbitrageurs to restore price consistency. A recent
study [15] estimates that arbitrage profits on the Ethereum blockchain alone
amount to 170 million per year, leading to higher costs for traders and reduced
profits for liquidity providers, and thus reducing the efficiency of the blockchain
ecosystem.

Another consequence of market fragmentation is increased slippage, i.e. the
price’s sensitivity to order size. This effect is particularly pronounced in AMMs
with small liquidity pools, where large orders significantly alter asset scarcity,
causing sharp price impacts in the CPMM. Clearly, aggregating all liquidity pools
into a single AMM would substantially reduce slippage if the CPMM algorithm
remains in use.

Standard microeconomic analysis suggests that slippage reduces market ef-
ficiency as it deviates from the price-taking assumption; see [2]. In practice,
however, a more pressing issue is that higher slippage increases the profitabil-
ity of sandwich attacks. In this front-running strategy, an attacker places a buy
order before and a sell order after a victim’s trade, manipulating the price to
profit from the slippage they induce. As a result, the victim receives a worse
price, while the attacker exploits the price difference for profit.

In this paper, we explore how to address these inefficiencies by computing
prices in the spirit of the CPMM but based on the relative scarcity of assets in
the aggregate liquidity pools of all AMMs rather than in individual AMM pools.
This approach allows prices in a fragmented AMM ecosystem to behave as if
they were set by a single AMM.

Our first observation is the failure of the naive approach of applying the
CPMM formula using aggregate liquidity pools instead of individual ones, what
we call the naive Global Market Maker (nGMM). This algorithm can be easily
manipulated by strategically rearranging transactions, potentially leading to the
depletion of the AMM reserves.

Next, we characterize algorithms that fall between the standard CPMM and
the nGMM but are not manipulable as described in the previous paragraph.
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Among these, we define the Global Market Maker (GMM) as the algorithm
closest to the nGMM.

In the rest of the paper, we study the properties of the GMM and compare
it to the CPMM. We show that the GMM eliminates all arbitrage opportunities
and that the profits arbitrageurs would earn when all AMMs use the CPMM
algorithm instead are shared between the AMMs and the traders.

We also investigate, both theoretically and numerically, how much the GMM
reduces the profitability of sandwich attacks compared to the CPMM. In all
simulated examples using real data, we observe reductions of over 50%.

Finally, we analyze the performance of the GMM with respect to imperma-
nent loss. This is defined, see [11], as the loss incurred by a liquidity provider
when depositing assets into an AMM, if the relative prices of those assets change.
Since the GMM incorporates liquidity information from other AMMs, the price
it offers adjusts before reaching the AMM which minimises impermanent losses.

The rest of the paper is structured as follows.

2 Literature Review

Several alternative mechanisms have been proposed to mitigate MEV and the
costs of arbitrage. [6] introduce batch trading, a system where orders are exe-
cuted in batches rather than continuously, thereby reducing arbitrage and sand-
wich attacks. This mechanism leverages arbitrageurs’ competition to eliminate
price manipulation but relies on oracle pricing. [20] study verifiable sequencing
rules to prevent MEV and find that while some non-zero miner profits remain,
their proposed sequencing rule ensures that user transactions remain unaffected.
[6] develop a game-theoretic model to differentiate front-running from legiti-
mate trades. Their proposed protocol reduces front-running risk but requires
additional message exchanges, which could impact efficiency. [21] proposes a
modification of AMM algorithms that incorporate optimal on-chain swap rout-
ing and arbitrage.

The literature also provides a detailed analysis of the consequences of arbi-
trage between AMMs. [17] identifies arbitrage as a rebalancing cost for LPs in
a theoretical model of liquidity provision. [16] studies the effect of fees on arbi-
trage. [14] explores cross-chain arbitrage in decentralized exchanges, providing
an empirical analysis beyond the Ethereum ecosystem. [12] examine arbitrage
opportunities in Ethereum, identifying $30 million in cross-exchange and triangu-
lar arbitrage profits across 63,168 trading pairs between July 2020 and February
2022.

The profitability of sandwich attacks and more generally the issue of Maximal
Extractable Value (MEV) has been widely documented. [9] introduce the con-
cept of MEV.[5] provide a game-theoretic analysis of sandwich attacks. [18] esti-
mate that total extractable value over a 32-month period reached $541 million,
highlighting the scale of MEV extraction. [7] develop methodologies to identify
sandwich attacks, finding that $675 million was extracted before September 2022
and noting that high-volatility tokens are primary MEV targets. [10] provide a
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comprehensive literature review on MEV, categorizing extraction strategies and
countermeasures. [19] analyze MEV extraction in private pools, quantifying the
role of flashbots and other sophisticated arbitrage techniques.

More generally, our work is related to the literature on Automated Market
Makers (AMMs). [13] provide a general characterization of AMMs, comparing
them to Centralized Exchanges (CEXs). [3] analyze strategic liquidity provision
in AMMs. [8] analyse the conditions under which CPMM pricing is an optimal
liquidity provision mechanism.

3 The Analysis of Global Market Makers

In this section, we develop the theoretical foundations of the design of algorithms
for AMMs that make use of global information available in the blockchain. We
first define the algorithms we plan to improve, second, we define the range of
improvement and the set of constrains we are considering, and finally we provide
the theoretical analysis and conclusions.

We focus our attention on the most popular family of algorithms used by
automated market makers (AMMs): the constant product market makers (CP-
MMs) introduced by Vitalik Buterin in a blog post in 2016 [4] to provide a more
efficient and decentralized alternative to the provision of liquidity than tradi-
tional market makers. Hayden Adams provided the first implementation of the
CPMM in his decentralized exchange, Uniswap, in 2017, and Uniswap quickly
became the most popular decentralized exchange on Ethereum, and CPMMs the
most popular type of AMM.

The Constant Product Market Maker (CPMM) is an algorithm that man-
ages a pool of reserves consisting of two assets, known as the liquidity pool of
the AMM. A trader who wishes to swap one asset for another deposits a certain
amount of the first asset into the AMM. The CPMM algorithm then calculates
the amount of the second asset to be returned to the trader, ensuring that the
product of the reserves of both assets in the liquidity pool remains constant.
Formally, let xi and yi be the reserves of assets X and Y in the algorithm’s liq-
uidity pool. If a trader sends an amount ∆xi > 0 of asset1 X into the algorithm,
the CPMM returns an amount ∆yi > 0 of asset Y such that:

xi · yi = (xi +∆xi) · (yi −∆yi). (1)

The solution to this equation provides the following characterization of the
CPMM:

∆yCPMM (∆xi;xi, yi) =
yi

xi +∆xi
∆xi =

ri

1 + ∆xi

xi

, (2)

where ri ≡ yi

xi
is the ratio of reserves of the AMM. The interpretation of the last

equation is that the terms of trade ∆y
∆x of the CPMM are given by a measure of

1 Since X and Y are arbitrary assets, it is sufficient to describe orders in which the
trader sends asset X. The case in which the trader sends asset Y can be handled by
relabeling the assets.
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the relative scarcity of the assets in the liquidity pool, adjusted by a measure
of the order’s size relative to the liquidity pool of the AMM. The first term
represents the marginal price, as it corresponds to the limit of the terms of trade
when ∆xi tends to zero. The second term captures slippage, which quantifies the
rate at which the terms of trade deteriorate as the order size increases relative
to the liquidity pool.

