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SUMMARY

Plasma physics play a central role in today’s technology and science development.
From plasma fusion to space propulsion, plasma presents unique characteristics that make
it a distinguished candidate in the search for clean and unlimited energy sources. In the
field of plasma research tremendous amounts of data are generated on a daily basis. This
growth in the amount of data available to analyze has triggered as a consequence the field
of data analysis, which has also experienced a huge increase and development. In many
cases, the problem does not lay on the lack or quality of the data, but on the inability
to obtain meaningful information from the results obtained by simple visual inspection.
Moreover, the presence of researcher bias may influence the obtained results towards more
promising conclusions than what the data is actually providing.

Even though linear data-driven techniques present several advantages and are widely
used by the scientific community, such as easy implementation and low-computational
costs, there are some limitations on the use of these techniques. The study of complex
systems, such as plasma, cannot be completely covered by just the application of these
techniques.

The continuous study of plasma has demonstrated that its behaviors does not follow
linear trends, containing several instabilities and turbulence that linear analysis tends to
ignore. Even though non-linear analyses normally present a more di�cult and costly
implementation, they provide a more complete understanding of its dynamics.

The Research Group "Equipo de Propulsión Espacial y Plasma" (EP2) following the
ZARATHUSTRA project from University Carlos III of Madrid investigates the physics
behind the operation of plasma thrusters and this Bachelor Thesis serves as a starting
point on the review and implementation of these type of algorithms, with a particular em-
phasis on “data-driven” techniques, which minimize research bias to a minimum. These
techniques are influenced by several fields, ranging from linear algebra and calculus, to
information and chaos theory.

A complete study and classification of each technique is presented along with its im-
plementation against renowned non-linear systems, such as the Lorenz Attractor and the
Ikeda Map. Finally, a selection of these techniques is used to explore the mechanisms
in Helicon Plasma Thrusters and Hall-E↵ect Thrusters that lead to plasma turbulence in
order to contribute to the understanding of the underlying plasma dynamics.

Keywords: Non-Linear Analysis, Plasma, Thruster, Aerospace Propulsion, Informa-
tion theory, Chaos, Turbulence
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1. INTRODUCTION

1.1. Motivation

1.1.1. Data Analysis

In Plasma Aerospace Propulsion, and in all fields relating to Plasma Physics and Aerospace
Engineering, tremendous amounts of data are generated on a daily basis through simula-
tions and experiments. According to the experts from the International Thermonuclear
Experimental Reactor, the world’s largest fusion experiment, by 2035 ITER alone will
produce 2 petabytes (1 petabyte = 1015 bytes) of data everyday [1].

The problems studied in these fields consistently present complex behaviors, such as
the characterization of plasma turbulence and the identification of causal relationships be-
tween phenomena that occur in these systems [2]. Specifically, one of the main challenges
of Plasma Physics revolves around the nonlinear character of plasma [3].

In many cases, the problem does not lay on the lack of data, but on the inability to
obtain meaningful insights into the results obtained by simple inspection. Moreover, the
presence of researcher bias may influence the obtained results towards more promising
conclusions than what the data is actually providing [4] [5].

As a response to the growth in scientific raw data available, numerous data analysis
techniques have been developed over the years in order to extract evidence and conclu-
sions from experiments and simulations. The Research Group "Equipo de Propulsión
Espacial y Plasma" (EP2) following the ZARATHUSTRA project from University Carlos
III of Madrid investigates the physics behind the operation of plasma thrusters and this
Bachelor Thesis serves as ZARATHUSTRA’ starting point on the review and implemen-
tation of these type of algorithms, with a particular emphasis on “data-driven” techniques.

Data-driven techniques refer to all approaches to data-analysis in which no external
information is needed in order to perform the exploration of the results. These type of
interpretations present the advantages of removing research bias and detecting trends that
may not be apparent from visual examination. As it will be shown throughout this project,
these methods are influenced by several fields such as: linear algebra, calculus, informa-
tion theory and chaos theory.
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1.1.2. Hall-E↵ect Thruster

Hall e↵ect Thrusters (HETs) are some of the most developed electric thrusters nowadays.
Three di↵erent particles are used in HETs; a neutral gas, injected from the rear part of the
channel, which flow axially towards the exit of the thruster; electrons, injected through the
cathode just outside the channel and flow upstream towards the anode; and ions, created
by the collision of neutrals and electrons [6].

Fig. 1.1. JPL’s 6 kW Hall thruster. Retrieved from [7].

A HET is composed of a discharge region, a cathode and a magnetic field generating
system. The discharge region is surrounded by an insulating material and magnetic coils
are normally used to induce a radial magnetic field. The cathode is located right outside
the channel and the at the base of the discharge region the anode can be found. The
anode is a ring located at the bottom part of the channel through which the neutral gas
used as propellant in injected. Electrons coming from the cathode and trying to reach
the anode encounter the radial magnetic field which eliminates their axial mobility almost
completely and traps them in azimuthal orbits in the ExB direction. As mentioned before,
ions are then generated by the collision of neutrals with electrons, to be finally accelerated
by the electric field from the anode to the cathode towards the end of the thruster [8].

Fig. 1.2. Diagram of Hall E↵ect Thruster. Cross-section. Retrieved from [9].
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The main applications of these thrusters are interplanetary probe missions requiring
low-thrust, satellite maneuvers to reach specific orbits and north-south station-keeping
operations of geostationary satellites [8].

1.1.3. Helicon Plasma Thruster

A Helicon plasma Thruster (HPT) is an electromagnetic thruster that is being developed
and improved in order to be applicable to space missions in the near future. The HPT
presents several advantages when compared with other electromagnetic thrusters, such as
the Hall e↵ect Thruster (HET), because it presents a much simpler assembly and it does
not need additional elements such as grids, electrodes or neutralizers [10].

Fig. 1.3. HPT-05 prototype developed by EP2 Research Group and SENER Ingeniería y
Sistemas. Retrieved from [11]

The architecture of a HPT typically consists of the following; a cylindrical chamber,
where plasma is produced; a magnetic field generator, used to confine, guide and expand
the plasma on the magnetic nozzle; a Radio Frequency (RF) system that emits RF waves;
and an injector system to drive the inert gas into the chamber [12].

Fig. 1.4. Diagram of Helicon Plasma Thruster. Cross-section. Retrieved from [10].
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The inert gas, after being injected into the chamber, is ionized by the electromagnetic
RF field, producing hot plasma. A divergent magnetic topology is created and used to ac-
celerate the plasma into a supersonic flow, transforming the thermic energy of the plasma
into kinetic one, and thus generating thrust.

Some of the advantages that the HPT presents are; reduced costs, since it does not
require large voltages for its operation, many elements are not necessary and manufac-
turing expenses are reduced, and in addition, less propellant is used during its operation,
further reducing the overall costs; longer lifetime, due to the chamber being magnetically
shielded and no electrodes being used, erosion is reduced favoring a longer operational
life; possibility of using almost any gas as propellant and finally, higher thrust capacity
per unit of power than other electric propulsion systems, such as the HET.

HPTs could potentially be used for missions involving orbit observations in VLEO,
exploration operations where longer lifetimes are needed and telecommunications appli-
cations where reduced propellant consumption may be relevant [10].

1.1.4. Introduction to plasma turbulence

Even though there has been extensive research on the plasma propulsion and plasma fu-
sion fields, many aspects of these thrusters are still not fully understood. The main chal-
lenge that scientists face is trying to explain the higher-than-expected electron conduc-
tivity found inside thruster channels, which cannot be explained by classical collisional
theories alone. The term “anomalous transport” has been created to describe this phe-
nomenon in which experimental electron conductivity is one or two orders of magnitude
higher than the one expected from theoretical calculations.

There is still not a clear explanation as to why this occurs, however some of the most
general theories point to plasma oscillations, also referred to as turbulent di↵usion, or
near-wall conductivity. Plasma oscillations in the azimuthal direction along with oscilla-
tions of the electric field could induce a net axial electron current and explain the anoma-
lous transport. On the other hand, the near-wall conductivity hypothesis is not as widely
accepted since some simulation codes that include near-wall conductivity models still do
not correctly produce the electron conductivity found in real-life experiments [6].

This Bachelor Thesis aims to explore this phenomenon by means of non-linear analy-
sis techniques and help throw some light into the mechanisms that lead to the appearance
of turbulence in plasma thrusters.
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2. OBJECTIVES

2.1. Objectives overview

Experimental measurements of plasma thrusters in the laboratory and advanced numer-
ical plasma simulations of these devices produce vast quantities of data that need to be
analyzed to yield physical insights. Many of the physical phenomena in plasmas are inher-
ently nonlinear: simple linear cross correlations and modal analyses miss the nonlinearity
and hidden casualty relations that may exist between di↵erent aspects of the operation of a
plasma thruster. This project proposes to analyze experimental and simulation data using
state of the art data-driven analysis techniques based on nonlinear system theory, chaos
theory and information theory. To fulfil this purpose, several objectives were addressed:

1. Review of the state-of-the-art for Non-Linear Analysis Techniques and creation of
algorithms catalogue

Review and evaluation study of existing tools collected from a variety of sources re-
garding Non-Linear Analysis techniques, with an especial focus on those applicable
to Plasma Space Propulsion. Creation of algorithms library with all the reviewed
techniques explained, to be stored and further developed by the EP2 group.

2. Implementation of data-driven analysis algorithms

All techniques selected will be implemented in MATLAB and validated with well-
studied chaotic systems, such as the Lorenz system.

3. Application to laboratory data and simulation data. Comparison of di↵erent non-
linear techniques

Experimental and simulation data obtained from the EP2 group will be analyzed
using the techniques mentioned before and the di↵erent results will be compared.

4. Analysis of results

The last objective is to provide a physical insight from the results obtained, in par-
ticular the role of turbulence, instabilities, and trends in the anomalous transport of
plasma particles

2.2. Content of the document

Throughout this Thesis, a methodology section will be introduced in which a brief review
of traditional linear techniques will be provided along with all the non-linear techniques
studied for this project, which will be implemented and tested. Following that, a chapter
will be devoted to the data that will be employed in the Results and Discussion chapter,
in order to give some background information regarding the context of the data selected.
To conclude, a brief overview of the legal framework and the socio-economic impact of
this project will be presented in the final pages.
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3. METHODOLOGY

3.1. Linear Data-Driven Techniques

Linear Data-Driven techniques present several advantages. Primarily, they are fairly easy
to implement and they normally do not present a high computational cost. However, by
applying linear algorithms to some systems, especially those having complex dynamics
such as the ones studied in this project, major relationships between the data may be
ignored.

The study of plasma physics has demonstrated that its behaviour does not follow linear
trends and contains several instabilities that linear analysis does not correctly capture
[13]. Even though applying these linear techniques serves as a significant first step, more
intricate approaches will be necessary to fully understand plasma dynamics.

3.1.1. Spectrum Analysis

The Fourier Transform of a system translates a signal expressed in the time domain into
the frequency domain [14]. In other words, the Fourier Transform identifies what fre-
quencies exist in a time series and with what magnitude they are present. Mathematically
it is expressed as:

X( f ) =
Z 1

�1
x(t)e�i2⇡ f tdt (3.1)

This technique is widely used because any waveform can be expressed as a combina-
tion of sines, and the Fourier Transform extract from a given sample the frequency and
the magnitudes of the sines present in said waveform.

If a signal contains N points, the frequency bins studied in the frequency domain have
a width of:

� f =
fs

N
(3.2)

Being fs the sampling frequency of the time-series. The lowest frequency studied is
normally 0Hz and the highest frequency is the Nyquist frequency, fs/2.

