

GMM Implementa,on report

SOLUTION DEVELOPMENT.

• Pla1orm Selec7on.

There are several reasons why Uniswap V2 was chosen as the founda8on for developing
a solu8on to the problem at hand.

 Uniswap V2 is one of the most widely used and popular DEXs in the ecosystem,
which means it has a large user base and a broad community familiar with its
opera=on.

 The CPMM model implemented in Uniswap V2 is simple, making it ideal for
introducing modifica=ons.

 It is highly compa=ble with ERC-20 tokens and the Ethereum network, ensuring
that any development on top of Uniswap V2 is broadly interoperable within this
ecosystem.

 The extensive documenta=on and available informa=on about this plaKorm
greatly facilitates development.

 The stability of Uniswap V2 makes it an excellent op=on for implemen=ng
enhancements and modifica=ons.

 Any improvements and modifica=ons can be scaled to other versions of Uniswap,
such as Uniswap V3.

 Being open-source makes development even more accessible.

• Liquidity and Fee Management.

The first issue addressed was liquidity management. This is due to the fact that Uniswap
V2, with its CPMM formula, only requires the liquidity within its own AMM, so no further
considera8ons are needed. However, to implement a more global solu8on, it is necessary
to query the liquidity of other AMMs.

This does not present major concerns, as long as a smart contract has access to the
addresses of other AMMs—it can query their liquidity without any problem or addi8onal
cost, since querying does not alter the blockchain.

This has been developed through a func8on that allows adding the addresses of other
AMMs, enabling a smart contract to take into account the liquidity of as many AMMs as
desired, in addi8on to its own. Once the addresses are in the list, a simple loop is used to
average the external liquidity and sum up the total.

Fees will be set at 0.3%, as in Uniswap V2. This will be done simply by subtrac8ng 0.3%
from the user based on what the formula calculates, if the user provides an amount of one
cryptocurrency and the program must calculate how much of the other they should receive,
or by adding that 0.3% to the user, if the user requests a specific amount of one
cryptocurrency and the program must calculate how much they need to pay.

• Applica8on of the Formula.

To compute the output amount in a swap, the following formula is used:

• min(y / (x + Δx), yi / (xi + Δx)) * Δx

Here, x and y represent the reserves of the token pair on the main plaUorm, while xi and
yi are the reserves on an external plaUorm. Δx is the amount of the input token provided
by the user. The formula calculates the output by taking the smaller exchange rate between

the two sources and mul8plying it by the input amount. This ensures a conserva8ve and
stable output based on the most limi8ng liquidity condi8on.

Example 1: Minimum comes from the main AMM

Let’s say a user wants to swap 10 units of token X.

• Main AMM reserves: x = 100, y = 200

• External AMM reserves: xi = 100, yi = 400

We compute:

• y / (x + Δx) = 200 / (100 + 10) = 200 / 110 ≈ 1.82

• yi / (xi + Δx) = 600 / (200 + 10) = 600 / 210 ≈ 2.86

The minimum is 1.82 → Output = 1.82 * 10 = 18.18 tokens Y

Example 2: Minimum comes from the external AMM

Now consider:

• Main AMM reserves: x = 100, y = 200

• External AMM reserves: xi = 150, yi = 100

We compute:

• y / (x + Δx) = 200 / (100 + 10) = 200 / 110 ≈ 1.82

• yi / (xi + Δx) = 300 / (250 + 10) = 300 / 260 ≈ 1.15

The minimum is 1.15 → Output = 1.15 * 10 = 11.5 tokens Y

• Func7onal Requirements.

Iden8fier RF-01

Descrip8on
The system must be able to calculate the exchange rates
between two tokens.

Type Func8onal.

Priority High.

Iden8fier RF-02

Descrip8on

The system must be able to perform token swaps.

Type Func8onal.

Priority High.

Iden8fier RF-03

Descrip8on
The system must be able to manage liquidity across
mul8ple plaUorms.

Type Func8onal.

Priority High.

Iden8fier RF-04

Descrip8on
Each smart contract must be able to query the liquidity of
other plaUorms.