In reality, several AMMs may be using the CPMM what creates profitable
arbitrage opportunities as we illustrate in the next example.

Toy example - Part 1: Arbitrage between CPMMs. Consider two
CPMMs, CPMM1 and CPMM2, each one with a liquidity pool containing
100 ETH and 400,000 UST. The price is the same for both CPMMs and
equal to 4,000 UST/ETH. All the computations in this example are done
using formula 1.
Suppose that a trade for buying 10 ETH arrives to CPMM1. This means
that after the trade, CPMM1’s pool will contain 90 ETH and 444,444 UST.
The price in CPMM1 is now 4,938 UST/ETH. The trader has paid 44,444
USTs. An arbitrage opportunity has emerged.
The arbitrageur will then buy 5 ETH from CPMM2 and sell 5 ETH to
CPMM1. After the arbitrage, the reserves of both CPMMs will be equal to
95 ETH plus 421,052 UST. The arbitrageur has made a profit of 2,339 UST.
Suppose at this point that a trader perform the reverse operation, meaning
that it sells 10 ETH to CPMM1 After the trade CPMM1 pool will contain
105 ETH and 380,952 UST and the trader has obtained 40,100 UST. Again,
an arbitrage operation has emerged which is seized by an arbitrageur buying
5 ETH from CPMM1 and selling them to CPMM1, making a profit of 2,005
UST. After these two arbitrage operations, the reserves of both AMMs wil
be restored to 100 ETH and 400,000 UST each.
Overall, in these 6 operations, the CPMMs retained their initial reserves
intact, the arbitrageur has made a profit of 4,344 UST which matches to the
net loss of the trader(s)-

The CPMM may be subjecto to sandwich attacks. This is a manipulative at-
tack that combines frontrunning and backrunning to exploit a target transaction.
The attacker places a trade before the target transaction (frontrunning) to move
the price in their favor and then executes another trade after (backrunning) to
profit from the price movement caused by the victim’s trade. In CPMMs, this
involves inserting trades around a large swap to capitalize on slippage, forcing
the victim to execute their trade at a worse price while the attacker profits from
the price difference. We illustrate sandwich attacks in the next example.
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Toy example - Part 2: MEV extraction in CPMM. Consider a CPMM
with a liquidity pool containing 100 ETH and 400,00 UST. The marginal
price is then 4,000 UST/ETH.
Suppose that a trader submits a transaction for buying 10 ETH. The MEV-
extractor performs a sandwich attack by placing a transaction to buy 15
before the victim’s transaction is executed and another transaction, in this
case selling 15 ETH after the victim’s transaction was executed. This would
works as follows:
Frontrunning: MEV-extractor transaction 1 that buys 15 ETH. The resulting
reserves after this initial transaction are 85 ETH and 470,588 UST. The
marginal price price has increased to 5,536 UST/ETH. The MEV-extractor
has spent 70,588 UST.
Victim’s transaction: THe victim buy 10 ETH. The resulting reserves are
then 75 ETH and 533,333 UST. The victim has payed 62,745 UST i.e. a
surplus of 18,301 UST compared to what she would have payed without the
frontrunning.
Backrunning: MEV-extractor transaction 2 that sells 15 ETH. The CPMM’s
reserves after the trade are 90 ETH and 444,444 UST. The MEV-extractor
obtains 88,858 UST, making a total profit of 18,301 UST (which is exactly
what the victim’s lost, of course).

Impermanent loss is the temporary loss liquidity providers (LPs) may expe-
rience when supplying liquidity to Automated Market Makers (AMMs), particu-
larly Constant Product Market Makers (CPMMs). It arises due to the automatic
rebalancing of token holdings in the liquidity pool as the relative price of tokens
changes. If one token’s price increases relative to the other, LPs end up holding
more of the cheaper token and less of the more expensive token than they ini-
tially deposited. The loss is termed impermanent because it may be reversed if
the price ratio returns to its original state. We illustrate it in the next example.

Toy example - Part 3: Impermanent loss in CPMM. Consider two
CPMMs with liquidity pools containing 100 ETH and 400,00 UST each. The
marginal price is then 4,000 UST/ETH.
Suppose that one or more traders submit transactions for buying 30 ETH
on each CPMM, moving the marginal price to 8,163 UST/ETH in both
CPMMs. The resulting reserves for each CPMM afterwards are 70 ETH
and 571,429 UST. We can compute impermanent loss IL) as the difference
between the value of the CPMM’s original reserves valued at the current
price and the current reserves valued at the current price i.e.
InitialReserves = 2 ∗ (100ETH ∗ 8, 163UST/ETH + 400, 000UST )
FinalReserves = 2 ∗ (70ETH ∗ 8, 163UST/ETH + 571, 429UST )
IL = InitialReserves− FinalReserves = 146, 922UST

Our objective is to generalize the CPMM to incorporate additional informa-
tion available on the blockchain, particularly the liquidity pools of other AMMs
that trade the same two assets. To formalize this, we assume a set I of AMMs,
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each with liquidity pools described by the vector (x,y) ∈ R2I
+ , where

x ≡
∑
j∈I

xj , and x−i ≡
∑

j∈I\{i}

xj ,

with analogous definitions for y and y−i. Let also r = y
x be the global ratio of

reserves.
We focus on modifications of the CPMM that determine the exchange rate

based not only on the individual liquidity pool but also on the entire vector of
liquidity pools across all AMMs. We refer to such algorithms as global. The most
natural global extension of the CPMM is as follows.

Definition 1. Given a vector of liquidity pools (x, y), the naive Global Market
Maker (nGMM) algorithm swaps ∆xi > 0 of X for an amount of Y :

∆ynGMM(∆xi;x, y) =
y

x+∆xi
∆xi =

r

1 + ∆xi

x

∆xi, (3)

if less than yi, and ∆ynGMM(∆xi;x, y) = yi, otherwise.

This algorithm determines the terms of trade as if executing a hypothetical
CPMM with reserves equal to the sum of individual reserves. Consequently,
the terms of trade reflect both global scarcity and global slippage. Notably,
if all AMMs adopt this algorithm, arbitrage opportunities are eliminated, as
illustrated in the following example.

Toy example - Part 4: nGMM Consider two market makers GMM1
and GMM2 using nGMM, where the initial distribution of liquidity pools
is (x0,y0) = (100ETH, 100ETH, 400000UST, 400000UST ). Suppose that
GMM1 receives a buy-order of 10 ETH. The resulting reserves of UST

of GMM1 can be computed as (100+100)∗(400,000+400,00)
(90+100) − 400, 000 which is

roughly 442,105 UST. This means that trader payed 42,105 UST to obtain
the 10 ETH. This is less than what the trader has to pay in the CPMM case
(see Toy Example 1). Actually, the reduction in what the trader had to pay
is exactly the arbitrageur profit computed in Toy Example 1.

However, the nGMM has two significant drawbacks.
The first drawback is straightforward: since the algorithm determines prices

based on global scarcity, it may completely deplete the reserves of one asset,
forcing the AMM to exit the market. This issue does not arise in the CPMM by
design. Withdrawing an amount∆y of Y arbitrarily close to yi requires supplying
the AMM with an unbounded amount of X, meaning the per-unit price of Y
diverges to infinity.