Additionally, even if noise is present in the time-series studied (up to a certain level),
the Fourier Transform still recovers the underlying structure of the waveform. In order to
illustrate the performance of the Fourier Transform, a simple example has been created.
The created waveform and its corresponding Fourier Transform with and without noise
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are presented below:

y(t) = sin(2⇡50t) + 3sin(2⇡65t) + 2sin(2⇡100t) (3.3)

Fig. 3.1. Fourier Transform of a simple waveform: without noise (left plots) and with
noise (right plots). fs = 830Hz.

As it can be seen on the figure, the Fourier Transform perfectly identifies both the
frequencies of the corresponding wave and the magnitudes of said frequencies, even if
noise is present on the sample.

3.1.2. Correlation Analysis between signals

Correlation describes the existing relationship between two signals. It provides a quan-
tification about how much the signals resemble each other.

There are two di↵erent types of correlation, depending on the inputs provided: auto-
correlation and cross-correlation [15].

• Cross-correlation

For the cross-correlation, the two signals studied are di↵erent. The objective of this
analysis is to find how much similarity there is between them. Mathematically this
is expressed as:

Rxy(⌧) =
Z 1

�1
x(t)y⇤(t � ⌧)dt (3.4)

Being y⇤(t) the complex conjugate of y(t).
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• Autocorrelation

Autocorrelation is an especial case of cross-correlation in which the signal is corre-
lated with itself. Normally this involves a time-shift between the signal and itself,
or a transformation similar to this. The mathematical formula to express this is as
follows:

Rxx(⌧) =
Z 1

�1
x(t)x⇤(t � ⌧)dt (3.5)

An illustrative example of the correlation analysis has been generated in order to ex-
emplify its use:

Fig. 3.2. Correlation analysis of simple signals: with finite time-lag (left plots) and
inverted with finite time-lag (right plots).

Furthermore, Correlation can also be used to determine the periodicity of a signal by
means of the autocorrelation function. This task can be performed by autocorrelating a
function with a time-shifted version of itself and accounting for the repetitions of maxi-
mums found in the resulting graph.

The correlation analysis have some clear advantages highlighted here, however there
are some set-backs in these type of analyses, such as the lack of directionality in its results,
that will be illustrated along this project.

3.1.3. Modal Analysis techniques

Modal analysis techniques seek to find relevant features or oscillations, known as modes,
from the structure or fluid studied [16]. Experimental modes are obtained by exciting the
system and recording its response. This excitement can be done through several paths,
the most common ones involving shakers or impact testing [17].

Each mode is characterized by a natural frequency, a modal damping and a mode
shape. Near the natural frequency of a certain mode, that mode will often dominate the
whole behaviour of the system. This is one of the main advantages of these type of
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techniques, by finding the natural frequencies, the responses of the system under specific
conditions can be accurately predicted beforehand. This can be appreciated in the follow-
ing figure, when the natural frequency on one of the modes is reached, the overall system
behaves according to that specific mode.

Fig. 3.3. System response and individual modes contribution.
Example retrieved from [17]

The modes depend greatly on the specific conditions of both the system and the ex-
citing inputs. Changing these conditions will modify the modes and hence, the response
obtained. However, characterizing the response under general or critical conditions still
adds a lot of value to the overall study of a system.

Some examples of modal analysis techniques are the eigenvalue and the singular value
decomposition. These techniques will not be explained in this thesis, since they lay out-
side the scope of study of this project, but they have been thoroughly studied and expla-
nations on them can easily be found on literature [18] [19].

3.2. Non-linear Data-Driven Techniques

Because of the nonlinear coupling and the complexity of non-linear systems, such as
plasma, linear analyses are not su�cient to fully encompass the whole behaviour of their
dynamics [20]. Non-linear behaviours, such as the anomalous transport presented in Sec-
tion 1.1.4., are one of the main focus of plasma physics nowadays, and the application
of non-linear analysis techniques is starting to become one of the most powerful tools to
understand these phenomena [21] [22].

Even though non-linear analyses normally are more costly computer-wise, this the-
ses aims to attain a more complete understanding of the underlying dynamics of plasma
propulsion with the application of these techniques.
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3.2.1. Time Delay Embedding techniques

A time series is defined as a sequence of measurements taken over time, where the order-
ing of time carries part of the information contained on the data. In other words, if a time
series was to be shu✏ed, some of the information would be lost. Due to the simplicity
of recording these type of events, time series represent a large volume of experimental
and numerical results obtained nowadays. Following that reasoning, a high number of
techniques have been developed in order to extract the maximum information from them.

Normally the data obtained corresponds to a projection of the dynamics of the event
studied from a higher dimensional phase space. In order to study said dynamics, the signal
can be represented in a higher dimension, this process is known as embedding the data.
The two most common ways of embedding data is using the derivatives of the state studied
or using time lags from the time series. Both approaches are pretty much equivalent, but
the use of time lags constitutes a less expensive process and has a lower sensitivity to
noise in the sample. Furthermore, the reconstruction of the phase space using time delays
translates trends buried in the time series into regions in the embedded space, making it
easier to analyze and visualize them. All the phase spaces reconstructed throughout this
project follow the second approach presented here, the Delay Reconstruction [23].

Time Delayed Mutual Information

For an ideal noise-free infinite data set, the original phase space and the embedded one
present the same characteristics regarding their topology and di↵erentiability. However,
experimentally infinite data sets cannot be recorded and the correspondence between the
original and the reconstructed attractor depends greatly on the choices of ⌧ and m.

If the time lag selected is too small, a phenomenon known as redundancy will be
encountered. This is due to the fact that all coordinates will almost coincide and the
trajectories in the reconstructed phase-space will virtually follow a line. On the other
hand, if the time lag selected is too large, especially when dealing with series that are
governed by chaotic motion, the points may seem as independent even if the system is
deterministic [24].

The method to find an appropriate embedding dimension will be detailed in the follow-
ing section, but first a suitable time lag should be determined. The technique presented in
this section to find the optimum ⌧, the Time Delayed Mutual Information, was introduced
by Fraser and Swinney in 1986 [25].

For a general case in which neither the past history of the time series nor the coupling
with the current state is assumed to be deterministic, the amount of information contained
in a variable of the series, I, is given by Shannon Entropy [26]:

HI = �
X

i

p(i)log2 p(i) (3.6)

CHAPTER 3. METHODOLOGY 10



The base 2 of the logarithm is just an indication of the units chosen to measure the
gain in information [27] and the associated probability distribution p(i) represents the
probability of the state to take that specific state over the period studied [27]. The mutual
information technique was created. Mutual information between two processes is defined
as the excess amount of data used to predict a state due to the wrong assumption that it
is independent from its past-history. In other words, it quantifies how much information
is gained by observing the current (I) and past (J) states of the system instead of just the
current one. Mathematically it can be expressed according to Kullback entropy [28]:

MIJ =
X

p(i, j)log2
p(i, j)

p(i)p( j)
(3.7)

By perfoming the study of MIJ for a range of ⌧, the first minimum found represents
the time lag which adds maximal information and is selected as the optimal one [29]. One
advantage that this technique has when compared to others, is that it takes into account the
nonlinear nature of the system, something critical for the study of plasma propulsion [24].
In order to illustrate this method, the Lorenz system, a widely known chaotic system, has
been used as an example:

ẋ = �(y � x) (3.8)
ẏ = x(⇢ � z) � y (3.9)

ż = xy � �z (3.10)

With � = 10, � = 8/3 and ⇢ = 28. The result obtained is shown below:

Fig. 3.4. Average Mutual Information: Lorenz system

As it can be appreciated from the figure, the first minimum lays around t = 0.16s,
which agrees with the optimum time lag for the Lorenz system found in the literature
[30].
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False Nearest Neighbours

The method of False Nearest Neighbours (FNN) was introduced by Kennel, Brown and
Abarbanel in 1992 [31]. This method seeks to find the minimum embedding dimension,
m, conditional that the optimal time delay, ⌧, is provided.

FNN is based on the notion that the evolution of a dynamical system in state-space is
defined by a smooth vector field. According to that concept, two points that are originally
close, after some time t has passed, should remain close, even if the system is chaotic.
However, if the system is represented in a dimension lower than its minimum embedding
dimension, points that are not close may seem as adjacent neighbours due to the reduction
of e↵ective dimensions used. In other words, if a lower embedding dimension is used, that
means that some of the coordinate axes necessary to fully represent the system are being
ignored, and the points will be projected onto the remaining ones. This may lead to points
that were originally far away having images that make them look like nearest neighbours
[29].

In order to detect the false neighbours, the dimension m is varied and the system
evolution is studied according to [31]:

R2
m(i) =

m�1X

i=0

[x(i + m⌧) � xn(i,m)(i + m⌧)]2 (3.11)

R2
m+1(i) = R2

m(i, r) + [x(i + m⌧) � xn(i,m)(i + m⌧)]2 (3.12)

s
R2

m+1(i) � R2
m(i)

R2
m(i)

> Rtol (3.13)

Being xn(i,m) the nearest neighbour of x. The False Nearest Neighbours approach de-
pends greatly on tolerance values decided by the user, such as Rtol, which may lead to
significant di↵erences on the minimum embedding dimension found.

Cao introduced in 1997 a modification to this method in order to reduce the chosen
thresholds and provide more reliable outcomes. Instead of studying the number of false
neighbours found, Cao proposed to study how the distance between these neighbours
changes when increasing the embedding dimension [24].

In a similar way to the original FNN method, the following variable is calculated [32]:

a(i,m) =
||yi(m + 1) � yn(i,m)(m + 1)||
||yi(m) � yn(i,m)(m)|| (3.14)

Being yn(i,m) again the nearest neighbour of yi in embedding dimension m and repre-
senting || ⇤ || the maximum norm between them. The mean value of all a(i,m) is given by:

E(m) =
1

N � m⌧

N�m⌧X

i=1

a(i,m) (3.15)
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The variation of E from m to m + 1 is then defined as follows:

E1(m) =
E(m + 1)

E(m)
(3.16)

Provided that the time series studied has an underlying attractor, E1 will stop changing
once an embedding dimension mo is surpassed. The minimum embedding dimension is
then: mo + 1 [32].

If a time series of random numbers is studied, it is expected that E1 may never reach a
stable value, however, there might be cases in which this occurs. To resolve this situation,
the following additional variable was introduced by Cao [32]:

E⇤(m) =
1

N � m⌧

N�m⌧X

i=1

|xi+m⌧ � xn(i,m)+m⌧| (3.17)

E2(m) =
E⇤(m + 1)

E⇤(m)
(3.18)

For stochastic systems, the lack of dependency from past states guarantees the inde-
pendence from the embedding dimension, which means that E2 will always be 1. How-
ever, deterministic systems do depend on the embedding dimension, so E2 will not be
constant for all values of m. Cao suggested to study both E1 and E2 together to be able to
correctly find the minimum embedding dimension of a system and to distinguish if said
system is deterministic or random [32]. Following the example of the Lorenz system to
illustrate this method, the following results were obtained:

Fig. 3.5. CAO method: Lorenz system

From the figure it can be reasoned that mo = 2, so the minimum embedding dimension
for Lorenz is m = mo + 1 = 3, which is known to be true since Lorenz can be simply
described by x, y and z.
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3.2.2. Visual techniques

Phase Portraits

The Poincaré graph, also known as Phase Portrait, was developed by Henri Poincaré
in 1890 [33]. There are several ways of presenting these graphs, but in this thesis the
focus will be on those who graph an interval of the time-series provided, xn+1, against
its preceding points, xn. This simple technique allows to analyze visually the correlation
between consecutive points in the data set. Di↵erent behaviours can be found depending
on the underlying dynamics of the set, the main general ones will be explained below.