Type Func8onal.

Priority High.

Iden8fier RF-05

Descrip8on
Each smart contract must have the addresses of the
others.

Type Func8onal.

Priority High.

Iden8fier RF-06

Descrip8on
The system must be able to calculate the exchange rates
between two tokens.

Type Func8onal.

Priority High.

Iden8fier RF-07

Descrip8on

GMM formula must be implemented.

Type Func8onal.

Priority High.

Iden8fier RF-08

Descrip8on

The system must be compa8ble with all ERC20 tokens.

Type Func8onal.

Priority High.

Iden8fier RF-09

Descrip8on The system must be integrated into Uniswap V2.

Type Func8onal.

Priority Media.

Iden8fier RF-10

Descrip8on

The system must manage the fees for each transac8on.

Type Func8onal.

Priority High.

Iden8fier RF-11

Descrip8on

The system must charge transac8on fees in ETH.

Type Func8onal.

Priority High.

• Non-Func7onal requirements.

Iden8fier RNF-01

Descrip8on
The system must be capable of handling a high volume of
transac8ons.

Type Non-Func8onal.

Priority High.

Iden8fier RNF-02

Descrip8on Smart contracts must be secure.

Type Non-Func8onal.

Priority High.

Iden8fier RNF-03

Descrip8on
Smart contracts must be op8mized to minimize gas costs
on the Ethereum network.

Type Non-Func8onal.

Priority Medium.

Iden8fier RNF-04

Descrip8on The user interface must be intui8ve and accessible.

Type Non-Func8onal.

Priority Medium.

Iden8fier RNF-05

Descrip8on The smart contract must be well-structured.

Type Non-Func8onal.

Priority Medium.

Iden8fier RNF-06

Descrip8on The smart contract must be efficient.

Type Non-Func8onal.

Priority High.

Iden8fier RNF-07

Descrip8on
The system must consider applicable regula8ons across
different jurisdic8ons.

Type Non-Func8onal.

Priority High.

Iden8fier RNF-08

Descrip8on

The system must handle excep8ons in a way that no data
is compromised in case of an error.

Type Non-Func8onal.

Priority High.

RESULTS

• Arbitrage.

The problem for which this solu8on is proposed is arbitrage. In order to observe if the
proposed solu8on eliminates or minimizes this issue, a comparison can be made
between the results, given by the cryptocurrency exchange of two users on two different
plaUorms, with four liquidity sources being considered, where the first user makes
exchanges at moments when the exchange rate is unfavorable to them, and the second
user does so at the moments that are most beneficial for them.

For example, in one case, you can start with what is shown next.

Now, the users will make the following transac8ons:

 Transac=on 1: User 1 buys 5 tokens A from plaKorm 1.

 Transac=on 2: User 2 buys 2.5 tokens A from plaKorm 2.

 Transac=on 3: User 2 sells 2.5 tokens A to plaKorm 1.

 Transac=on 4: User 1 sells 2.5 tokens A to both plaKorms.

The results are shown below. The first table shows, for User 1, the amount of token A,
token B using the original Uniswap V2, and token B using the proposed solu8on. The second
table shows the same data but this 8me for User 2.

User1 Token A (both) Token B (modified) Token B (original)

Start 10 30 30

Transac8on 1 15 10,36 8,89

Transac8on 2 15 10,36 8,89

Transac8on 3 15 10,36 8,89

Transac8on 4 10 29,77 29,34

User2 Token A (both) Token B (modified) Token B (original)

Start

Transac8on 1

10

10

30

30

30

30

Transac8on 2 12,5 20,26 19,71

Transac8on 3 10 30,02 30,47

Transac8on 4 10 30,02 30,47

As can be seen in the tables, first, User 1, when buying 5 tokens A on PlaUorm 1, simply
exchanges them for the corresponding amount of tokens B. It can be observed that the
amount is essen8ally the same in both the original and the proposed solu8on.