The second drawback is more subtle: the nGMM is vulnerable to exploitation
through strategically rearranged transactions. Specifically, the algorithm may sell
at a low price when an asset is relatively abundant across other AMMs, only to
buy it back at a higher price when it becomes scarce in subsequent trades. As a
result, the AMM may suffer a net decrease in its holdings of both assets.
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We illustrate these two vulnerabilities with an example.

Toy example - Part 5: Exhausting and Exploiting nGMM
Consider two market makers nGMM1 and nGMM2 using nGMM,
where the initial distribution of liquidity pools is (x0,y0) =
(100ETH, 100ETH, 400000UST, 400000UST ).

– Exhausting nGMM. Suppose that a nGMM1 receives a transac-
tion buying 100 ETH. nGMM1’s reserves in UST can be computed

as (100+100)∗(400,000+400,00)
(0+100) − 400, 000 which is roughly 1,2M UST.

nGMM1’s reserves in ETH are zero. This shows how with a finite amount
of UST, nGMM1’s reserves in ETH can be exhausted.

– Exploiting nGMM. We start again with the initial distribution of
reserves of 100 ETH and 400,000 UST in both nGMM1 and nGMM2.
Consider the effect of the following 3 transactions:
Exploit transaction 1: Trader buys 10 ETH from nGMM1. The resulting
reserves of nGMM1 are 90 ETH and 442,105 UST. The trader has paid
42,105 UST for the 10 ETH. nGMM2 still has 100 ETH and 400,000
UST.
Exploit transaction 2: Trader buys 10 ETH from nGMM2. The resulting
reserves of nGMM2 are then 90 ETH and 446,783 UST. The trader paid
46,784 UST. nGMM2 has more reserves than nGMM1 (same amount of
ETH but more UST)
Exploit transaction 3: Trader sells 10 ETH to nGMM1. The reserves for
nGMM1 woult then be 100 ETH and 395,321 UST, which is strictly less
than the initial reserves of nGMM1 (same amount of ETH and less UST).
nGMM has experiences a net loss of reserves. The trader has obtained
46,784 UST.
Observe that the last two transactions cancel out exactly and that the
result is a net transfer of reserves from nGMM1 to nGMM2 i.e. the
trader does not obtain any profit from the attack). This means that
the nGMM approach generates the incentives for participating market
makers to attack each other to extract each other reserves.

These two vulnerabilities render the nGMM unsuitable for practical imple-
mentation. Our approach, therefore, is to explore how much we can adjust the
CPMM to approximate the nGMM while avoiding these vulnerabilities.

For this purpose, we adopt a highly conservative approach. We restrict our
attention to algorithms that, once implemented by an AMM, say i, prevent
exhaustion and exploitation for any initial distribution of reserves (x0,y0) and
any sequence of swaps.

Formally, a sequence of swaps is given by {ι(t), ∆xt, ∆yt}Tt=1, where the index
t represents the order of transactions, ι(t) denotes the identity of the AMM
handling the swap, and ∆xt and ∆yt represent the quantity of X sent to and
the quantity of Y returned by AMM ι(t), respectively. The case in which the
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AMM receives Y and supplies X is handled by allowing ∆xt and ∆yt to take
negative values.

We impose only minimal consistency requirements. We say that a sequence of
transactions {(ι(t), ∆xt, ∆yt)}Tt=1, where ∆xt > 0, is consistent with the global
algorithm of AMM i if, at any t such that i = ι(t), swapping ∆xt for ∆yt (or vice
versa) is compatible with the algorithm of AMM i and the vector of liquidity
reserves updated with the preceding swaps {(ι(s), ∆xs, ∆ys)}t−1

s=1.
2

Definition 2. The global algorithm used by AMM i ∈ I is non-exhaustible if
there exists no distribution of liquidity pools and no sequence of swaps consistent
with the algorithm of i that causes AMM i to run out of either asset, i.e., such
that xi = 0 or yi = 0.

Definition 3. A global algorithm employed by AMM i is exploitable if there
exists an initial distribution of liquidity pools (x0

i , y
0
i ) and a sequence of swaps

consistent with AMM i’s algorithm such that AMM i ends up with a lower liq-
uidity pool, i.e., (xi, yi) ≤ (x0

i , y
0
i ).

3

Finally, we restrict our attention to algorithms whose terms of trade lie be-
tween those of the CPMM and the nGMM.

Definition 4. A global algorithm between the CPMM and the nGMM returns
for a swap ∆xi > 0 of X an amount of asset Y that lies between the minimum
and the maximum of ∆yCPMM(∆xi;x1, y1) and ∆ynGMM(∆xi;x,y), for a given
vector of reserves (x, y) ∈ R2.

The restriction to algorithms between the CPMM and the nGMM should be
interpreted as a minimal departure from existing practices. The CPMM repre-
sents the current state of the art, while the nGMM serves as its ideal generaliza-
tion to mitigate the inefficiencies caused by market fragmentation. Our objective
is to approximate the nGMM as closely as possible while deviating as little as
possible from the CPMM.

Proposition 1. A global algorithm in between the CPMM and the nGMM is
not exploitable if and only if it satisfies:

∆y(∆xi;x,y) ≤ ∆yCPMM (∆xi;xi, yi), (4)

for all (x, y) ∈ R2 and all swaps ∆xi > 0 of X, and the symmetric condition
holds for all swaps of Y .

Proof. By contradiction, suppose a distribution of reserves (x0,y0) and a swap
∆xi > 0 that delivers ∆yi units of Y that violates (4). The definition of CPMM
means that the swap ∆xi decreases the product of reserves, this is,

x0
i y

0
i > xiyi, (5)

2 To simplify notation, we do not explicitly consider liquidity injections. Their inclu-
sion is straightforward and does not affect our characterization.

3 We denote (xi, yi) ≤ (x′
i, y

′
i) if xi ≤ x′

i and yi ≤ y′
i, with at least one inequality being

strict.
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for xi ≡ x0
i + ∆xi and yi ≡ y0i − ∆yi. Now suppose that there is a sequence

of swaps submitted to the other AMMs that leads to a new vector of reserves
(x−i, y−i) such that:

y−i

x−i
≤ yi

xi
, (6)

and consider a swap to AMM i that sends ∆yi of Y to AMM i. Then:

∆xCPMM (∆yi;xi, yi) =

xi

yi

1 + ∆yi

yi

∆yi

≤
x
y

1 + ∆yi

y

∆yi

= ∆xnGMM (∆yi;x, y),

where the two equalitites follow from (2) and (3), and the inequality from the
fact that xi < x and that (6) implies that yi

xi
≥ y

x . This together with our
restriction to global algorithms between the CPMM and the nGMM means that
the amount of X that AMM i gives to the trader is at least:

∆̂xi ≥ ∆xCPMM (∆xi;xi, yi), (7)

which by the definition of ∆xCPMM (∆xi;xi, yi) implies that:

(xi − ∆̂xi)(yi +∆y) ≤ xiyi.

Since yi = y0i −∆yi, (5) means that xi − ∆̂xi < x0
i and thus the updated vector

of reserves of AMM i satisfies,

(xi − ∆̂xi, y
0
i ) ≤ (x0

i , y
0
i ),

as desired.