The majority of the systems will always present a bounded Phase Portrait, only if the
system tends to infinity the Phase Portrait will grow unboundedly as the number of points
studied is increased.

Periodic systems normally present a uniform bounded behaviour. In these cases, the
optimum lag found from the Mutual Information minimum explained in Section 3.2.1
presents more advantages for this technique instead of directly plotting the Poincaré graph
for the previous state.

A circle is recovered for the case of pure single periodic systems, such as sines. For
a more complicated periodic system, such as those composed by more than one sine, a
closed curve is recovered, but it does not necessarily need to be a circle. Some examples
for a simple sine and an addition of sines have been produced in order to illustrate this:

(a) Pure sine. (b) Combination of sines.

Fig. 3.6. Poincaré graph for a sinusoidal functions.

One of the main advantages of the Poincaré graphs is that they help discover the
underlying attractors of dynamic systems. If the embedding dimension of the systems is
too high, the recovered Poincaré graph will be a projection of said attractor on a plane,
instead of the full attractor. However, said projections may still contain useful information
regarding the dynamics of the studied system.
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Di↵erent types of attractors may be found; for the case of systems with fixed-points,
the attractor will just be a point in space, with an associated dimension zero; limit cycles
will be represented as curves, as the one presented in Figure 3.6, with a dimension one;
and finally, even "strange attractors" may be found. Strange attractors are irregular struc-
tures towards which the system tends, that normally present non-integer dimensions and
self-similarity, they are characteristic of chaotic systems [34].

It should be also mentioned that if the dimension of a deterministic system is equal
to 1, this system will be single-valued. In other words, it will only have one ordinate per
abscissa. However, if the dimension is higher than one, the function will be multi-valued,
with several ordinates per abscissa.

Let’s use the Logistic Map example [35] to illustrate this technique for chaotic and
non-chaotic systems:

xn+1 = µxn(1 � xn) (3.19)

The Logistic Map is a polynomial map that is normally presented when studying chaos
because of the simplicity of the formula. By varying the value of µ, the system goes from
non-chaotic to chaotic behaviour really quickly at around µ = 3.6.

(a) Non-chaotic. (b) Chaotic.

Fig. 3.7. Phase portraits for the Logistic Map.

For the lower value of µ represented in this graph, corresponding to 3.5, this regression
is not chaotic. No complex attractor was found for this case, the system is completely
defined by the four points shown in the picture. However, once the transition to the chaotic
regime has been performed, as in the case of Figure 3.7(b), the parabolic behaviour shown
is found. This is due to the fact that as the transition to chaoticity occurs, the orbits which
defined the dynamics of the system, 4 in the case of Figure 3.7(a), start exponentially
increasing until the full parabolla shown on 3.7(b) is completed.

The Lorenz system has also been studied with this technique and its corresponding
optimum time lag in order to further exemplify the potential of this technique, as shown
in the following page.
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Fig. 3.8. Poincaré graph for Lorenz system. Optimum lag: ⌧ = 0.16s.

Here, an approximation to the real Lorenz attractor was found by using the correct
time lag, which further supports the potential that this technique has when studying com-
plex systems, since it recovers a projection of the full attractor, even if said system has a
really high dimension.

Recurrence Plot

A Recurrence Plot (RP) is a graphical technique used to extract information about tem-
poral correlations inside a time series. This tool was developed by J.P. Eckmann, O.
Kamphorst and D. Ruelle in 1978 [36]. RPs rely on repetitions inside the data studied
to extract meaningful information that may not be evident from direct inspection. Recur-
rence is defined as the return of a trajectory in state space to a neighbourhood that had
already been visited before.

Recurrences are expected for any type of motion which is not transient, such as sys-
tems with; a fixed point, which will be recurrent for any studied time t; or a limit cycle,
which presents a recurrence to its initial points when a complete period is performed. For
chaotic systems, a point on a chaotic attractor will return to a neighbourhood of any of
its points, as it happens with the Lorenz attractor. This recurrence is guaranteed by the
invariance of the set, which is the basis of the attractor. If the time series studied never
returns to any of its points, this can be due to non-stationarities included in the system or
to the fact that the series studied was a transient. A transient represents points that are
outside the invariant set but will tend to it as time goes to infinity [29].

Since RP represent a signal against itself, the obtained matrix and graph corresponding
to it are symmetrical with respect to its main diagonal. The main diagonal represents the
case in which each individual point is compared to its counterpart from the other signal.
Following this reasoning, it would be enough to just represent either the upper half or the
lower half of the matrix, but it is customary to present the whole plot.
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As explained in a previous section, one of the advantages of reconstructing the phase
space with time delays, is the translation of temporal trends to spatial features. For the
time series x(t) studied, which contains N points, the time-delayed phase space is recon-
structed and the recurrence plot will consist on a NxN array (symmetric by construction),
where a step function (⇥) will be used to obtain the graphical representation of the sys-
tem. A 1 will be placed at (i, j) if x( j) is closer in the phase space than a tolerance (✏)
to x(i), and a 0 otherwise. The tolerance is normally chosen according to the recurrence
rate, the number of 1s present to the size of the matrix (total number of possible states
for the system), and is normally set in order to obtain a recurrence rate of 5 � 10% [37].
Mathematically this can be expressed as:

Mi j = ⇥(✏ � |xi � x j|) (3.20)

The obtained array, as mentioned before, will be symmetric due to the fact that a
constant tolerance is used for each point studied and the signal is compared with itself.
Eckmann et all. [36] also used varying tolerances for each point until a minimum number
of neighbours were found, in this case the array will not present a perfect symmetry but
will still provide symmetric tendencies.

The Recurrence Plot obtained will significantly depend on the embedding dimension
m and, in a less relevant way, on the time lag ⌧ used to construct the state space from
the time series x(t). In deterministic systems, two points which are close should have
projections under its dynamics which are also close, even if dynamical instabilities are
present. Typically, short line segments appear parallel to the diagonal due to this fact. If
scattered dots are found, these can appear because of noise in the time series, or because
an incorrect low embedding dimension was being used [29]. The following figures serve
as an illustration of this phenomena:

Fig. 3.9. Evolution of Recurrence Plot for increasing values of embedding dimension, m.
Study performed for periodic system, whose real embedding dimension is m = 3.

y(t) = sin(2⇡ ⇤ 150t) + 3sin(2⇡ ⇤ 43t)
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Fig. 3.10. Evolution of Recurrence Plot for increasing values of embedding dimension,
m. Study performed for Lorenz System behavior, whose real embedding

dimension is m = 3.

The sampling rate is another important characteristic that should be closely monitored
to ensure the correct Recurrence Plot is being retrieved. If a sampling rate too close to the
natural frequency of a periodic system is used, the pattern obtained will not be the one
corresponding to the periodic topology, and might lead to wrong conclusions [38]. An
illustrative example of this is represented in figure 3.3.

Fig. 3.11. Recurrence plots for time series: y(t) = cos(2⇡1000t + 1/2sin(2⇡25t)). Left plot:
Sampling frequency equal to frequency of harmonic signal. Right plot: Sampling
frequency bigger than frequency of harmonic signal. State-space reconstruction

variables: m = 3, ⌧ = 7
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Some of the most characteristic patterns found in Recurrence Plots are listed below
and illustrated in figure 3.2 [36] [38]:

1. Periodic topology

Periodic systems are captured by Recurrence Plots as lines parallel to the diagonal.
The distance between successive lines is equivalent to the period of the equiva-
lent periodic signal. An adequate sampling rate must be used in order to be able
to recover perfect parallel lines with respect to the main diagonal. This has been
illustrated on. Figure 3.11.

2. Chaotic topology

Chaotic systems represented by Recurrence Plots are defined as irregular checker-
board textures. This designation is due to the horizontal and vertical white lines
that appear, which correspond to transitions inside the system. The inverse of the
longest diagonal, without taking into account the main diagonal, is proportional to
the largest positive Lyapunov exponent [36]. Lyapunov exponents will be intro-
duced later on in this Thesis.

3. Brownian motion

Brownian motion is defined as the path followed by a particle moving randomly
without any big jumps or disruptions [39]. This type of motion is characterized
by the appearance of lines both parallel and perpendicular to the main diagonal.
In addition, curved lines may appear joining some of the clusters of the recurrent
trajectories.

4. White noise

Noise normally appears as a heterogeneous pattern of scattered points with no ap-
parent structure visible. As shown previously, by increasing the embedding dimen-
sion, most of the noise can be e↵ectively eliminated. Another way of eliminating
said scatter points would be to filter the time series studied before processing it.

5. Non-stationary data

Non-stationary data is represented by Recurrence Plots as a fading scheme towards
the upper left and the lower right corners. Patterns may be found close to the main
diagonal, but they start fading away as the corners are approached. This indicates a
trend or drift in the time series being studied.
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Fig. 3.12. Representation of most common Recurrence Plots found in literature.

Recurrence plots have proven its value in the field of plasma physics in several projects,
being used as a graphic tool to analyze low-temperature discharge plasma [40] and to per-
form dynamic analysis on the JET Tokamak [22] to cite some examples.

The advantage that Recurrence Plots present when compared with other techniques,
such as Phase Portraits, is that apart from using the temporal information of the signal,
it uses the embedding dimension of the system, m. The recurrences of the data-points
are studied in the higher dimensional phase space, and illustrated in a 2D grid. So even
if the output of this technique is two-dimensional, it provides information regarding the
distribution of points in the real Phase Space dimensions of the system.

3.2.3. Model reduction techniques

Hankel Alternative View of Koopman (HAVOK)

The HAVOK technique is built based on The Koopman operator, which lay outside the
scope of this project, but information regarding this mathematical operator can be found
in the following reference [41].
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The HAVOK method seeks to find this Koopman invariant measurement space through
the construction of a Hankel matrix, H. H is built by time-delayed coordinates, as follows:

H =

2
66666666666666664

x(t1) x(t2) ... x(tp)
x(t2) x(t3) ... x(t4)
... ... ... ...

x(tq) x(tq+1) ... x(tm)

3
77777777777777775

(3.21)

Once the Havok matrix is built, the Singular Value Decomposition (SVD) of this ma-
trix is performed: H = U⌃VT . SVD provides the Eigen-time delayed coordinates ordered
from most to least important regarding their ability to describe the studied data. The first
r columns of U represent a Koopman invariant measurement space. The number r can be
found by di↵erent techniques that lay outside the scope of this project [42] [43].

The HAVOK method relies on the assumption that chaos is not random, it has a struc-
ture and patterns contained within it. Chaos can be understood as a “intermittently forced
linear system” [41]. Following this, a forced linear system can be constructed from the
time-series contained in V as follows:

d
dt

v(t) = Av(t) + Bvr(t) (3.22)

Where v(t) are the first r-1 columns of V, and the last one, vr, is imposed as the forcing
element. Equation 3.22 represents the reduced model of the system, with all the non-
linearity of its dynamics being encompassed in the forcing term vr.

This method has been successfully applied to the Lorenz system, demonstrating its
value to the modeling of chaotic systems.

Fig. 3.13. HAVOK method: Lorenz system

For Lorenz, r = 15. The plot on the bottom of Figure 3.6. corresponds to the inter-
mittent forcing term. It has been shown that the peaks on this figure corresponds to the
change of lobes in the Lorenz system, which further supports the assumption that chaotic
systems can be interpreted as linear systems in which an intermittent force is applied.
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HAVOK is a technique useful for identifying reduced models, as in the example with
Lorenz system shown before. By using this technique the most important properties of
the dynamics are preserved and defined into a mathematical formula, that can later be
used to study or even control the studied system.

