## Evaluación de las propiedades de polvos metálicos, metal-cerámicos modificados para manufactura aditiva a través de un lecho fluidizado

Neyder Sandoval<sup>a</sup>, Sergio Sánchez-Delgado<sup>b</sup>, David Serrano-Garcia<sup>b</sup>, Alejandro Santos Villanueva<sup>c</sup>, Joaquin. Rams<sup>c</sup>, Belén. Torres<sup>c</sup>, Pilar Rodrigo-Herrero<sup>c</sup>, Sandra C. Cifuentes<sup>c</sup> Sophia A. Tsipas<sup>a</sup>

<sup>a</sup>Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911, Leganés, Madrid, Spain

<sup>b</sup>Department of Thermal and Fluid Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911, Leganés, Madrid, Spain

<sup>c</sup>Área de Ciencia e Ingeniería de Materiales, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain

La mejora continua de los procesos de manufactura aditiva (MA) es esencial a nivel industrial, ya que brinda ventajas en diseño, eficiencia y flexibilidad. Aunque se considera crucial para el futuro de la industria, la obtención de componentes metálicos o metalcerámicos mediante MA enfrenta desafíos. La disponibilidad limitada de materias primas (MP) apta para la MA y la falta de comprensión en las relaciones composición-procesamiento-microestructura son obstáculos significativos. En la fabricación de componentes metálicos, se emplean principalmente técnicas directas, como fusión selectiva por láser SLM, fusión por haz de electrones EBM, deposición directa de energía DED, utilizando polvo como MP. Sin embargo, estos procesos pueden resultar en defectos microestructurales, incluyendo granos columnares grandes, grietas, poros y tensiones residuales, afectando la reproducibilidad y propiedades mecánicas.

Existen muchos trabajos de investigación que se esfuerzan por mejorar la MP y desarrollar métodos más eficientes para la producción en serie de componentes metálicos de calidad. Las investigaciones actuales en MA de metales se centran en la optimización de parámetros para obtener productos reproducibles y sin defectos, orientándose hacia la mejora de la MP, especialmente el polvo metálico. Para superar estos desafíos, se requieren estrategias, como la obtención de polvos más versátiles con partículas de segundas fases para influir en las propiedades finales. Métodos comunes para la obtención de MP para MA con propiedades mejoradas incluyen mezcla en seco, molienda de bolas, electrodeposición y ablación láser. Sin embargo, estos métodos presentan inconvenientes en términos de procesamiento o costos.

En este trabajo se realizó la funcionalización superficial de polvos metálicos con nanopartículas con el fin de obtener ventajas durante los procesos de MA. Se diseñó y construyó un reactor de lecho fluido donde se realizó la funcionalización superficial con deposición de nanopartículas. Las nanopartículas fueron producidas en molienda y se dispersaron en suspensiones coloidales. Se estudio la dispersión, estabilidad y reología de las suspensiones. Se obtuvo una deposición homogénea de las nanopartículas sobre las partículas en lecho fluidizado. Se evaluaron las propiedades de los polvos modificados en comparación con los polvos sin modificar y se observó la influencia de estas en las microestructuras de las piezas producidas. La producción y deposición homogénea de nanopartículas sobre los polvos metálicos, demostró la viabilidad del uso del lecho

fluidizado para la funcionalización superficial de partículas de polvo como materia prima, para la mejora de propiedades de las piezas producidas por MA.