Thus, global algorithms in between the CPMM and nGMM buy asset X at
a price no larger than the CPMM price to avoid exploitation. Intuitively, the
CPMM price guaranties that when the AMM buys and immediately sells back
the asset the vector of reserves returns to its initial level. Thus, whenever a global
algorithm buys one of the assets more expensive than the CPMM it is going to
be exploited if it sells it back at CPMM prices or lower. But this will always
happen with global algorithms with prices in between the CPMM and nGMM if
the asset becomes so abundant among the other AMMs between the initial sale
and the sell back that the nGMM price becomes lower than the CPMM price.

Furthermore, since the CPMM is not exhaustible and Proposition 1 says that
to avoid exploitation the price at which the algorithm buys must be at most the
CPMM price, we can conclude that the algorithms that satisfy Proposition 1 are
not exhaustible.

Corollary 1. A non exploitable global algorithm between the CPMM and the
nGMM is also non exhaustible.
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Since CPMM prices put a lower bound to global non exploitable algorithms,
the closer one can get to nGMM prices while avoiding exploitation (and thus
exhaustability) is to use nGMM prices unless bound by the CPMM.

Definition 5. The Global Market Maker (GMM) algorithm is defined by:

∆yGMM (∆x;x, y) = min{∆yCPMM (∆x;x1, y1), ∆ynGMM (∆x;x, y)} (8)

To understand the GMM, it is useful to distinguish whether a swap ∆xi > 0
moves the AMM’s reserve ratio away from that of the other AMMs, which we
call a divergent swap. This occurs when the initial vector of reserves satisfies
yi

xi
≤ y−i

x−i
. In this case, asset X is relatively less scarce locally than globally,

causing the nGMM to pay a higher price ∆ynGMM
i for X than the CPMM price

∆yCPMM
i . Consequently, the GMM price ∆yGMM

i coincides with the CPMM
price. This is illustrated in Figure 1.

Fig. 1. The graph illustrates a divergent swap where the GMM receives ∆xi units of
X and returns ∆yGMM

i of Y to the trader, compared to the returns in the CPMM
(∆yCPMM

i ) and nGMM (∆ynGMM
i ) cases. It also shows the possible liquidity reserves

of AMM i after a swap, depending on the algorithm used (CPMM, nGMM, GMMM).

A swap ∆xi > 0 is non-divergent when yi

xi
> y−i

x−i
. There are two possible

cases. The first, which we refer to (with a slight abuse of terminology) as a con-
vergent swap, occurs when the nGMM returns less Y than the CPMM, causing
the GMM to coincide with the nGMM. This happens when ∆xi is small enough
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that the swap moves the reserve ratio toward that of the other AMMs, justify-
ing the name. However, it can also occur if ∆xi is large enough to decrease the
reserve ratio below that of the other AMMs but not so large that the nGMM
price exceeds the CPMM price. This is illustrated in Figure 2.

Fig. 2. The graph illustrates a convergent swap where the GMM receives ∆xi units
of X and returns ∆yGMM

i of Y to the trader, compared to the returns in the CPMM
(∆yCPMM

i ) and nGMM (∆ynGMM
i ) cases. It also shows the possible liquidity reserves

of AMM i after a swap, depending on the algorithm used (CPMM, nGMM, GMMM).

The last case, the overshooting swap, is when the non divergent swap ∆x is
so large that the nGMM pays a higher price ∆ynGMM

i for X than the CPMM
price ∆yCPMM

i , causing the GMM price ∆yGMM
i to match the CPMM price.4

We refer to this case as an overshooting swap and illustrate it in Figure 3.

Finally, note that the GMM always receives prices that are not worse than
the CPMM, strictly better in the case of convergent swaps. This means that
the CPMM product of reserves is expected to grow since the CPMM algorithm
keeps the product constant. Next corollary formalises this idea.

4 Formally, the overshooting case occurs at the point where:

yi
xi

· yi −∆yCPMM (∆xi;xi, yi)

xi +∆xi
=

y

x
· y −∆yCPMM (∆xi;xi, yi)

x+∆xi
.
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Fig. 3. The graph illustrates an overshooting swap where the GMM receives ∆xi units
of X and returns ∆yGMM

i of Y to the trader, compared to the returns in the CPMM
(∆yCPMM

i ) and nGMM (∆ynGMM
i ) cases. It also shows the possible liquidity reserves

of AMM i after a swap, depending on the algorithm used (CPMM, nGMM, GMMM).

Corollary 2. The product of reserves of an AMM with the GMM algorithm
weakly increases with every swap, strictly if the swap is convergent.

4 Properties of the GMM

In this section, we show that by exploiting efficiently the aggregation of the in-
formation from the liquidity pools of the other AMMs, the GMM improves in
the following key dimensions of the design of an AMM: first, it eliminates arbi-
trage opportunities and splits the efficiency gains between traders and AMMs;
second, it reduces slippage and thus the profitability of MEV sandwich trades,
and third, it reduces impermanent losses. A second order effect is that the share
of arbitrage profits that end in the AMMs increase their liquidity pools and as
a consequence further reduce their slippage.

4.1 Arbitrage

We start illustrating arbitrage with an example.



14 M. Bagnulo et al.

Toy example - Part 6: GMM
In this example, we show that under the same conditions of the example
1, in GMM no arbitrage opportunities appear, and that the profit of the
arbitrageurs is split between the AMMs and the traders.
We start with two GMMs (GMM1 and GMM2) that have initial reserves of
100 ETH and 400,000 UST each.
Similarly to Example 1, a trader buys 10 ETH from GMM1. Since both
GMMs have the same reserves, GMM1 uses the CPMM formula for this
trade (i.e. same as Example 1). After this trade, GMM1’s pool contains 90
ETH and 444,444 UST and GMM2’s pool is unchanged. The trader has paid
44,444 UST. The resulting prices are as follows:
GMM1 Buy
ETH

GMM1 Sell
ETH

GMM2 Buy
ETH

GMM2 Sell
ETH

4,938
UST/ETH

4,444
UST/ETH

4,444
UST/ETH

4,000
UST/ETH

It follows that no arbitrage opportunities emerge, as the most convenient
price to sell and buy from the GMMs is the common price.
Suppose now that, similarly to Example 1, the reverse transaction is exe-
cuted, namely that a trader sells 10 ETH to GMM1. In this case, the GMM
determines the prices in the convergent region. This implies that resulting
reserves of GMM1 after the trade are 100 ETH and 402,222 UST and that
the trader obtained 42,222 UST.
This means that after this trade, the reserves of the GMM have increased in
2,222 UST and that the trader have paid 2,122 UST LESS than in Example
1. In other words, GMM splits almost evenly the profit of the arbitrageur
between the trader and the GMM.

The insights of the above example hold true in general.

Proposition 2. There are no striclty profitable arbitrage opportunities between
a set of AMMs that use the GMM.

Proof. Arbitrage consists of a sequence of swaps initiated by the arbitrageur
across different AMMs. Regardless of which AMM executes each swap, the GMM
always offers worse terms of trade to the arbitrageur than the nGMM. Moreover,
the nGMM preserves the product of aggregate reserves. Consequently, we have:

xy ≤ (x+∆x1)(y −∆y1)

≤ (x+∆x1 +∆x2)(y −∆y1 −∆y2)

≤ . . .