Sparse Identification of Nonlinear Dynamics (SINDy)

SINDy is a method developed by Steven Brunton et all. [44] that seeks to discover gov-
erning equations of dynamical systems purely from measurement data, specifically from
time series measurements.

From the time series obtained, a library of possible functions up to a certain power
is built in the form of a matrix. Each column of said matrix corresponds to each one of
the functions selected, evaluated in each row at a di↵erent time instant. The assumption
in which this method stands is the fact that the derivatives of the time series obtained can
be described by a few of the functions contained in the matrix multiplied by a series of
constants.

As an illustrative example, let’s assume 3 di↵erent time series, wich n data points
each, have been recorded during an experiment: x, y and z. The need to also record the
derivatives of the time series can be relaxed by calculating them directly from the time
series itself by numerical di↵erentiation. The user chooses a set of polynomials up to
order five as its example library of functions, namely: [1, x, y, z, x2, xy, xz, y2, yz, ..., z5].

SINDy assumes the derivatives of the variables recorded can be described by a com-
bination of some of the functions inside the library multiplied by some constants. The
output of this algorithm is the set of constants which, when combined with the functions
inside the library, provide an accurate description of the dynamics studied through a re-
duced model. Mathematically, it can be expressed as:

2
66666666666666664

x1̇ y1̇ z1̇

x2̇ y2̇ z2̇

... ... ...

xṅ yṅ zṅ

3
77777777777777775
=

2
66666666666666664

1 x1 y1 z1 x1y1 ... z5
1

1 x2 y2 z2 x2y2 ... z5
2

... ... ... ... ... ... ...

1 xn yn zn xnyn ... z5
n

3
77777777777777775

2
66666666666666664

✏11 ✏12 ✏13

✏21 ✏22 ✏23

... ... ...

✏n1 ✏n2 ✏n3

3
77777777777777775

(3.23)

In order to ensure the sparsity of the constants obtained, the following procedure is
implemented:

✏ = argmin||⇥✏0 � x|| + �||✏0|| (3.24)

Where � is the sparsity constraint, and is left for the user to choose, depending on how
sparse they desire the system to be.
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For the Lorenz system, the SINDy algorithm with provide the following result:

2
66666666666666664

x1̇ y1̇ z1̇

x2̇ y2̇ z2̇

... ... ...

xṅ yṅ zṅ

3
77777777777777775
=

2
66666666666666664

1 x1 y1 z1 x1y1 ... z5
1

1 x2 y2 z2 x2y2 ... z5
2

... ... ... ... ... ... ...

1 xn yn zn xnyn ... z5
n

3
77777777777777775

2
66666666666666666666666666666666664

0 0 0
�10 28 0
10 �1 0
0 0 �8/3
0 0 1
0 �1 0
... ... ...

3
77777777777777777777777777777777775

(3.25)

As in the case of HAVOK, SINDy also serves as a tool that finds a reduced model for
the system. However, the advantage of SINDy is that it looks for the smallest reduced
model available for the dynamics. As an illustration, HAVOK provided a mathematical
formula with 15 variables, including the forcing parameter, for the Lorenz system. On
the other hand, SINDy, from the extensive library of possible functions that it received,
only kept those who surpassed the sparsity constraint set by the user for significance in
the model. The disadvantage that SINDy presents, however, is the fact that the library of
functions is selected by the user, and if the wrong library is introduced, the algorithm only
provides the trivial solution with all the constants set to zero.

3.2.4. Chaos quantification techniques

There is not a general definition of chaos. However, some specific characteristics are
attributed to chaotic systems, one of the most important ones being the sensitivity to
initial conditions of the system. Small variations in those conditions for chaotic systems
result in the trajectories di↵ering exponentially as time goes by.

Numerous experiments whose anomalous behaviour was thought to be due to errors
or noise in the samples have been restudied to determine that these non-linearities were
due to the chaotic behaviour of their dynamics [45]. The application of these techniques
to the field of plasma physics presents a huge potential in the study of turbulence.

Maximal Lyapunov Exponent

Chaotic systems, as explained before, present an extreme dependence on initial condi-
tions, which normally results in unpredictability by using traditional techniques even if
said systems are deterministic. This means that trajectories that were originally close in
phase-space will diverge exponentially fast as time increases. The average exponent of
this exponential increase is denominated as the Maximum Lyapunov exponent.

Let two di↵erent particles, that were originally close in the phase-space, be at a dis-
tance �o << 1. After some time �t, the distance will have grown to ��t exponentially fast.
The Maximum Lyapunov exponent can then be calculated according to [29]:

��t = �oe��t (3.26)
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Di↵erent types of motion can be identified according to the Maximum Lyapunov ex-
ponent obtained according to the following table:

TABLE 3.1. Di↵erent types of motion according to its Maximum Lyapunov
exponent [Extracted from [29]]

Type of motion Maximum Lyapunov exponent
Stable fixed point � < 0
Stable limit cycle � = 0

Chaos 0 < � < 1
Noise � = 1

Lyapunov exponents are invariant under phase-space reconstruction, rescaling or shift.
Based on this phenomenon, this technique can be applied to time-series obtained experi-
mentally by using its phase-space reconstruction. Even though the reconstructed attractor
will be based on a single trajectory, by choosings points whose temporal separation is big-
ger or equal to an estimated orbital period of the time-series, these points will be assumed
to lie on di↵erent trajectories [46].

Lyapunov exponents are widely used to characterize chaotic systems, and in the field
of plasma they have been employed in experiments regarding distributed beam-plasma
systems [47] and Hall thruster electromagnetic field profiles [48] among others.

The 0-1 test for Chaos

The 0-1 test for Chaos is a simple technique introduced by Gottwald, G. A., and Mel-
bourne, I. in 2004 [49] that separates chaotic systems from regular dynamics. One of the
best features of this technique is, apart from its simplicity, the fact that it only requires a
time series as an input in order to perform the analysis.

Imagine we have a time series x(t) with N points, from it we construct the following
2 vectors:

pc(i + 1) = pc(i) + x(i) ⇤ cos(c ⇤ i) (3.27)

qc(i + 1) = qc(i) + x(i) ⇤ sin(c ⇤ i) (3.28)

Being c a fixed value between 0 and 2⇡. If the system contained regular dynamics, the
motion of p and q would remain bounded in a regular pattern, however, if the dynamics
were chaotic, a Brownian-like motion would be observed. To illustrate this notion, the
Logistic Map presented in the Phase Portraits section will be used.

If µ = 3.55 the dynamics of the Logistic Map would be regular non-chaotic, however,
if the parameter was chosen to be µ = 3.97 the system would behave chaotically. This
can be clearly appreciated in the following figure:
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Fig. 3.14. Behaviour of qc as a function of pc for: a regular system (left plot,
µ = 3.55) and a chaotic system (right plot, µ = 3.97).

Once pc and qc have been calculated, the time-averaged mean square displacement
can be obtained according to:

Mc(i) = lim
N!1

1
N

NX

j=1

([pc( j + i) � pc( j)]2 + [qc( j + i) � qc( j)]2) (3.29)

This variable presents a lot of oscillations, so a modified mean-square was proposed:

Dc(i) = Mc(i) � Vosc(c, i) (3.30)

Vosc(c, i) = (Ex)2 1 � cos(c ⇤ i)
1 � cos(c)

(3.31)

Ex = lim
N!1

1
N

NX

j=1

x( j) (3.32)

A comparison showing both Mc and Dc is shown below to illustrate this:

Fig. 3.15. Behaviour of Mc and Dc as a function of n (n = i in the formulas): a regular
system (left plot, µ = 3.55) and a chaotic system (right plot, µ = 3.97).
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As it can be seen in these graphs, if the system is regular, there is no growth on the
mean of both Mc and Dc. On the other hand, chaotic systems are characterized by a linear
growth of Mc and Dc. Having shown the advantage of studying Dc instead of Mc, the test
for chaotic behaviour will be performed using only Dc.

Finally, in order to better illustrate if the system were regular or chaotic, the following
variable was introduced:

Kc =
cov(✏,�)p

var(✏)var(�)
(3.33)

var(x) = cov(x, x) (3.34)

cov(x, y) =
1
q

qX

j=1

(x( j) � x̂)(y( j) � ŷ) (3.35)

x̂ =
1
q

qX

j=1

x( j) (3.36)

Being q the length of the vectors studied, ✏ = (1, 2, ..., i) and � = (Dc(1),Dc(2), ...,Dc(i)).
The variable Kc will be 0 if the system is regular, and 1 if the system is chaotic. This
can be explained by examining the trajectories of the studied systems. In the regular
dynamics case, the trajectories are normally bounded and its mean-squared displacements
remains constant, but for the chaotic case the system normally behaves like a Brownian-
motion and its mean-squared displacement grows on time. Kc captures this behaviour and
computes a 0 if there is no growth, and a 1 is there is [35]. To continue with the example
studied in this section, the following graphs have been created:

Fig. 3.16. Behaviour of Kc as a function of c for: a regular system (left plot, µ = 3.55) and a
chaotic system (right plot, µ = 3.97).

Some resonances are captured by the method for the regular case, but overall the trend
of µ = 3.55 tends to stay around the value 0. On the other hand, the case for µ = 3.97
clearly represents the chaotic behaviour of the system as Kc takes the value 1 for almost
all the values of c.
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3.2.5. Statistical techniques

Intermittency

A signal is intermittent when it displays some activity only during a fraction of the time,
occurring in bursts. The Lorenz attractor is again a good example to illustrate this phe-
nomenon. It displays almost two periodic orbits in which the particles travel between
them, which could be defined as an intermittent periodic cycle. This can be seen in the
following figure, in which the di↵erent orbits corresponding to the two lobes of the Lorenz
attractor are clearly separated in the top and bottom fluctuations pictured.

Fig. 3.17. Intermittency on Lorenz system

Having defined what intermittency is, now let’s focus on how to quantify it, di↵erent
approaches have been developed over the years in order to do this. Batchelor postulated
in 1953 [50] that one could model such systems as a still phase, interrupted by burts,
modeled as Gaussian random fluctuations for a fraction of time �. Kurtosis was easy to
calculate for such signals, being Kurtosis a description of the shape of the probability
distribution of said signals according to the formula [51]:

K =
µ4

�
(3.37)

Being� its standard deviation and µ4 the fourth moment about the mean of the sample.
Assuming the variables studied, X, to be random, with a probability distribution defined
by F, the fourth moment of X is defined as:

µ4(X) =
Z 1

�1
x4F(x) (3.38)

Relating K to the variable � it was obtained that: K = 3/� � 3, so Kurtosis was
proposed as a general measure of intermittence. However, since K is also a measure of
the shape of the pdf of the signal, it was unclear when K di↵erent than 3 corresponded to
a non-Gaussian pdf and when it corresponds to intermittence [50].

Frisch noted in 1995 [52] that in real systems, signals are rarely still. He suggested
applying a high-pass filter to the data (thus assuming that the bursts are high-frequency).
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Then, K would depend on the cut-o↵ frequency of the filter employed. It was postulated
that if K( f c) was not constant, then the signal was intermittent.