In the next two transac8ons, first, User 2 buys 2.5 tokens A on PlaUorm 2, which s8ll
holds the ini8al tokens, and then sells them to PlaUorm 1. As User 1 had previously
purchased tokens A, these tokens now have a lower propor8on than on PlaUorm 2. Here,
improvements can already be seen, as in the original, User 2 earns 0.47 token B, while in
the proposed solu8on, they only earn 0.02, which is less than the fees charged.

Finally, in Transac8on 4, User 1 tries to recover the ini8al tokens by selling their tokens
A. However, since User 2 has already sold them, the propor8on between the two plaUorms
equalizes, resul8ng in a loss of 0.66 tokens B in the original case, while in the proposed
case, only a loss of 0.33 occurs.

To summarize, it can be observed that arbitrage is eliminated, as User 2 earns 0.47 token
B in the original case, while in the proposed case, they only earn 0.02, which is less than
the fees charged.

Gas Cost.

"Gas is the term for the amount of ether (ETH), the na8ve cryptocurrency of Ethereum,
required by the network for a user to interact with it. These fees are used to compensate
Ethereum miners for the energy needed to verify a transac8on and to provide a layer of
security to the Ethereum network by making it too costly for malicious users to spam the
network."

This is why it is important that it does not increase too much, as it would mean extra
costs for users with every transac8on they make. The following is an approximate graph,
which corresponds to the cost of one transac8on when involving one to six AMMs. This
helps to observe how the gas cost evolves.

As shown, as more AMMs are taken into account, the gas cost increases, but not in a
dispropor8onate way. Moreover, it can be adjusted since any number of AMMs can be
considered. This means that the creator of each smart contract can choose the extent to
which they prefer to address arbitrage or priori8ze minimizing gas costs.

In summary, from the perspec8ve of gas expenditure, it is viable, as the cost grows very
slowly.

• Efficiency.

Another important aspect is code efficiency, since the calcula8ons must be carried out
across many nodes (computers) to validate a transac8on. Therefore, any increase in
computa8on 8me will affect all nodes.

The following figure shows a graph of the 8me it takes to execute a transac8on of the
proposed solu8on. In this context, the exact execu8on 8mes are not par8cularly important,
but rather how they grow. Since the same equipment is used for all tests, we can reliably
assess the rela8ve growth in computa8on 8me.

As shown, computa8on 8mes increase slightly between using a single AMM and two
AMMs, as this is where the most significant change occurs. However, beyond that, the
increase is minimal each 8me liquidity from another AMM is added. Since the growth is
barely no8ceable, from an efficiency standpoint, this project is indeed viable. Using an
excessively large number of AMMs might introduce some issues, but there’s no prac8cal
reason to reach such high numbers.

Lessons learned

The prototype implementa8on of the Global Market Maker (GMM) on top of UniswapV2 has
exposed a set of prac8cal insights that may guide future researchers aremp8ng to integrate
blockchain-wide liquidity into AMMs. Below we summarise what worked well, what proved
difficult, and where open ques8ons remain.

1. Start on a simple, well-known AMM.
Uniswap V2’s constant-product code is short, clear, and heavily audited, so adding new logic
was quick. Porting the same idea to newer designs such as Uniswap V3 or Curve would take
much more engineering. Future work should begin on a simple base, then migrate once core
ideas are proven.

2. Reading outside reserves is cheap but finding pools is not.
A contract can read reserves from other pools with no extra gas. The hard part is keeping a
reliable list of pool addresses. Manual whitelists work in tests but will not scale. A public
registry or oracle that lists active pools is the next step.

3. The “minimum-of-two” pricing rule works.
Quoting the lower of (i) the local CPMM price and (ii) the global-reserve price keeps the pool
from being drained and removes arbitrage in simple two-pool tests. The rule is easy to code
and keeps the familiar CPMM price curve. It still needs a full game-theory study for many
pools with different fees.

4. Gas cost rises slowly—up to a point.
Gas and run time grow roughly linearly with the number of pools checked. Up to six pools
the added cost is small; beyond that the benefit falls off. An adaptive design that only
queries the pools that matter most could keep costs low.