≤

(
x+

T∑
t=1

∆xt

)(
y −

T∑
t=1

∆yt

)
,

for any sequence of trades sent by the arbitrageur to the different AMMs, where
∆xi represents the amount of X moved from the arbitrageur to an AMM, and
∆yi represents the amount of Y received by the arbitrageur from the AMM.
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This inequality implies that either
∑T

t=1 ∆yt ≤ 0 or
∑T

t=1 ∆xt ≥ 0, meaning
that the arbitrageur’s net position after the swaps,(

−
T∑

t=1

∆xt,

T∑
t=1

∆yt

)
,

must be either zero or have a strictly negative component. Thus, there are no
strictly profitable arbitrage opportunities.

Thus, replacing the CPMM with the GMM could benefit both traders and
AMMs by converting strictly profitable arbitrage opportunities into additional
profits for them. For any sequence of swaps submitted by traders or arbitrageurs
to different AMMs, the total assets transferred to and withdrawn from the AMMs
must equal the total variation in liquidity reserves. Arbitrage profits create a
wedge between the net flows of traders and AMMs. Eliminating arbitrage re-
moves this wedge, allowing for higher profits for both.

Furthermore, if traders strictly benefit from the switch, their terms of trade
must improve, whereas if AMMs strictly benefit, their liquidity pools should
grow, reducing slippage and improving terms of trade for future traders. In
either case, better terms of trade should lead to increased trading and thus
higher potential gains from the switch.

To assess the distribution of gains, we consider a stylized benchmark. First,
we assume that all strictly profitable arbitrage opportunities are exploited by
arbitrageurs and that traders always submit their trades to the AMM offering
the most favorable terms of trade, a strategy we call optimal routing. As we shall
see, this assumption aligns with empirical evidence.

Second, when all AMMs use the CPMM algorithm, the individual liquidity
ratios after maximum arbitrage, yi

xi
, must be equal across AMMs. However, this

common ratio may depend on how arbitrageurs extract their profit. For instance,
if arbitrageurs structure their swaps to realize profits exclusively in Y , ensuring
that the net position of asset X across all arbitrage swaps remains zero, the

global liquidity ratio
∑

i yi∑
i xi

will decrease, leading to a corresponding decline in

the common individual liquidity ratios yi

xi
.

To abstract from this complication, we assume that arbitrage profit extrac-
tion preserves the global liquidity ratio, ensuring that the resulting individual
liquidity ratios remain equal to the original global liquidity ratio. We refer to
this assumption as balanced arbitrage.

Proposition 3. Consider an initial distribution of liquidity (x,y) and a swap
∆x > 0 of X that is optimally routed and compare two scenarios:

1. All AMMs use the CPMM, and all strictly profitable arbitrage opportunities
in the initial liquidity distribution are exploited by balanced arbitrage before
the swap ∆x is executed.

2. All AMMs use the GMM algorithm.
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1. provides the trader strictly better terms of trade than 2. if and only if:

r

1 + ∆x
x

>
ri

1 + ∆x
xi

<
r

1 + ∆x√
max{xjyj}j∈I

r

, ∀i ∈ I. (9)

Proof. We begin with some remarks that apply to both parts of the proof. In
1., the CPMM mechanism and balanced arbitrage imply that AMM j’s reserves
(x′

j , y
′
j) satisfy the equations:

x′
jy

′
j = xjyj ,

x′
j

y′j
= r,

which yield the solutions: x′
j =

√
xjyj

r and y′j =
√
rxjyj . Consequently, the

terms of trade for a swap ∆x > 0 sent to AMM j are:
√
rxjyj√

xjyj

r +∆x
=

r

1 + ∆x√
xjyj

r

, (10)

where the optimal strategy for the trader is to swap with the AMM j that max-
imizes xjyj . This implies that the last term of (9) represents the most favorable
terms of trade for the trader in 1.

In 2., the terms of trade for a swap ∆x sent to AMM i are:

min

{
r

1 + ∆x
x

,
ri

1 + ∆x
xi

}
. (11)

We now use (10) and (11) to prove the necessary and sufficient conditions,
beginning with the ”if” direction. The first inequality in (9) implies that the
terms of trade in the 2. are determined by the second term in (11). Combining
this with the second inequality in (9) and (10) yields the desired result.

For the ”only if” direction, we proceed by contradiction starting with the
first inequality in (9). Suppose there exists some i ∈ I such that:

r

1 + ∆x
x

≤ ri

1 + ∆x
xi

.

This inequality, along with (10) and (11), implies that to complete the contra-
diction argument, it suffices to show:

x ≥
√

xjyj
r

∀j ∈ I,

To check that this inequality holds true it is replace r = y
x to get:

√
xy ≥ √

xjyj ∀j ∈ I,



Pooling Liquidity Pools in AMMs 17

which is clearly satisfied as desired.

To conclude the proof, suppose now that

r

1 + ∆x
x

>
ri

1 + ∆x
xi

≥ r

1 + ∆x√
max{xjyj}j∈I

r

, ∀i ∈ I.

The first inequality and (11), mean that the most convenient terms of trade for
the trader in 2. are:

max
i∈I

ri

1 + ∆x
xi

,

which by the second inequality (10) are more beneficial to the trader than the
most convenient terms of trade in 1., as desired.

To provide an intuitive interpretation of the Proposition, note that, in both
the CPMM and GMM algorithms, the terms of trade depend on the ratio of
reserves and slippage. For instance, in the case of the CPMM, when there is no
arbitrage or non-convergent GMM orders, a swap ∆x delivers:

ri

1 + ∆x
ri

∆x.

In the case of convergent orders under the GMM (priced as in the nGMM algo-
rithm), the swap delivers:

r

1 + ∆x
r

∆x.

Similarly, one can show that the CPMM after balanced arbitrage delivers:

r

1 + ∆x√
xjyj

r

∆x.

Thus, the first inequality in (9) requires that all AMMs price GMM orders
using CPMM prices, meaning there are no possible convergent swaps for ∆x. If
this holds, the second inequality ensures that GMM prices are worse for traders
than CPMM prices with arbitrage. This occurs because arbitrage improves the
best CPMM price for traders. Clearly, while these conditions can be met in
reality, they are very demanding.

The conditions will not hold in the following cases:

– All AMMs have the same reserve ratio. In this case, there is no room for
arbitrage in 1. and no convergent orders in 2., meaning there is no difference
between the prices offered by the GMM and the CPMM.5

5 Formally, if ri = r, then
√

xjyj
r

=
√

xjyj
rj

= xj , which violates the second inequality

in (9) for any i.
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– All AMMs have different reserve ratios, but ∆x is small. Heterogeneous
reserve ratios and a small order size mean that some AMMs will display
a convergent swap in 2. But convergent swaps always offer better prices
to traders than CPMM prices with balanced arbitrage: the reserve ratios
remain the same, but slippage is lower because the GMM uses as a reference
aggregate reserves.6

– All AMMs have the same product of reserves, i.e., xjyj is constant across
j. Again, convergent swaps offer better prices to traders than CPMM prices
with balanced arbitrage, so 1. can be better only when 2.´s best prices for
traders are CPMM’s prices. But in this case and in both scenarios, AMMs
differences can only arise because of differences in reserve ratios. Arbitrage
eliminates them in 1., whereas the heterogeneity of reserve ratios in 2. allows
traders to find better deals.7

For cases where (9) applies and thus worse terms of trade may impact trading
activity, there is a natural solution, which we describe next.