A more reliable measure of intermittency was later introduced based on chaos theory
by Meneveau [53] [54] and has already been proven useful for the study plasma physics
[21]. This approach is based on the “box-counting” method. Given a time series X =
(x1, x2, ..., xN), the following quantity can be calculated:

✏(1, i) =
(xi� < xi >)2

< (xi� < xi >)2 >
(3.39)

Where < xi >= (
PN

i=1 xi)/N. This measure can be averaged over sub-blocks of data
with length n<N, as follows:

✏(n, i) =
1
n

n�1X

j=0

✏(1, i + j) (3.40)

By calculating the q-moments of ✏(n, i), for a given range of n-values, these moments
are expected to behave according to:

< ✏(n, i)q >/ n�K(q) (3.41)

Where K(1) = 0. The parameter C(q) can then be defined as:

C(q) =
K(q)
q � 1

(3.42)

And finally, the intermittency parameter, C(1), can be defined, due to the singularity
that occurs for C(q) at q = 1 as:

C(1) =
dK(q)

dq

����
q=1

(3.43)

K and C(1) present the improvement when compared to Kurtosis that they contain
information related to time, which in the statistical treatment of the data relating the Kur-
tosis was completely lost.

Both K and C(1) serve as quantifiers of the intermittence present in a sample, however,
it has been shown that C(1) is more reliable than K. A simple example was presented for
intermittency study by B. P van Milligen et all. [55] for the Ikeda map. This map is
defined as:

zn+1 = a + bzneik� i⌘
1+|zn |2 (3.44)

With a = 0.85, b = 0.9, k = 0.4. By varying the values of the parameter ⌘ it was
discovered that at ⌘c = 7.26884894, the system went from a regular behaviour between 0
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and 1 to showing bursts of intermittency. The following figures illustrate this phenomenon
for two di↵erent values of ⌘: one below the critical value, 7, and one above, 7.33.

(a) Non-intermittent behaviour. (b) Intermittent behaviour.

Fig. 3.18. Ikeda map behaviour for di↵erent values of ⌘.

Fig. 3.19. Time series for Ikeda map. Bottom plot shows clear range defined between 0 and
1. Top plot represents intermittent behaviour, with bursts occuring at di↵erent

times during sample.

To demonstrate the superiority of C(1) over K, a sample obtained from the Ikeda map
was studied for both K and C(1), then, the data points were re-ordered in ascending order
removing all intermittency from the set. C(1) dropped to 1 as expected, however K still
showed the same pattern as in the previous case. The results are shown in the following
figures:
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(a) Experimental sample. (b) Re-ordered sample with values in increasing
order.

Fig. 3.20. Comparison of K and C(1) as intermittency quantifiers. Example extracted from [55].

Turbulence may contain big turbulent eddies, which break up and become smaller
ones in a cascade sense. These smaller eddies will behave then as intermittent systems and
can be monitored using the C(1) parameter. The field of intermittence in plasma propul-
sion is yet to be explored, but seeing the success rate that the C(1) parameter has provided
when detecting intermittent behaviours in fusion plasma experiments, these technique
presents promising prospects to study the turbulence in plasma thrusters [56] [57].

Transfer Entropy

Transfer Entropy is defined as the gain in information about a future state of time series
x(t) when both the past history of x(t) and an additional time series, y(t), are considered
comparing it with the gain that would be obtained by studying the past history of x(t)
alone. This technique was developed by Thomas Schreiber to quantify the statistical
causality between two signals and additionally identify the directionality of said influence
[28].

Before Transfer Entropy was introduced, Standard Time Delayed Mutual Information
was used to study the coherence between systems. Based on the explanation about Mutual
Information from section 3.1 and specifically on equation 3.7, it can be concluded that the
Mutual Information technique presents a symmetry under the interchange of processes
I and J; if the order was to be reversed, the result would be exactly the same and no
information would be obtained regarding the direction of influence between them. In
addition, Transfer Entropy has the advantage of providing directionality when compared
with other techniques such as the correlation. By providing directionality, not only the
causality between two signals can be found but in addition, which signal is producing the
influence can also be identified.

Furthermore, Transfer Entropy is also di↵erent from the cross-correlation technique
explained in Section 3.1.2. Cross-correlation presents a maximum when both signals
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studied are equal, whereas the Transfer Entropy returns a 0 value if both signals are the
same. This is due to the fact that if the signals are equal, no additional information is
gained by studying the second signal in comparison to the first one alone.

The entropy rate is defined as the average number of bits needed to encode one addi-
tional state of the system if all previous states are known [28]:

hI = �
X

p(in+1, i(k)
n )log2

p(i(k+1)
n+1 )

p(i(k)
n )

(3.45)

Being i(k)
n = (i1, i2, ..., in). By generalizing hI to two di↵erent processes, I and J,

Schreiber arrives at the final equation to describe the Transfer Entropy:

TJ!I =
X

p(in+1, i(k)
n , j(k)

n )log2
p(in+1|i(k)

n , j(k)
n )

p(in+1|i(k)
n )

(3.46)

If the processes are independent, then the first conditional probability should not de-
pend on J and the 2 expressions inside the logarithm would be identical, yielding a null
value for the Transfer Entropy [29].

For the purpose of data analysis, the expression used for the Transfer Entropy when
studying two di↵erent time series, x(t) and y(t), is the following:

TY!X =
X

p(xn+1, x(k)
n , y

(k)
n )log2

p(xn+1|x(k)
n , y

(k)
n )

p(xn+1|x(k)
n )

(3.47)

Schreiber defined the kernel estimation as a suitable approximation for the probability
distribution of the time series studied. A step kernel is used that yields 1 when the state
studied is found and 0 elsewhere, this procedure is performed for all possible states and
is then divided by the total number of samples studied [28]. In this Thesis, 3 bins of
probability will be used: positive, negative and null.

A simple approach that estimates the statistical significance of the Transfer Entropy,
as explained before, is to compute the T E between two random noise signals of the same
length. This computation is performed as a function of the length of the signal, N. Figure
3.21 shows this calculation.
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Fig. 3.21. Transfer Entropy for two random noise signals as a function of the sample length, N.
Each point is calculated as the average of 100 independent simulations, with the error

bar representing the variation over said simulations.

As stated before, Transfer Entropy provides a quantification of the impact of a variable
on another and the direction of said impact. This feature is relevant in the study of Plasma
Propulsion because it provides a way to track small propagations in highly turbulent sys-
tems. Additionally, Transfer Entropy has already been employed and proven useful in the
study of plasma fusion for heat transfer in experiments conducted in the TJ-I and W7-X
stellarators and in the Joint European Torus (JET) [58] [59].
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4. DATA OVERVIEW

All the pertaining data used for the analyses shown on this project was freely-provided
by the EP2 research group. The HET simulation constitutes the main focus of study of
this Thesis, and the HPT experimental data has also been included and analyzed in order
to extend the implementation of these techniques as an additional exploration.

It should be noted that the author of this Thesis did not intervene neither in the HPT
Experiment nor in the HET simulation, while all analyses presented in the following chap-
ter have been performed originally for this project. A description of both the experiment
and the simulation is presented in this section in order to provide a better understanding
of the source of the data analyzed.

4.1. Helicon Plasma Thruster Experiment

The data obtained for the Helicon Plasma Thruster represents the first experiment carried
by the EP2 Research Group on this motor. This experiment was performed with the
objective of performing a preliminary study of the plume of the HPT. It should also be
kept in mind that this data will be mainly used by the EP2 group for calibration porpuses
and is just a first attempt into the characterization of this new motor.

The HPT experiment was performed in the EP2-UC3M laboratories. The thruster was
set with Krypton at 450W of power and 30sccm of mass flow rate.

Two non-compensated Langmuir probes facing the nozzle were employed. They were
positioned symmetrically with respect to the vertical centerline of the thruster and 20mm
over the horizontal centreline. The probe tips, with a length of 2mm and a radius of
0.25mm, were positioned at 8 � 10mm from each other.

Two types of data were obtained, even though the floating potential will be the focus
of the analysis in this project:

1. The floating potential

The configuration explained before was directly used in this case. Seven measure-
ments at di↵erent positions as shown in Table 4.1 were obtained. In order to record
this, the probes are left floating and the electric potential is recorded.

2. The ion saturation current

Data was acquired by using the configuration previously mentioned alongside a
100k⌦ resistor for each probe. The positions where the measurements were taken
are also shown in Table 4.1, in this case only two di↵erent positions were studied.

CHAPTER 4. DATA OVERVIEW 33



To record the ion saturation current, the probes are biased at low voltages and then
the current between the probe and the ground is recorded.

TABLE 4.1. Measurement positions, from thruster to nozzle, performed for
the di↵erent experiments. All values expressed in mm.

1 2 3 4 5 6 7
Float 400 350 300 250 200 150 100
Isat 200 100 - - - - -

The wiring, both in-chamber and out-of-chamber, was chosen to be unshielded in
order to avoid shortcutting all the high-frequency oscillations through the wire itself and
all the shielding of the coax.

4.2. Hall-E↵ect Thruster Simulation

The Hall-E↵ect Thruster simulated was generated by means of a hybrid algorithm com-
posed of Particle-In-Cell (PIC) and a fluid model. This hybrid code was created by the
EP2 Research Group with the objective of reducing computation time and costs when
handling plasma simulations and has already been proven successful in the simulation of
Hall-E↵ect Thruster environments [60].

The PIC algorithm follows trajectories of charged particles in electromagnetic fields
for a provided mesh. The code simulates the motion of each particle and calculates all
associated plasma parameters, such as density or electric potential, from the position
and velocity of these particles. PIC simultaneously solves Newton-Lorentz’s force and
Maxwell’s equations [61]. The PIC algorithm is used for heavy particles, such as neu-
trons. The mesh used in this case, shown on Figure 4.1(a), presents a higher concentration
of points inside the thruster discharge region than in the rest of the nozzle in an attempt to
reduce the noise of the simulation.

On the other hand, electron particles would be very costly to compute using the PIC
method, especially due to their short-time characteristic behaviour. Following this rea-
soning, the electrons inside the simulation are modelled following a fluid model. For
this case, the mesh employed is aligned with the magnetic field of the thruster, as shown
on Figure 4.1(b). By making the mesh follow the magnetic lines, numerical di↵usion is
minimized and the accuracy of the simulation is greatly improved.
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Visual images of the meshes generated for the Hall-E↵ect thruster simulation are pro-
vided below:

(a) PIC model. (b) Fluid model.

Fig. 4.1. Generated meshes for HET simulation.

Some of the results generated for the 2D grid are also provided here in order to better
define the type of outputs obtained from this simulation:

(a) Plasma density. (b) Electric potential.

(c) Electron temperature.

Fig. 4.2. Outputs of HET simulation.
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5. RESULTS AND DISCUSSION

5.1. Helicon Plasma Thruster Experiment

By performing a preliminary study of the data to be analyzed, it was discovered that the
probes at positions 4 through 7 were saturated during the experiments, so these sets of
data had to be discarded. The saturation can be observed in the following figures:

(a) Position 1. (b) Position 2. (c) Position 3.

(d) Position 4. (e) Position 5. (f) Position 6.

(g) Position 7.

Fig. 5.1. Saturated probes identification through Poincaré graphs. Analysis performed on
unfiltered data sets.

Based on this reason, only positions 1 through 3 will be analyzed in this section.
Additionally, all data sets have been filtered twice, as it will be explained in the following
section.
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5.1.1. Pre-processing

It was known before-hand that the frequency of the Helicon Plasma Thruster, f = 13.56MHz,
along with the frequency corresponding to the wiring inside the chamber, f = 50Hz
would be present in the recorded signals. Since these frequencies would bury all the
non-linearities of the plasma, these frequencies along with their corresponding harmonics
were filtered out as shown in the figures below. Furthermore, after this processing a sec-
ond filter was applied in order to reduce the amount of noise present in the measurements.

(a) Time series and FFT of signal before and after
first processing.

(b) FFT of signal after first processing.

Fig. 5.2. Initial pre-processing of HPT signals.