5. Arbitrage drops, but fee rules may need tuning.
Simulations show that most arbitrage profit disappears and the savings are shared between
traders and liquidity providers. The fixed 0.3 % fee from Uniswap V2 may no longer be ideal.
A fee that adjusts to the new depth might share value even better.

6. External data adds new risks.
Depending on outside reserve data creates oracle risk. The contract also needs a full check
for flash-loan edge cases. A formal audit and a public bug bounty are advised before a main-
net launch.

7. Strong test tools are essential.
Small “toy” trades help build intuition, but only large random test batches revealed
rounding and fee-tracking bugs. A script that sends many varied trades, including adversarial
ones, was key to finding corner cases.

Overall, GMM shows that a global-liquidity view can cut arbitrage and slippage without
major cost, but it needs better pool discovery, careful cost control, and thorough security
checks before production use.

Test Vectors

Test x y xᵢ yᵢ Δx
Expected Result = min(y / (x + Δx), yᵢ / (xᵢ +
Δx)) * Δx

1 1445 275 1195 1357 67 min(275 / 1512, 1357 / 1262) * 67 = 12.19

2 1173 835 1924 1236 68 min(835 / 1241, 1236 / 1992) * 68 = 42.19

3 1149 160 322 228 135 min(160 / 1284, 228 / 457) * 135 = 16.82

4 361 1023 1461 618 140 min(1023 / 501, 618 / 1601) * 140 = 54.04

5 918 331 787 592 53 min(331 / 971, 592 / 840) * 53 = 18.07

6 1412 625 679 410 114 min(625 / 1526, 410 / 793) * 114 = 46.69

7 1065 1763 1748 638 108 min(1763 / 1173, 638 / 1856) * 108 = 37.12

8 1036 170 1995 1058 65 min(170 / 1101, 1058 / 2060) * 65 = 10.04

9 1145 1350 337 414 89 min(1350 / 1234, 414 / 426) * 89 = 86.49

10 304 1477 1341 1347 128 min(1477 / 432, 1347 / 1469) * 128 = 117.37

11 339 262 1211 440 51 min(262 / 390, 440 / 1262) * 51 = 17.78

12 1705 1294 1696 600 126 min(1294 / 1831, 600 / 1822) * 126 = 41.49

13 1294 1465 495 1014 75 min(1465 / 1369, 1014 / 570) * 75 = 80.26

14 574 689 149 1529 123 min(689 / 697, 1529 / 272) * 123 = 121.59

15 1008 1686 1178 1577 50 min(1686 / 1058, 1577 / 1228) * 50 = 64.21

16 765 1714 664 842 105 min(1714 / 870, 842 / 769) * 105 = 114.97

17 368 1503 528 695 107 min(1503 / 475, 695 / 635) * 107 = 117.11

18 1186 1179 1822 1365 68 min(1179 / 1254, 1365 / 1890) * 68 = 49.11

19 111 1892 1275 1440 90 min(1892 / 201, 1440 / 1365) * 90 = 94.95

20 1204 1345 1670 1645 82 min(1345 / 1286, 1645 / 1752) * 82 = 76.99

21 1026 1086 1541 974 147 min(1086 / 1173, 974 / 1688) * 147 = 84.82

22 938 469 485 1438 79 min(469 / 1017, 1438 / 564) * 79 = 36.43

23 1097 579 1893 1324 141 min(579 / 1238, 1324 / 2034) * 141 = 65.94

24 1975 730 1210 1867 139 min(730 / 2114, 1867 / 1349) * 139 = 48.00

25 479 541 1428 1715 58 min(541 / 537, 1715 / 1486) * 58 = 58.43