First, an important aspect of the GMM that we have not discussed but is now
relevant is how swaps between AMMs using the GMM algorithm are priced. Up
to this point, we have implicitly assumed that these trades do not occur. While
such orders do not require special consideration under the CPMM, they exhibit
a particular property in the nGMM: they do not affect the global aggregate
(x, y). Thus, for any swap ∆x of X sent to an AMM, any corresponding ∆y is
compatible with maintaining a constant aggregate product.

Here, we adopt the natural exchange rate given by the ratio of reserves, y
x ,

so that ∆ynGMM = y
x∆x ensures that each AMM preserves its value, computed

at the current aggregate marginal prices, i.e.,

(yi −∆ynGMM ) +
y

x
(xi +∆x) = (yi −

y

x
∆x) +

y

x
(xi +∆x) = yi +

y

x
xi.

Once the nGMM is defined for these inter-AMM swaps, the GMM can be defined
as in Section 3, and the properties discussed there apply in the same manner to
these swaps. Indeed, as we shall show later, these swaps are equivalent to other
swaps with zero net trade implemented by an external agent. From now on, we
assume that the GMM incorporates these specific pricing rules for inter-AMM
trades.

Next, we introduce a modification of the GMM designed to guarantee traders
an improvement over the CPMM.

Definition 6. The GMM algorithm with rebalancing is a global algorithm that
applies the GMM algorithm to the resulting updated vector of reserves from exe-
cuting the following algorithm iteratively until one of the condition fails (assume
wlog ∆x > 0).

6 In the limit as ∆x → 0, (9) fails, as it converges to r > ri < r for all i ∈ I.

7 A constant product xjyj means that for any l ∈ I,

√
max{xjyj}j∈I

r
=

√
xlyl
r

=

xl

√
rl
r
, which is strictly less than xl for any rl < r. Thus, the second inequality in

(9) fails.
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1. Check whether l ∈ argmax{xjyj}j∈I .
2. Check whether (9) is met.
3. Check whether ỹl

x̃l
< r, for the (updated) vector of reserves (x̃l, ỹl).

4. Update reserves using a swap from AMM l to j ∈ argmaxk∈I\{l}
ỹk

x̃k
of

min

{
rx̃j − ỹj

2r
,
ỹl − rx̃l

2r

}
units of X.

5. Go to 3.

The GMM algorithm with rebalancing is a variation of the GMM algorithm
that, before applying it, checks whether (9) holds. It is under this condition that
Proposition 3 states that the AMM provides better terms of trade for the trader
under 1. than 2. Specifically, the trader benefits from trading with the AMM
that has the largest product of reserves (and thus the lowest slippage) after all
arbitrage opportunities are exhausted and all AMMs have a reserve ratio equal
to the global ratio.

In this case, the GMM algorithm with rebalancing redistributes swaps to
the other AMMs until the AMM’s reserve ratio aligns with the global ratio.
Consequently, the GMM with rebalancing offers marginal terms of trade at least
as favorable as those in the CPMM with arbitrage. Additionally, slippage is lower
since rebalancing increases reserves because the AMM captures a portion of the
arbitrageurs’ profits.

Proposition 4. Consider an initial distribution of liquidity (x,y) and a swap
∆x > 0 of X (wlog) that is optimally routed. Compare the following two scenar-
ios:

1. All AMMs use the CPMM, and all strictly profitable arbitrage opportunities
in the initial liquidity distribution are exploited by balanced arbitrage before
the swap ∆x is executed.

2. All AMMs use the GMM algorithm with rebalancing.

2. provides better terms of trade for the trader.

Proof. Proposition 3 and the definition of GMM with rebalancing means that
we can restrict to the case where (9) is satisfied. Suppose from now on that this
is the case. In 1., arbitrage equalises the ratio of reserves of all AMMs. Solving
that the product of reserves of each AMM remains constant and that each ratio
of reserves must equal to r, one can use the CPMM formula to show that AMM
j would respond to the swap of ∆x sending back

r

1 + ∆x√
xjyj

r

, (12)

so that the most profitable trade for the trader is the AMM with largest product
of reserves, say l. To prove the proposition we shall show that the same AMM
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in 2., offers strictly better terms of trade. Since l = argmaxj∈I xjyj , the second
inequality of (9) implies that

rl

1 + ∆x
xl

<
r

1 + ∆x√
xlyl
r

=
r

1 +
√

r
rl

∆x
xl

, (13)

which implies that yl

xl
= rl < r, and thus there are other AMMs with ratios of

reserves larger than r. The algorithm GMM with rebalancing iterates sending
swaps from l to each of other AMMs in step 4. At each iteration in which the
updated ratio of reserves of l and j, r̃l ≡ ỹl

x̃l
and r̃l ≡ ỹj

x̃j
respectively, satisfy

r̃l < r < r̃j , there are two possibilities. Consider first that,

rx̃l − ỹl
2r

>
ỹj − rx̃j

2r
, (14)

then the swap sent to j is equal to ∆̃x =
ỹj−rx̃j

2r units of X. Applying the GMM
with rebalancing formula, the amount of Y obtained with the swap by l is equal
to:

min

{
ỹj

x̃j + ∆̃x
, r

}
∆̃x = min

{
ỹj

x̃j +
ỹj−rx̃j

2r

, r

}
∆̃x

= min

{
r̃j

1 +
r̃j−r
2r

, r

}
∆̃x

= min

{
r̃j

r + rj
, 1

}
r∆̃x

= r∆̃x.

Thus, the swap sent to j increases the ratio of reserves of l to:

ỹl + r∆̃x

x̃l − ∆̃x
=

ỹl +
ỹj−rx̃j

2

x̃l − ỹj−rx̃j

2r

<
ỹl +

rx̃l−ỹl

2

x̃l − rx̃l−ỹl

2r

= r.

Thus, the algorithm goes back to 3. and then 4. again, repeating the process.
Note that there are other AMMs with reserve ratios strictly larger than r since
the updated ratio of reserves of l is strictly less than r and r is the aggregate
ratio of reserves. Consider now the case:

rx̃l − ỹl
2r

≤ ỹj − rx̃j

2r
. (15)

A similar argument as above implies that the ratio of reserves of l increases
to r and then the algorithm stops at 3. once it revisits it again. Since this is
the only way the iterative part of the algorithm stops. The amount of Y that
the algorithm returns to the trader must be the minimum between the nGMM
quantity and the CPMM quantity that corresponds to the updated liquidity
reserves. The former is equal to:

y

x+∆x
∆x =

r

1 + ∆x
x

∆x, (16)
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and the latter to:

ỹl
x̃l +∆x

∆x =
r

1 + ∆
x̃l

∆x =
r

1 + ∆

xl

(
r+rl
2r

) ∆x, (17)

where (x̃l, ỹl) denotes the final vector of liquidity reserves of l after running the
iterative part of the algorithm. Since this part only stops at the point in which
ỹl

x̃l
= r and it satisfies r(xl−x̃l) = yl−x̃l we have that (x̃l, ỹl) =

(
xl

r+rl
2r , xl

r+rl
2

)
.

Since xl
r+rl
2r ≤ xl ≤ x, (17) is less than (16), and thus the amount of∆y returned

by the algorithm is equal to (17). To finish the proof we show that (17) is greater
than (12) for j = l. This is equivalent to show that r+rl

2r ≥
√

rl
r , which can be

easily checked.