5.1.2. Embedding dimensions

The first step prior to applying any analysis on the data sets was to obtain the embedding
dimensions corresponding to the di↵erent variables to be studied with the Time Delayed
Mutual Information and the False Nearest Neighbours techniques.

The remaining variables that will be studied for the floating potential are those cor-
responding to position 1, 2 and 3, with channel 1 and 2 for the 3 cases. The results are
illustrated in the following table:

TABLE 5.1. Embedding dimensions for Helicon Plasma Thruster Experiment

Position 1 Position 2 Position 3
Ch. 1 Ch. 2 Ch. 1 Ch. 2 Ch. 1 Ch. 2

m 5 4 4 3 4 5
tau [ns] 10 20 10 40 10 10

In order to better compare the results obtained, and since using a higher embedding di-
mension does not greatly a↵ect the accuracy of the results obtained, all analyses presented
in this section will use m = 5.
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5.1.3. Phase Portraits

Phase Portraits for the di↵erent positions and channels were generated in order to see if
any defined structure could be seen for the floating potential. By analyzing the Poincaré
graphs obtained for the di↵erent positions and channels, some complex attractors were
found. Since no simple structure which could be used for modelling or control purposed
was found, only a few illustrative cases will be shown.

Channel 1

What is clear from inspecting the figure obtained for Channel 1 is that the dynamics of
the floating potential seems to be confined to this complex attractor, with no points laying
outside of it. Figure 5.3(a) shows defined orbits in which trajectories encompass each
other.

The red lines represent the trajectories that join the points studied, and said points are
represented in black, it can be seen that there are surfaces in the complex attractor where
points are never found.

(a) Position 1. N = 500003 points. (b) Position 1. N = 20000 points.

Fig. 5.3. 3D Poincaré graphs for floating potential in channel 1. Time lag used for study:
⌧ = 2x10�8s.

Since the attractor found presents such a complicated behaviour, a second figure with
less points studied was generated in order to better illustrate the paths followed by the
particles (Figure 5.3(b)).

The data points seem to be confined to specific paths, travelling from one to the other
as represented by the pink lines, but never found outside of them. This can be either due
to the fact that because of the sampling frequency used the points always happened to be
in these positions, or to the possibility that the floating potential can only exist in these
particular states represented on the figure.
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Channel 2

Since the probes corresponding to channel 1 and channel 2 were placed symmetrically
with respect to the center of the thruster, the results obtained from them should be ex-
pected to be the same, or at least pretty close. However, this was not the case. As it can
be appreciated from Figure 5.7 the resultant dynamics of the floating potential recorded
are not the same.

(a) Position 1. Channel 1. (b) Position 1. Channel 2.

Fig. 5.4. Comparison of 3D Poincaré graphs for floating potential in position 1 (400 mm from
thruster). Time lag used for study: ⌧ = 2x10�8s.

This di↵erence in the results obtained is likely due to noise, a defect in one of the
probes used for the experiment or even some interference between the wiring and the
probes for one of the channels.

An intereseting result was found for Position 3 in channel 2, shown on Figure 5.7. A
"tower" of triangles seemed to appear, being the triangles formed by the trajectories of the
studied points.

(a) Position 3. N = 500003 points. (b) Position 3. N = 20000 points. Top view.

Fig. 5.5. Comparison of 3D Poincaré graphs for floating potential in channel 2. Time lag used for
study: ⌧ = 2x10�8s.
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The orbits shown on figure 5.5(b) clearly represent the states studied being confined
to specific configurations inside this reconstructed phase space. This view corresponds to
the "top" of the tower of orbits that appeared at position 3. Trajectories followed by the
data points being organized in a complex and self-similar geometry is characteristic of
chaotic dynamics [62], so the 0-1 test for Chaos was applied to these data sets to further
study this possibility.

To conclude this section, the finding of an attractor which is bounded and shows struc-
ture, even if that structure is really complicated, provides some knowledge about the dy-
namics of the floating potential dynamics. Even if the dynamics of the system were to
be chaotic, meaning there would be local unstabilities subject to initial conditions, the
existance of an attractor ensures global stability. In other words, even if variations on the
initial conditions were introduced, making the evolution of the system diverge exponen-
tially, the existence of the attractor ensures the divergence would not be infinite, it would
be subjected to the size of said attractor [34].

5.1.4. The 0-1 test for Chaos

Folling the findings of the previous sections, the 0-1 test for Chaos was applied to all the
positions and channels studied, in order to see if chaos was present in the dynamics of the
floating potential.

(a) Channel 1. (b) Channel 2.

Fig. 5.6. The 0-1 test for Chaos performed for the floating potential. Position 1 (400 mm from
thruster).
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(a) Channel 1. (b) Channel 2.

Fig. 5.7. The 0-1 test for Chaos performed for the floating potential. Position 2 (350 mm from
thruster).

(a) Channel 1. (b) Channel 2.

Fig. 5.8. The 0-1 test for Chaos performed for the floating potential. Position 3 (300 mm from
thruster).

As it can be seen in the di↵erent figures, the floating potential only shows values of
Kc = 1 for specific values of c, so chaos is unlikely to be present in the studied data. This
is reasonable, since even though the complex attractors recoverered through the Poincaré
method resembled chaotic behaviour in their geometry, clear defined orbits could be seen
inside them. What this means is that while the point is contained in one of these defined
orbits, it is not behaving chaotically or suddenly changing from a state to the other. This
can be further explained by thinking of the Lorenz attractor. This chaotic system contains
two quasi-periodic orbits in which the particles travel. Lorenz is one of the most well-
known examples of chaotic systems in the literature, however it can also be thought of as
two quasi-periodic systems being intermittently forced to change, as explained in Section
3.2.3. In fact, if the 0-1 test for Chaos is applied to the Lorenz system, the following result
is retrieved:
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Fig. 5.9. The 0-1 test for Chaos performed for Lorenz
system.

This results point in the direction of the 0-1 test for Chaos only detecting a specific
type of chaos, more disorderly than the one presented for Lorenz System.

5.1.5. Recurrence Plots

Having chosen the optimal embedding dimension chosen to be m = 5, the following
recurrence plots for the di↵erent positions and channels were generated.

(a) Channel 1. (b) Channel 2.

Fig. 5.10. Recurrence plots for floating potential at Position 1 (400 mm from thruster).
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(a) Channel 1. (b) Channel 2.

Fig. 5.11. Recurrence plots for floating potential at Position 2 (350 mm from thruster).

(a) Channel 1. (b) Channel 2.

Fig. 5.12. Recurrence plots for floating potential at Position 3 (300 mm from thruster).

As it can be seen on the figures, there are a lot of scattered points in the plots, which
may be due to bad filtering of the signals. However, it is interesing to note that, espe-
cially the samples corresponding to channel 1, resemble the irregular chessboard texture
characteristic of chaotic systems explained in Section 3.2.2. These square clusters where
the recurrences appear (represented in black on the figures), correspond to the particles
coming near each other in the 5th dimensional reconstructed space. The white vertical
and horizontal lines that can also be appreciated on the figures corresponding to channel
1 correspond to time spans in which almost all particles seem to be separated from each
other in the embedded space.
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The fact that di↵erent dominant frequencies seem to be dominant in channels 1 and
2 is also worth highlighting. For the case of channel 1, a periodic pattern of 1x10�6s
seems to appear, and in the case of channel 2, a faster periodic pattern of 7x10�7 becomes
apparent. These di↵erent behaviours align with the findings in the last two sections, where
discrepancies between the data recorded by Channel 1 and Channel 2 were found.

5.1.6. Cross-Correlation

The cross-correlation, introduced in Section 3.1.2., was employed to look for any relation-
ship between the channels at the di↵erent positions. For each position, the experiments
were repeated several times, so the cross-correlation shown in the figures corresponds to
the concatenation of these repetitions, in order to make the statistical calculations for that
specific location more accurate.

As it can be seen from the figures, some degree of similarity was found between the
di↵erent channels for all the positions studied. The discussion of the relationship between
the channels, along with a comparison with the Transfer Entropy in order to show the
advantages of using the later one, is developed in the following section.

(a) Position 1. (b) Position 2.

(c) Position 3.

Fig. 5.13. Normalized cross-correlation between probes at the three positions studied.
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5.1.7. Transfer Entropy

In order to see if there was any azimuthal transfer of information, the Transfer Entropy
technique was applied to both probes at the three di↵erent positions available.

The length of just one sample for the Hall-E↵ect Thruster Simulation is N = 500003.
For the case of position 1 the experiment was repeated three times, and for position 2 and
3 five times. For the three positions this produces a statistical relevance threshold around
10�5 according to Figure 3.21. It should be noted that all transfer entropies obtained are
well above the statistical significance threshold.

(a) Influence of Channel 1 over Channel 2. (b) Influence of Channel 2 over Channel 1.

Fig. 5.14. Transfer Entropy between probes at Position 1 (400 mm from thruster).

(a) Influence of Channel 1 over Channel 2. (b) Influence of Channel 2 over Channel 1.

Fig. 5.15. Transfer Entropy between probes at Position 2 (350 mm from thruster).
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(a) Influence of Channel 1 over Channel 2. (b) Influence of Channel 2 over Channel 1.

Fig. 5.16. Transfer Entropy between probes at Position 3 (300 mm from thruster).

Confirming the findings of the cross-correlation shown before, the transfer entropy
also suggests that there is a statistical causality between the studied probes.

It is clear from comparing the graphs, that Channel 1 seems to have a bigger influence
on Channel 2 than Channel 2 over Channel 1. However, the influences in both directions
are well above the statistical threshold set for the length of these signals.

This study has been performed by varying the number of data points studied in each
iteration. There is a minimum number of points that the Transfer Entropy technique
in order to provide meaningful results, as it can be appreciated from the initial sudden
changes on the figures when N was still too low. If the influence of one of the channels
over the other was fixed in time, it should be expected that as N grows, the Transfer
Entropy reaches a saturation value in which no matter how many points are included in
the sample, the result does not vary.

In this case, however, as N is increased the Transfer Entropy seems to oscillate around
a value in each case, but it never reaches that saturation state. This can be due to the
length of the signals not being long enough, but this reasoning seems unlikely since for
the case of Position 3 the final length of the concatenated is N = 2.5x106. These variations
could also be due to noise or some external factor during the data recollection that altered
the results. Additionally, there exists the possibility that the variations observed from the
Transfer Entropy results could be due to the azimuthal flow of information switching from
one side of the thruster to the other, being the time when the information flow comes from
Channel 1 longer, based on the bigger magnitude of the TE coming from this Channel.

To conclude this section, it should be highlighted how the Transfer Entropy allows to
study the directionality of the relationship between the signals, as opposed to the cross-
correlation shown in the previous subsection.
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5.2. Hall-E↵ect Thruster Simulation

5.2.1. Embedding dimensions

Again, the first step before performing any analysis on the data sets was to obtain the
embedding dimensions corresponding to the di↵erent variables to be studied with the
Time Delayed Mutual Information and the False Nearest Neighbours techniques. From
here on the variables studied will be referred to as: plasma density (⇢), ion current density
(Ji), electric potential (�) and electron temperature (Te). The results are illustrated in the
following table:

TABLE 5.2. Embedding dimensions for Hall-E↵ect Thruster Simulation

⇢ Ji � Te

m 4 4 4 3
⌧ [µs] 4.8 2.7 3.3 24.6

No filtering of the data was performed in this case, since the time-series analyzed were
generated by a numerical simulation.

5.2.2. Phase Portraits

The Phase Portraits presented here have been created for di↵erent positions along the cen-
tral channel in order to asses the di↵erences between the spatial references. The reference
points used are shown in the following figure, and will be used in di↵erent sections along
this results chapter for the HET.