26 1311 1878 1292 130 116 min(1878 / 1427, 130 / 1408) * 116 = 10.71

27 1063 1015 971 1404 101 min(1015 / 1164, 1404 / 1072) * 101 = 88.07

28 1043 1348 941 1537 144 min(1348 / 1187, 1537 / 1085) * 144 =
163.53

29 1598 1013 551 1360 122 min(1013 / 1720, 1360 / 673) * 122 = 71.85

30 1058 623 1021 1627 141 min(623 / 1199, 1627 / 1162) * 141 = 73.26

31 1636 467 824 1659 86 min(467 / 1722, 1659 / 910) * 86 = 23.32

32 695 126 989 1004 81 min(126 / 776, 1004 / 1070) * 81 = 13.15

33 1869 857 274 408 79 min(857 / 1948, 408 / 353) * 79 = 34.76

34 1256 666 702 1625 74 min(666 / 1330, 1625 / 776) * 74 = 37.06

35 985 1635 1599 1499 133 min(1635 / 1118, 1499 / 1732) * 133 =
115.11

36 1276 1274 1701 1121 82 min(1274 / 1358, 1121 / 1783) * 82 = 51.55

37 1324 1050 300 1087 112 min(1050 / 1436, 1087 / 412) * 112 = 81.89

38 413 314 753 1762 109 min(314 / 522, 1762 / 862) * 109 = 65.57

39 642 851 1381 1802 83 min(851 / 725, 1802 / 1464) * 83 = 97.42

40 1310 1260 1278 1018 132 min(1260 / 1442, 1018 / 1410) * 132 = 95.30

41 1444 330 632 1744 61 min(330 / 1505, 1744 / 693) * 61 = 13.38

42 226 1597 385 1739 139 min(1597 / 365, 1739 / 524) * 139 = 461.30

43 1559 1333 283 1489 61 min(1333 / 1620, 1489 / 344) * 61 = 50.19

44 1268 219 1451 1663 98 min(219 / 1366, 1663 / 1549) * 98 = 15.71

45 1182 892 1181 594 150 min(892 / 1332, 594 / 1331) * 150 = 66.94

46 836 981 596 1468 115 min(981 / 951, 1468 / 711) * 115 = 118.63

47 361 214 129 893 82 min(214 / 443, 893 / 211) * 82 = 39.61

48 409 129 1969 315 117 min(129 / 526, 315 / 2086) * 117 = 17.67

49 1976 1392 1609 1077 93 min(1392 / 2069, 1077 / 1702) * 93 = 58.85

50 1270 991 1907 1953 117 min(991 / 1387, 1953 / 2024) * 117 = 83.60

51 1183 904 1378 711 60 min(904 / 1243, 711 / 1438) * 60 = 29.67

52 1555 1768 928 1712 62 min(1768 / 1617, 1712 / 990) * 62 = 67.79

53 472 1138 1425 1959 53 min(1138 / 525, 1959 / 1478) * 53 = 70.25

54 1928 1036 512 1928 65 min(1036 / 1993, 1928 / 577) * 65 = 33.79

55 978 1649 731 104 89 min(1649 / 1067, 104 / 820) * 89 = 11.29

56 1162 1600 917 1474 88 min(1600 / 1250, 1474 / 1005) * 88 = 112.64

57 1318 1616 575 1825 107 min(1616 / 1425, 1825 / 682) * 107 = 121.34

58 1161 291 1111 1600 132 min(291 / 1293, 1600 / 1243) * 132 = 29.71

59 1983 368 814 842 76 min(368 / 2059, 842 / 890) * 76 = 13.58

60 1497 1188 762 931 147 min(1188 / 1644, 931 / 909) * 147 = 106.23

61 496 1062 440 2000 86 min(1062 / 582, 2000 / 526) * 86 = 156.93

62 849 1769 105 1467 138 min(1769 / 987, 1467 / 243) * 138 = 247.34

63 1007 413 591 579 143 min(413 / 1150, 579 / 734) * 143 = 51.36

64 1879 396 305 932 90 min(396 / 1969, 932 / 395) * 90 = 18.10

65 500 562 361 123 96 min(562 / 596, 123 / 457) * 96 = 25.84

66 249 1369 1513 331 118 min(1369 / 367, 331 / 1631) * 118 = 23.95

67 1634 1438 907 1397 138 min(1438 / 1772, 1397 / 1045) * 138 =