One concern, however, is that rebalancing may introduce perverse effects.
We argue that this is not the case by showing that rebalancing produces the
same outcome for the AMMs as a specific sequence of trades with zero net trade
applied to the standard GMM. For simplicity, we illustrate this claim with an
example, though the argument is general.
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Toy example - Part 7: Rebalancing
Suppose a set of two AMMs with initial vector of reserves

(x,y) = (90ETH, 210ETH, 440000UST, 760000UST ),

and a swap of 1ETH sent by a trader to AMM 2. In this case, the GMM
with balancing applies the iterative algorithm sending 10ETH to AMM 1 to
get 40000UST in return ( 1200000UST

300ETH ∗ 10ETH). Then, the vector of reserves
is updated to

(100ETH, 200ETH, 400000UST, 800000UST ),

and AMM 2 returns to the trader 3980, 10UST ≈ 800000UST
200+1 ETH ∗ 1ETH

since it is a divergent order.
Consider next, the standard GMM and that the swap sent by the trader
is preceded by the following two trades sent by an additional trader. The
additional trader sends 10ETH to AMM1 to get 38709.67 UST in return
(≈ 1200000UST

300+10ETH ∗ 10ETH since it is a convergent trade). This updates the
vector of reserves to

(100ETH, 210ETH, 436.129, 03UST, 760000UST ),

and then sends 38709.67 UST to AMM2 to get 10ETH in return (≈
310ETH

1.161.290,32+38709.67UST 38709.67UST since it is again a convergent trade).
After these two trades, the vector of reserves is updated to

(100ETH, 200ETH, 400000UST, 800000UST ),

and now when the original trade is submitted to AMM 2 it returns to the
trader 3980, 10UST ≈ 800000UST

200+1 ETH ∗ 1ETH since it is a divergent order.

Thus, rebalancing neither enables additional manipulative strategies nor al-
ters the cost of manipulation compared to using phony trades. The only caveat
is that manipulation with phony trades requires additional asset holdings (e.g.,
10 ETH in the example).

4.2 MEV Sandwich Attacks

Next, we show MEV sandwich are strictly less profitable when the AMM uses
the GMM algorithm than when it uses the CPMM.

Definition 7. Given a swap of ∆x > 0 units of X submitted to AMM i, a MEV
sandwich ∆̂x > 0 consists of two swaps submitted before and after ∆x. The first
one of ∆̂x units of X and the second one of the units of Y obtained with the
first swap.

A MEV sandwich may be profitable due to slippage: the first order buys X
more cheaply than the price at which the second order sells because there is
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an order in between that makes X more scarce at the AMM. This is clearly
the case when the AMM uses CPMM in which prices reflect the scarcity at the
AMM but it is less so in the case of the GMM. In this later case, the first buy
order is satisfied at a price that reflects the scarcity created by the order but the
subsequent sell order is satisfied at a price that reflects the much smaller scarcity
existing in the set of AMMs. The reason for this is that one would expect that
AMMs should start from an equilibrium situation in which all (marginal) prices
are the same (and thus local levels of scarcity) and thus the first buy order moves
the AMM away from the other AMMs whereas the sell order moves the AMM
towards the other AMMs. Next proposition formalises this argument.

Proposition 5. The profit of a MEV sandwich is strictly lower when the AMM
uses GMM than when the AMM uses CPMM.

Proof. In this proof, we shall use the property that the GMM weakly increases
the product of reserves, strictly if in the convergent region. This is a consequence
of the definition of the CPMM, that keeps constant the product of reserves, and
the definiiton of the GMM, that returns either the same amount than the CPMM
or strictly less in the case of convergent orders.

Suppose the same order ∆x > 0 (the case ∆x < 0 is symmetric) and MEV

sandwich ∆̂x submitted to AMM i operating under two alternative protocols,
CPMM and GMM. The corresponding profits for the trader issuing the MEV
sandwich are equal to her final net positions in Y , this is:

−
(
∆̂ys + ∆̂F ys

)
,

for s ∈ {CPMM,GMM} and where:{
(∆̂x, ∆̂ys), (∆x,∆ys), (−∆̂x, ∆̂F ys)

}
,

is a sequence of feasible trades in AMM i with protocol s.
We first note that −∆yCPMM ≥ −∆yGMM , with the inequality strict if ∆̂x

is not price by the GMM in the divergent region. This follows from the fact that
Corollary 2 implies that

(x0
i + ∆̂x)(y0i + ∆̂yGMM ) ≥ (x0

i + ∆̂x)(y0i + ∆̂yCPMM ),

where the inequality is strict if the order is not in the divergent region.
Next, we show that −∆yFCPMM ≥ −∆yFGMM . Since the two consecutive

orders ∆̂x and ∆x are priced in both algorithms as a single order ∆̂x+∆x, we
can again conclude from Corollary 2, that

y0i + ∆̂yGMM +∆yGMM ≥ y0i + ∆̂yCPMM +∆yCPMM ,

with the inequality strict if either of the two orders ∆̂x and ∆x is not priced by
the GMM in the divergent region. From this inequality and the fact that

∆̂F yCPMM =
y0i + ∆̂yCPMM +∆yCPMM

x0
i +∆x

∆̂x
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means that,

∆̂F yCPMM ≤ ∆̂F yAUX ≡ y0i + ∆̂yGMM +∆yGMM

x0
i +∆x

∆̂x,

with the inequality strict if either of the two orders ∆̂x and ∆x is not priced by
the GMM in the divergent region. Keep this inequality in mind, and not that

the definition of ∆̂F yAUX also means that,(
y0i + ∆̂yGMM +∆yGMM + ∆̂F yAUX

) (
x0
i +∆x

)
=(

y0i + ∆̂yGMM +∆yGMM

)(
x0
i + ∆̂x+∆x

)
.

Applying again Corollary 2, we can conclude that the right hand side of the last
equation is less than:(

y0i + ∆̂yGMM +∆yGMM + ∆̂F yGMM

) (
x0
i +∆x

)
,

and thus ∆̂F yAUX ≤ ∆̂F yGMM , with the inequality strict when −∆̂x is not

priced by the GMM in the divergent region. Since at least one of the orders ∆̂x,
∆x and −∆̂x must not be priced by the GMM in the divergent region, we have

that ∆̂F yCPMM < ∆̂F yGMM as desired.

Next, we redo the MEV extraction example computed for CPMM in Example
2 in the case of GMM and we observe that the extracted MEV is less in the GMM
case.