These points were selected in order to study the di↵erent regions of interest inside the
central channel. The first point corresponds to the dynamics inside the inner channel of
the thruster, the second and third points have been chosen to lay right before and after the
cathode bound, and finally the fourth point corresponds to a position near the end of the
HET once the cathode bound has already been surpassed.

Fig. 5.17. Reference points studied along central channel on 2D grid.
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For the Phase Portraits shown in this subsection, the same grid has been used to com-
pare the four positions in order to show the expansion of the studied systems. Addition-
ally, a close-up of the first and fourth position is also provided for each case to better study
their structures.

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

Fig. 5.18. Poincaré graph for plasma density along di↵erent positions. Time lag used for study:
⌧ = 4.8x10�6s.

In the case of Figure 5.18, which represent the plasma density for the di↵erent posi-
tions, it can be appreciated that initially the 2D-attractor found has a huge scale that starts
reducing as the nozzle end gets closer. Physically, this means that between the current
state and the past state there are smaller di↵erences in magnitude as the plasma advances
through the thruster.
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(a) Position 1 (b) Position 4

Fig. 5.19. Poincaré graph for plasma density along di↵erent positions. Close-up.

Even though the scales of the 2D-attractors di↵er greatly for the plasma density, by
inspecting the close-ups presented in Figure 5.19, the same overall structure can be recog-
nized. For smaller values, represented in the graph towards the lower left corner, the dy-
namics of the plasma density seem to be contained, but as bigger values are approached,
represented in the graph towards the upper right corner, the system becomes more un-
bounded. It should also be highlighted that the chaoticity of the attractor is bigger for
Position 4 than for Position 1.

(a) Position 1 (b) Position 2
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(c) Position 3 (d) Position 4

Fig. 5.20. Poincaré graph for ion current density along di↵erent positions. Time lag used for
study: ⌧ = 2.46x10�5s.

For the ion current density, as it happened for the plasma density case, the scale of the
attractor also decreases as they system goes from position 1 to position 4. Additionally,
the same overall structure is obtained for all cases, but more irregularities are present in
Position 4 than in Position 1, as appreciated on Figure 5.21.

(a) Position 1 (b) Position 4

Fig. 5.21. Poincaré graph for ion current density along di↵erent positions. Close-up.
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An exception to the pattern found for the variables studied before was found for the
case of the electric potential. For the rest of the cases, the 2D-attractors recovered pre-
sented the same overall structure at di↵erent scales and with the inclusions of some irreg-
ularities.

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

Fig. 5.22. Poincaré graph for electric potential along di↵erent positions. Time lag used for study:
⌧ = 3.3x10�6s.

For the case of the electric potential, as shown in Figure 5.22, the structure recovered
for positon 1 presents a lot of irregularities and is displaced on the grid with respect to the
other 3 figures. Position 2 still presents some of the irregularities seen on Pos. 1, but on
a smaller scale, and the figure is also shifted towards the starting point of the rest of the
positions.
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(a) Position 1 (b) Position 4

Fig. 5.23. Poincaré graph for electric potential along di↵erent positions. Close-up.

In this case, as previously stated, the structures recovered are nothing alike due to the
inclusion of disturbances that make the 2D-attractor for position 1 blow up. This agrees
with the result obtained in the following Recurrence Plots section, in which for Position
1 some chaotic-like behaviour was obtained, but it was lost as Position 4 was reached.

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

Fig. 5.24. Poincaré graph for electron temperature along di↵erent positions. Time lag used for
study: ⌧ = 2.7x10�6s.
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Regarding the electron temperature case, the chaotic-like behaviour of the attractor
found is not as prominent as that found on Subfigure 5.23(a), but the pattern found for both
plasma and ion current density was not recovered either. As for the electric potential case,
some "noisy" attractor was recovered for position 1, and then at position 2 the attractor
recovered resembled the one corresponding to Pos. 3 and 4 more, but with the di↵erence
that in this case Pos. 2 seems to be displaced towards the upper right corner of the grid,
indicating bigger values.

(a) Position 1 (b) Position 4

Fig. 5.25. Poincaré graph for electron temperature along di↵erent positions. Close-up.

By examining the close-up of both positions 1 and 4, it can be appreciated in Subfig-
ure 5.26(a) that a closed-loop structure seems to form towards the upper right corner, and
another closed-loop form appears towards the lower left corner. However, many irregular-
ities and outburts are also included which deform the recovered attractor making it di↵er
a lot from the one corresponding to position 4.

(a) Lorenz System (b) Electron Temperature

Fig. 5.26. Comparison of Poincaré graphs for Lorenz system and electron temperature.
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As in the case of Lorenz, it was found that the optimum embedding dimension for the
electron temperature data was m = 3. From Figure 5.26, a clear paralellism between
the two projections of the attractor can be seen. For Lorenz, two periodic states are
interchanged in a chaotic manner. For the electron temperature, a similar behaviour could
be expected after analyzing this graph.

5.2.3. The 0-1 test for Chaos

After finding two indicators for possible Chaos for the electric potential and the electron
temperature in Position 1, the 0-1 test for Chaos was performed in order to continue
studying this possibility.

(a) Position 1. (b) Position 4.

Fig. 5.27. The 0-1 test for Chaos performed on the electric potential for di↵erent positions.

The test for chaos came back with Kc = 1 for most of the values of c, which is an
indicator of chaos present in the system. A comparison also representing the electric
potential but at position 4, where no indication of Chaos was present, has been included
in the figure to further illustrate this. In comparison, the test for position 4 came back
with Kc = 0 for almost all values of c, indicating no Chaos present.

Fig. 5.28. The 0-1 test for Chaos performed on the electron temperature for Position 1.
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On the other hand, the test performed for the electron temperature at position 1 came
back with Kc = 0 for almost all values of c, contradicting the hypothesis of chaos being
present made from the results of the Poincaré graph for that specific position.

5.2.4. Recurrence Plots

The next step of the analysis was to create the Recurrence Plots corresponding to the dif-
ferent positions studied. After obtaining all the results, it was observed that the major
di↵erences occured between positions 1 and 4, so in order to avoid redundancies, only
there 2 positions are shown in this section. It should be also kept in mind that the embed-
ding dimension was chosen to be m = 4 for all variables and positions in order to better
compare the results.

(a) Position 1. (b) Position 4.

Fig. 5.29. Recurrence plots for plasma density at di↵erent positions of central channel.

By studying Figure 5.29, no significant di↵erence is appreciated between Position 1,
corresponding to a point inside the thruster, to Position 4, almost at the end of the nozzle.
A periodic pattern with the addition of some possible noise can be appreciated, with
a corresponding period of 7.5x10�5s, which corresponds to the period of the discharge
current, as illustrated on Figure 5.30.
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Fig. 5.30. Discharge current of Hall-E↵ect Thruster simulation.

(a) Position 1. (b) Position 4.

Fig. 5.31. Recurrence plots for ion current density at di↵erent positions of central channel.

For the case of the ion current density, the same periodic pattern seems to be present.
However, a di↵erence can be appreciated for this case between position 1 and position 4.
For position 4, the inclusion of some disturbances can be appreciated, both in the time-
series and in the recurrence plot. In the recurrence plot this irregularities are illustrated in
the form of clusters along the main diagonals.
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(a) Position 1. (b) Position 4.

Fig. 5.32. Recurrence plots for electric potential at di↵erent positions of central channel.

Regarding the electric potential, again the same overall periodic pattern is found for
this case. A clear di↵erence between the pattern shown in Subfigure 5.32(a) and the rest
of the Recurrence Plots present here can be identified. Even though the periodicity is
present in this sample, some chaotic-like behaviour seems to appear, but as the position is
increased until 4 is reached, this pattern fades away leaving only the periodic pattern with
some small irregularities. This further supports the results obtained from the Poincaré
graph and the 0-1 test for Chaos performed in previous sections for this specific variable
and position. Additionally, it could be argued that some intermittency is present for the
electric potential, regarding the peaks that can be observed around the time range t =
(2.7 � 2.9)x10�3s.

(a) Position 1. (b) Position 4.

Fig. 5.33. Recurrence plots for electron temperature at di↵erent positions of central channel.

Finally, for the electron temperature, a similarity with the behaviour of the electric
potential can be drawn. Even though the electron temperature presents a cleaner form,
some irregular inclusions can be seen. It can also be appreciated that the irregularities
present on Position 1 fade away as Position 4 is approached.
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5.2.5. Transfer Entropy

In order to analyze the spatial correlations inside the HET, the Transfer Entropy technique
was employed. The statistical significance was chosen to be T E = 10�3 according to
Figure 3.21 since the length of the studied signals is N = 12000. All results below
this threshold have been suppressed from the figures since they do not o↵er ay relevant
information to this analysis.

Transfer Entropy was applied between a reference point in the inner channel of the
thruster, located at position Z = 0.0105m and R = 0.0425m, and the rest of the points in
the 2D mesh.

One of the most relevant results found which will be presented here, is the compari-
son between the electron temperature and itself. The spatial propagation of the electron
temperature fluctuations will be completed by the temporal propagation analysis of the
electron temperature, presented in the following subsection, using the same reference
value.

Fig. 5.34. Transfer Entropy studied over the 2D mesh of the Hall-E↵ect Thruster. Lines in white
represent the di↵erent levels of TE present in the simulation. Reference Te used for study:

Z = 0.0105m, R = 0.0425m.

On Figure 5.34 what is presented is the maximum entropy found for a range of time
lags studied, ⌧. What this represents is the maximum flow of information between the
studied reference point and the rest of the grid.

There seems to be a high information flow coming from the reference value to the end
of the discharge region of the HET, around Z = 0.027m. What this means is that there
seems to be a high statistical causality between the electron temperature of the reference
point studied and the electron temperature of the particles in this area.
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On the other hand, there are regions in the thruster where there seems to be no flow
of information coming from the reference point. The round semicircle that appears right
outside the thruster discharge area coincides with the cathode bound of the HET. This lack
of information flow indicates that the state of the reference point studied does not a↵ect
the electron temperature of the particles contained by the cathode bound.

However, this lack of information flow in the cathode bound seems to be jumped over,
since statistical causality seems to be found again after that point. It is interesting to note
that right after the cathode bound, where a minimum of the transfer entropy was observed,
another round semicircle seems to appear formed by small circular areas indicating high
statistical causality.

There are some additional areas where no information flow appears spread around the
nozzle of the HET. Even though the HET presents a symmetrical geometry around its
axis, these areas are not evenly spread with respect to this symmetry axis. As in the case
of the cathode bound, the areas of no information flow appear to form aligned with the
magnetic field of the HET, as appreciated on Figure 4.1(b). Similar statistical causality
behaviours were found around the cathode bound area for plasma density, ion current
density and electric potential, as shown in the following figure:

(a) Information flow between reference plasma
density and electron temperature

(b) Information flow between reference ion cur-
rent density and electron temperature

(c) Information flow between reference electric
potential and electron temperature

Fig. 5.35. Maximum Transfer Entropy interchanged between the reference studied variable and
the electron temperature of its surroundings. Lines in white represent the di↵erent

levels of TE present in the simulation.
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Temporal correlations

To study the temporal correlations occurring in the plasma, the Transfer Entropy tech-
nique was again employed. The statistical significance for the HET simulation was chosen
to be T E = 10�3 again as in the spatial correlations case. All results below this threshold
have been surpassed from the figure shown in this section, since they do not o↵er any
relevant information to this analysis.