111.99

68 1846 1473 1054 1875 92 min(1473 / 1938, 1875 / 1146) * 92 = 69.93

69 1275 1656 928 1991 65 min(1656 / 1340, 1991 / 993) * 65 = 80.33

70 385 257 422 1423 121 min(257 / 506, 1423 / 543) * 121 = 61.46

71 1821 870 1239 346 122 min(870 / 1943, 346 / 1361) * 122 = 31.02

72 986 839 897 1436 65 min(839 / 1051, 1436 / 962) * 65 = 51.89

73 548 1763 475 995 126 min(1763 / 674, 995 / 601) * 126 = 208.60

74 1563 206 1969 907 89 min(206 / 1652, 907 / 2058) * 89 = 11.10

75 1416 127 124 1164 136 min(127 / 1552, 1164 / 260) * 136 = 11.13

76 405 1035 1630 762 126 min(1035 / 531, 762 / 1756) * 126 = 54.68

77 338 536 801 924 146 min(536 / 484, 924 / 947) * 146 = 142.45

78 857 170 1251 256 110 min(170 / 967, 256 / 1361) * 110 = 19.34

79 702 926 572 569 110 min(926 / 812, 569 / 682) * 110 = 91.77

80 885 173 1189 175 97 min(173 / 982, 175 / 1286) * 97 = 13.20

81 535 616 1925 944 56 min(616 / 591, 944 / 1981) * 56 = 26.69

82 733 960 1771 1297 116 min(960 / 849, 1297 / 1887) * 116 = 79.73

83 639 608 1366 520 101 min(608 / 740, 520 / 1467) * 101 = 35.80

84 173 409 741 1858 86 min(409 / 259, 1858 / 827) * 86 = 135.81

85 567 1804 1954 770 86 min(1804 / 653, 770 / 2040) * 86 = 32.46

86 248 1451 182 329 62 min(1451 / 310, 329 / 244) * 62 = 83.60

87 1550 1525 1398 1964 103 min(1525 / 1653, 1964 / 1501) * 103 = 95.02

88 346 1375 1793 1364 149 min(1375 / 495, 1364 / 1942) * 149 = 104.65

89 610 793 702 1271 89 min(793 / 699, 1271 / 791) * 89 = 100.97

90 1646 961 582 583 96 min(961 / 1742, 583 / 678) * 96 = 52.96

91 1718 666 949 771 54 min(666 / 1772, 771 / 1003) * 54 = 20.30

92 314 617 845 892 116 min(617 / 430, 892 / 961) * 116 = 107.67

93 458 419 1915 878 55 min(419 / 513, 878 / 1970) * 55 = 24.51

94 1819 1632 887 1684 133 min(1632 / 1952, 1684 / 1020) * 133 =
111.20

95 176 304 1594 184 116 min(304 / 292, 184 / 1710) * 116 = 12.48

96 1683 102 1260 452 148 min(102 / 1831, 452 / 1408) * 148 = 8.24

97 1056 689 1098 678 91 min(689 / 1147, 678 / 1189) * 91 = 51.89

98 330 1812 830 1202 86 min(1812 / 416, 1202 / 916) * 86 = 112.85

99 1640 1806 245 1571 127 min(1806 / 1767, 1571 / 372) * 127 = 129.80

100 726 1864 407 1722 77 min(1864 / 803, 1722 / 484) * 77 = 178.74

101 1000 1000 1000 1000 100 min(1000 / 1100, 1000 / 1100) * 100 = 90.91

102 1000 1000 800 1000 100 min(1000 / 1100, 1000 / 900) * 100 = 90.91

103 1000 1000 2000 500 200 min(1000 / 1200, 500 / 2200) * 200 = 45.45

104 500 2000 1000 3000 50 min(2000 / 550, 3000 / 1050) * 50 = 181.81

105 2000 500 1000 1500 100 min(500 / 2100, 1500 / 1100) * 100 = 23.81

In this test vector, x and y refer to the tokens in the main plaUorm, while xᵢ and yᵢ refer to the
total amount of those tokens across all the plaUorms considered. Δx represents the varia8on
of x, meaning the amount a user buys or sells.