Toy example - Part 7: MEV extraction in GMM Consider 2 GMMs
(GMM1 and GMM2) with initial reserves of 100 ETH and 400,000 UST
each. Suppose that a trader issues an order to buy 10 ETH 10 from GMM1
and that the MEV extractor launches a sandwich attack of 15 ETH. The
transactions of the MEV-extractor and victim will be processed as follows:
Frontrunning: MEV-extractor transaction 1 that buys 15 ETH. The resulting
reserves after this initial transaction are 85 ETH and 470,588 UST. The
marginal price price has increased to 5,536 UST/ETH. The MEV-extractor
has spent 70,588 UST. This is the same as Example 2.
Victim’s transaction: The victim buy 10 ETH. The resulting reserves are
then 75 ETH and 533,333 UST. The victim has payed 62,745 UST i.e. a
surplus of 18,301 UST compared to what she would have payed without the
frontrunning. Again, this is the same as Example 2.
Backrunning. The MEV-extractor sells the 15 ETH. In this case, GMM1 uses
the convergent formula, which yields that the MEV-extractor will obtain
73,684 UST, making a net profit of 3,096 UST, which is 15,205 UST less
than in Example 2.
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4.3 Impermanent Losses

Finally, we show that impermanent losses are also lower when the AMM uses
the GMM algorithm instead of the CPM. The impermanent losses refer to the
losses associated to liquidity provision in in an AMM and are defined as as the
difference between the value of the initial reserves (x0

i , y
0
i ) and the final reserves

(x1
i , y

1
i ) after a change in the market price. In the CPMM, there is only one

way to determine how the initial reserves translate into current reserves, but
in the GMM we need to determine how the transition occurs. As it turns out,
these transitions are irrelevant if the transition in monotone in the sense that
the marginal prices in all the AMMs move monotonically to the new price. We
model this transition assuming that a competitive trader submits orders in an
exogenous sequence (potentially, the optimal one to the competitive trader) to
each of the AMMs equalizing each of the marginal prices to the new market
price.

Definition 8. Suppose an initial price of X in terms of Y of r0 and a set of
AMMs I, each with a ratio of reserves yi

xi
= r0, ∀i ∈ I. The impermanent loss

of AMM i associated to a change of prices from r0 to r1 is equal to:(
r1x0

i + y0i
)
−
(
r1(x0

i +∆xi) + y0i +∆yi,
)

where (∆xi, ∆yi) is determined by an exogenous sequence of trades of a compet-
itive trader.

Proposition 6. The impermanent losses of AMM i use GMM are lower than
the impermanent losses when AMM i uses CPMM, strictly if AMM i is not the
first one in the exogenous sequence of trades use by the competitive trader.

Proof. We shall use in our proof that x∗y = k and y
x = r has as unique solution

x =
√

k
r and y =

√
r ∗ k. Thus, the value of the reserves of an AMM with

reserves satisfying xi ∗ yi = k and with a marginal price yi

xi
= r at price r′ is

equal to:

r′ ∗ xi + yi =

(
r′

r
+ 1

)√
k ∗ r.

This formula and the property that the CPMM has a constant size means that
the impermanent loss of a CPMM that starts with reserves (x0

i , y
0
i ) after a price

increase from r0 to r1 is equal to:(
r1

r0
+ 1

)√
x0
i ∗ y0i ∗ r0 − 2

√
x0
i ∗ y0i ∗ r1,

whereas the same price increase in the GMM gives impermanent losses:(
r1

r0
+ 1

)√
x0
i ∗ y0i ∗ r0 − 2

√
x1
i ∗ y1i ∗ r1,

where x1
i ∗ y1i is the product of reserves after the price increase. By Corollary

2, x1
i ∗ y1i ≥ x0

i ∗ y0i , strictly if the AMM is not the first one in the exogenous
sequence, which implies the proposition.
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The next example illustrate this claim.

Toy example - Part 8: Impermanent losses in GMM Consider two
GMMs with liquidity pools containing 100 ETH and 400,00 UST. The
marginal price is then 4,000 UST/ETH.
Similarly than in Example 3, suppose that one or more traders submit trans-
actions for buying 30 ETH on each GMM.
We can compute impermanent loss IL) as the difference between the value
of the GMM’s original reserves valued at the current price and the current
reserves valued at the current price.
To make a simple example, we assume that a first order for 30 ETH arrives to
GMM1 and a second order for 30 ETH arrives to GMM2. The final reserves
for GMM1 are the same as in one of the CPMMs in Example 3, namely 70
ETH and 571,429 UST.
The final reserves of GMM2 resulting from the second trade of 30 ETH can
be computed using the convergent formula for 28 ETH, at point which the
relative prices are equalized for the two GMMs and the divergent formula
for the remaining 2 ETH.
Overall, this implies that the impermanent loss for GMM1 and GMM2 are
equal to 129,023 UST, which is 17,899 UST less than in Example 3.

The next section provides simulations using real life transactions and provides
a quantitative assessment of how large this reduction of impermanent losses is.

5 Numerical Evaluation

In our data set, we consider transactions in two AMMs in the Ethereum network,
Uniswap8 V2 and Sushiswap, and one of the most traded pairs USDT/WETH,
and three other less traded pairs ALX/WETH, BLOCKS/WETH and VSP/WETH.
For the USDT/WETH pair we consider three different periods: two periods with
high price variation and one period with low price variation.

First, we shall consider our results with respect to arbitrage. For this, we first
illustrate that our assumptions of optimal routing are consistent with the data.
In Table 1, we estimate the optimality of routing by computing the unrealised
profits from not optimally routing over the volume of trade.

Next, we illustrate the potential benefits of replacing the CPMM with GMM.
For that we compute in the different periods the amount of arbitrage profits with
respect to the fees revenues of the AMMs. Our results show that the gains for a
traded pair are modest ranging from 0.23% to 5.82%. For the other less traded
pairs, the gains are significant which suggests that the GMM can be particularly
effective for less traded pairs.

To assess the effectiveness of the GMM algorithm in reducing the profitability
of sandwich operations, we analyze all such operations that occurred in selected

8 We chose Uniswap V2 instead of V3 due to the similar fee structure that it has
compared to Sushiswap for ease of exposition.
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Pairs WETH/ Profits from Routing / Volume of Trade

USDT (11565020-11640849) 0.0003
USDT (12390294-12467913) 0.0007
USDT (13317339-13406729) 0.00016
ALX (1948971-12050004) 0.0015
BLOCKS (14356780-14497019) 0.017
VSP (13528195-13917471) 0.023

Table 1. Routing Errors

trading pairs between 2021 and 2023. We use reserves at the beginning of each
block where a sandwich operation appears and simulate the entire block of trans-
actions. For the counterpart AMM, we use its reserves at the start of the same
block but keep them constant, disregarding trades that may have occurred in
parallel with the sandwich operation.

We exclude operations that result in an ”imbalanced” position9 and, for this
purpose, equate the frontrun operations with the backrun. If an operation re-
mains unprofitable after this adjustment, we discard it. Our simulations suggest
that this exclusion does not introduce significant bias, as the simulated MEV
operators’ profits closely match those reported by zeromev.

Finally, we simulate the same trades using a GMM design. Our results, pre-
sented in Table 3, show that in all cases, the GMM design significantly reduces
the profitability of sandwich operations and, in many cases, renders them un-
profitable.

Pairs WETH/ Profitable Mev operations(CPMM) Sandwich Profits (CPMM) Profitable Mev operations(GMM) Sandwich Profits (GMM)

USDT (uni) 446 988,254$ 177 260,000$

USDC (uni) 240 853,872$ 90 140,000$

DAI (uni) 443 922,269$ 94 84,311$

WBTC (uni) 123 4 WETH/20 BTC 18 0.1 WETH/0.78 BTC

LINK(uni) 464 8,949 LINK/85 WETH 200 1,479 LINK/9.86 WETH

LDO (Sushi) 1,152 139,336 LDO/260 WETH 1,114 132,183 LDO/245 WETH

CRV (Sushi) 659 140,345 CRV/197 WETH 473 21,102 CRV/90 WETH

Table 3. Simulations for Sandwich operations

9 Measuring the profits of imbalanced sandwich positions is an open question in the
literature and beyond the scope of this paper.
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