Transfer Entropy was applied between a reference point in the inner channel of the
thruster, located at position Z = 0.0105m, and the rest of the points constituting the
central channel of the HET for a range of time lag values, ⌧. It should be noted that the
figure presented here has been selected for a certain range of time lags, if this range were
to be extended, the same patterns would be found again in a repetitive manner.

One of the most relevant results obtained was the one studying the propagation of
electron temperature against itself. By plotting the Transfer Entropy obtained against the
time lags for this case, the propagation of the temperature variations could be identified.
The transfer entropy between the reference point and itself is zero by definition, on the
Figure represented by a black line along the line Z = 0.0105m. This is due to this point
being chosen for the reference value, and has no further physical meaning.

Fig. 5.36. Transfer Entropy studied over several time lags for the inner channel of the
Hall-E↵ect Thruster. Lines in white represent the di↵erent levels of TE present in
the simulation. Horizontal white dashed lines represent respectively the end of the
thruster (0.027 m) and the cathode bound (0.044 m). Reference Te used for study:

Z = 0.0105m.

Temperature propagation can be observed on Figure 5.36. The propagation com-
ing from the reference point seems to move across the thruster as time goes by until
t = 3.5x10�5s, where it stops. This can be seen on the figure as a wide line that start
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from the reference point and grows diagonally until the mentioned time. After a lag of
around 0.5x10�5s, the perturbation seems to break through the barrier that was containing
it and grows both axially towards the end of the thruster, as represented from the vertical
column expanding at Z = 0.044 � 0.11m, and temporally, illustrated by the width of the
column mentioned before going from t = 4.5x10�5s to t = 7.5x10�5s. This jump seems
to coincide with the cathode bound of the Hall-E↵ect Thruster, represented by a white
dashed line on the figure at Z = 0.044m, which aligns with the findings of the spatial
correlations section where a jump around the cathode bound was also found.

Apart from this main diagonal propagation, two other information flows seem to be
present inside the inner channel. First, at t = 0s, as the main diagonal propagation starts to
occur, another propagation further down the channel begins simultaneously. In this case,
the presence of the cathode bound does not seem to interrupt the propagation of electron
temperature, since no jump is appreciated around this point (Z = 0.044m) in the Figure.

On the other hand, around a time lag of t = 3.5x10�5s, coinciding with the time when
the main diagonal propagation experiences its jump, an additional propagation blocks
starts appearing from the reference point studied. This propagation presents again a jump
right before the cathode bound where the propagation seems to become trapped.
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6. CONCLUSION AND FUTURE OUTLOOK

This Thesis focused on the creation of a catalogue of Non-Linear Analysis Techniques
that could be used in order to better understand the mechanisms that lead to the appearance
of turbulence in plasma thrusters. Di↵erent classifications were formulated according to
the use of the techniques presented.

First, a quick review of the linear techniques traditionally used in signal analysis was
performed, since these techniques serve as the basis of almost all data analysis performed
nowadays.

After that, the Time Delay Embedding techniques were introduced. These techniques
allow the user to reconstruct the phase space in which the dynamics of the time series take
place. The two techniques presented in this category complement each other, from the
Time Delayed Mutual Information the optimum time lag for embedding can be recovered,
and once that parameter is obtained, the False Nearest Neighbours (FNN) technique can
be applied in order to determine the minimum embedding dimension of the system.

In the third place, the Visual techniques were presented. Both the Phase Portraits and
the Recurrence Plots allow to visualize patterns that may be hidden in the dynamics of the
time series. Phase Portraits make use of the optimum lag in order to find an attractor, or
the projection of an attractor, for the signal studied. On the other hand, Recurrence Plots
provide information both spatially and temporally by also making use of the embedding
dimension found with the FNN, from the embedded space, RPs allow the user to visualize
recurrences that occur in dimensions which may be higher than 3 in a simple 2D figure.

Following that, the Model Reduction techniques were introduced. These techniques
seek to find a reduced model of the underlying dynamics of the studied system. The
Hankel Alternative View of Koopman (HAVOK) combines linear algebra with the em-
bedding of the time-series in order to provide a simple model in which the non-linearities
are captured by an external forcing term which can be controlled. On the other hand, the
Sparse Identification of Nonlinear Dynamics (SINDy) creates a library of possible fami-
lies of functions, which can be customized by the user, and seeks to discover the simplest
combination to describe the dynamics of the system from that family of functions.

Then, the Chaos Quantification techniques were studied. The Maximal Lyapunov
Exponent quantifies the average exponential divergence between the particles of a chaotic
system, even though this technique can also be used to study non-chaotic systems. The
0-1 test for Chaos serves as a cheap and direct test that identifies if chaos is present in the
studied data set by just providing a 1 or a 0 for the studied system.

Finally, the Statistical techniques, composed by the Intermittency and the Transfer
Entropy, close this catalogue that has been built by reviewing state of the art techniques
used nowadays. The Intermittency allows the user to identify events in the studied set
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that normally have really short characteristics time lengths. On the other hand, the Trans-
fer Entropy is a technique that allows to identify between two signals not only statistical
causality, but also the direction of said causality, positioning itself over traditional tech-
niques such as the Correlation.

This dissertation serves as a guide to understand and implement the documented tech-
niques, which have been tested against well-known systems, such as Lorenz or the Logis-
tic Map, and data coming from both experiments and simulations.

This catalogue has a great potential to support the analysis of complex systems, not
only in plasma propulsion but in other fields too. However, this catalogue is far from
complete, additional techniques should be included in the existing categories and in new
ones in order to cover all aspects regarding non-linearities inside the plasma physics field.
Additionally, in view of how these techniques build on each other, an automatization
algorithm could be implemented in which the user simply inputs the time series to be
analyzed and selects the desired analyses to be performed, and the program autonomously
provides all the parameters and outputs requested.

Regarding the results obtained, some interesting findings have been made. For the
HPT case, a statistical causality between the probes employed was identified, indicating
an azimuthal transfer of information flow inside the thruster. For the case of the HET
simulation, chaos was detected for the electric potential inside the discharge area, but it
was mitigated as the plasma advanced through the thruster towards the nozzle, suggesting
some dissipation mechanisms may be present. Additionally, a lack of information flow
for the electron temperature fluctuations was discovered around the cathode bound area,
and some other regions that seem to be aligned with the magnetic field present in the
Hall-E↵ect Thruster.

However, these findings should not be taken as absolute statements, especially those
regarding the HPT experiment because of the quality of the data analyzed. Plasma turbu-
lence is a complex field and it would not be sensible to draw definite conclusions from
the results obtained in this project. Further analysis and experiments should be performed
in order to see if the outputs obtained here are consistent for other simulations or experi-
ments.

On the whole, the proposed objectives for this project have been fulfilled. A large
catalogue has been composed with techniques that have been implemented and tested,
and a preliminary analysis of both experimental and simulation data has been performed.
Certainly there is still a lot of work to do in order to fully understand the mechanisms that
govern turbulence in plasma physics, but the creation of these catalogue serves as a first
step to bring some light into this complex matter.
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7. LEGAL FRAMEWORK

This Bachelor Thesis has been carried out in accordance to all applicable legislation.
This project is purely theoretical since the analyzed data has been freely provided by the
EP2 group and no participation in the experiments set-up or data collection has been taken
part by the author, so no assessment of hazards or risks needs to be made.

There are two main legislations which directly a↵ect this Thesis:

1. Law 1/1996, 12 of April. Article 32 [63].

All techniques gathered in this project have been collected in accordance to the
Intellectual Property Rights Act (Ley de propiedad intelectual. Ley de 1/1996 de
12 de abril, artículo 32), and have been correctly credited and cited.

2. Law 38/2003, 17 of November, General on Subsidies [64].

Additionally, since this project has been partly sponsored by a Collaboration Schol-
arship with University Departments from University Carlos III of Madrid by the
Spanish Ministry of Education, Law 38/2003 (Ley 38/2003, de 17 de noviembre,
General de Subvenciones) and the regulatory framework of these scholarships also
a↵ect this Thesis. In conformity with them, it is formally confirmed that the re-
quired hours by the scholarship, in addition to the ones corresponding to the 12
ECTS of the Bachelor Thesis, have been fully completed and all responsibilities
corresponding to the author of this project have been fulfilled.

Concurrently, all computations and simulations have been carried out in agreement
with MATLAB programming standards and practices.
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8. SOCIO-ECONOMIC IMPACT

8.1. Socio-Economic significance

This project assesses methods employed to simplify and improve the analysis of the
chaotic behaviour of plasma propulsion devices, serving as a first step in the direction
of localizing and identifying possible causes and consequences of the non-linear aspects
involved in plasma physics. The development of a library of non-linear analysis tech-
niques provides the EP2 (Equipo de Propulsión Espacial y Plasmas) Research Group a
very powerful tool that could be employed to optimize the plasma thrusters used in the
laboratory, currently the Helicon Plasma Thruster (HPT) and the Hall E↵ect Thruster
(HET) in the prospective future.

As explained in previous sections, when plasma goes through a magnetic field, the
plasma becomes unstable and its fluctuations evolve into turbulence. The “anomalous
transport” phenomenon represents one of the main challenges that physicist face when
trying to confine plasma, resulting in an experimental axial current higher than the one
predicted by classical transport theory [65].

As a consequence, the study of plasma turbulence and its evolution has been the target
of research for decades [66] [67] [68] [69]. Accurately identifying and controlling plasma
parameters that directly impact the appearance and growth of turbulence would allow
scientists to better design the magnetic fields used for plasma confinement and therefore
improve and maximize the overall life expectancy of these propulsion devices [70].

By improving the magnetic confinement of plasma, NASA scientists were able to
design a Hall e↵ect Rocket with a service life of 50 kh at specific impulses up to 3000 s,
the Hall e↵ect Rocket with Magnetic Shielding (HERMeS) [71]. This represents a huge
improvement in the life expectancy when compared to typical thrusters in this field, which
have an average lifespan on the order of 10 kh for that range of specific impulses [69]. It
has been estimated that the average cost of a communication satellite mission using a Hall
thruster is about 0.8 M ø per year [72], which means that the 40 kh lifespan improvement
for these type of systems corresponds to a monetary value of more than 3.5 M ø.

8.2. Project budget

The estimated budget for this project has been separated in two main subsects, namely:
software and equipment and human resources. The total cost according to these calcula-
tions adds up to a value of 11803.7 ø (Table 8.3). The Value Added Tax (VAT) of the
21% has been applied to the pertinent categories and an overhead of the 15% has been
added to the final cost according to the Governing Council Agreement of UC3M passed
on 2019 regarding research projects [73].
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Software and equipment

TABLE 8.1. Software and equipment costs.

Software of equipment Price per unit (ø) Quantity Cost (ø)
Matlab Academic License 69.0⇤ 1 69.0

Personal computer. MacBook Air 1151.0 1 1151.0
8-Core CPU and 8-Core GPU.

Subtotal 1220.0
VAT (21 %) 256.2

TOTAL 1476.2 ø
* Student Academic License

Human Resources

TABLE 8.2. Human resources costs.

Position Salary (ø/hour) Total hours Cost (ø)
Project coordinator 35.0 22.5 787.5

Undergraduate researcher 10.0 800.0⇤ 8000.0
TOTAL 8787.5 ø

* 300 hours corresponding to the Bachelor Thesis (12 ECTS) and 500 hours correspond-
ing to a Collaboration Scholarship in University Departments issued by the Spanish Min-
istry of Education at University Carlos III de Madrid.

Total project budget

TABLE 8.3. Total project costs.

Cost category Cost (ø)
Software and equipment 1476.2

Human resources 8787.5
Subtotal 10263.7

Overhead (15%/Total) 1539.6
TOTAL 11803.7 ø
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