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ELECTRODELESS PLASMA THRUSTERS

● Electrodeless plasma thrusters (EPTs) aim at higher flexibility, simplicity, scalability 
and durability than current technologies (e.g. Hall thrusters) thanks to:

1. Electromagnetic waves (in the MHz-GHz range) to energize the electrons in the 
plasma

2. An applied magnetic field to 
expand and accelerate the 
resulting plasma to high 
velocities (Magnetic Nozzle)

● EPT performance is still  poor: Physics are still not well understood 

● Plasma-wave interaction and effects of the EM fields on plasma transport

● Mechanisms that explain the high losses to the walls still unknown

● External expansion in the diverging magnetic nozzle: kinetic behavior of 
the near-collisionless electrons 

3

Hall effect thruster

Helicon plasma thruster



ELECTRODELESS PLASMA THRUSTERS AND MAGNETIZED PLASMA EXPANSIONS FOR SPACE PROPULSION           

ELECTRON CYCLOTRON RESONANCE THRUSTER
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WAVEGUIDE THRUSTER DESIGN ( EP2 new development)

● TE11 wave mode propagation (simple circular waveguide)

● Truly electrodeless

● Modular approach for easy design iterations.

● 5.8GHz microwaves for smaller plasma chamber, low power 
and mass flow rate requirements. 

● Magnetic field generator: permanent magnet (PM) + 
electromagnet (EM) for resonance position tuning and nozzle 
divergence control. 

COAXIAL THRUSTER DESIGN (ONERA)

● TEM wave mode propagation requires 
an electrode in the plasma chamber.

● Not truly electrodeless

● Power range 30-200W at 2.45 GHz 

● Reported thrust efficiency up to 16% [1]

● Central conductor suffers erosion

● Nearly 10 years of development

[1] Cannat, F., et al. "Optimization of a coaxial electron 
cyclotron resonance plasma thruster with an analytical 
model." Physics of Plasmas 22.5 (2015): 053503.

[2] Inchingolo M, Navarro-Cavallé J. and Merino M. “Direct thrust measurements of a circular 
waveguide electron cyclotron resonance thruster”, (IEPC-2022-338)
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WAVEGUIDE ECRT RESULTS
● First plume and direct thrust measurements have been performed.

● Thrust of 3.5 mN and Thrust efficiencies up to 4% have been measured

● Main limitation coming from relatively low electron temperature and 
consequently low ion acceleration ( 𝑇𝑒 = 4 − 20 eV, 𝐸𝑖 = 50 − 120 eV)

● Plume Ion current measurements present two peaks appear at large angles for 
low powers → “Hollow plume” (with large divergence)

● Reflected power is not negligible and depends on the mass flow rate and input 

power (10–50%).  

● This confirms the expectation that the thruster input impedance is being 

affected by the plasma conditions.

[2] Inchingolo M, Navarro-Cavallé J. and Merino M. “Direct 
thrust measurements of a circular waveguide electron 
cyclotron resonance thruster”, (IEPC-2022-338)
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SIMULATION OF ECRTS

● Hybrid PIC/fluid (HYPHEN code) + wave simulation of Coaxial ECRT at ONERA

● Cold plasma dielectric tensor model used for waves; power deposition map 
updated until steady-state convergence is reached

● Multiple wave transitions exist in the thruster chamber and near plume,
not just the ECR. Meshing is adapted accordingly to the local wavelength

● Absorbed power concentrates about the ECR and the length of the inner rod.
Minor additional absorption also observed at the UHR downstream

● Large 𝑇𝑒 gradient and associated density cavity observed

6

[Álvaro Sánchez-Villar et al, Plasma 
Sources Sci. Technol. 30 (2021) 045005]
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SIMULATION OF ECRTS

● Recent comparison against experimental data from ONERA partially validates the code:

● Overall good agreement on normalized current, density, and potential profiles

● Numerical results are sensitive to the ad-hoc anomalous transport model used, with one free parameter 
used for data fitting (borrowed from HET modeling). 
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HELICON PLASMA THRUSTER DEVELOPMENT

● Development of different prototypes in the last 6 years 

● Magnetic field generator: Electromagnets/PM based

● Different antenna geometries have been testes: simple/double loops, half helical.

● RF power (13.56 MHz) : 300 – 700 W 

● 3-10 mN, 2 % efficiency (low performance)
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HELICON PLASMA THRUSTER SIMULATIONS (PM PROTOTYPE)
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● Power deposition per particle is largest inside the 

source and at the ECR that always exist 

downstream

● Large losses at the cusp-like field in the chamber 
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ELECTRON KINETICS IN A MN
● Many aspects of the near-collisionless expansion in a MN cannot be studied with fluid models, in particular 

the electron collective behavior:

● Collisionless cooling

● Anisotropization 

● In steady state, the collisionless, fully-magnetized parallel motion of individual electrons follows an 
effective potential:

● Depending on their energy 𝐸 and magnetic moment 𝜇,

turning points allow classifying electrons as

● Free electrons (escape to ∞)

● Reflected electrons (back to the source)

● Trapped electrons (trajectories do not connect 
neither with the source nor infinity)

10

𝑈𝑒𝑓𝑓, effective potential
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KINETIC ELECTRON MODEL

● A semi-analytical kinetic model of the 1D2V motion of electrons along the magnetic tubes can be set up
[Phys Plasmas 22, 053501 (2015)], [Plasma Sources Sci. Technol. 30 (2021) 115006]

● Main assumptions: steady state, collisionless, fully magnetized electron motion, quasineutral plasma

● Electron  motion conserves mechanical energy 𝐸 and magnetic moment 𝜇, and the gyroaveraged 
distribution function 𝑓𝑒 𝑠, 𝐸, 𝜇 satisfies

● 𝑓𝑒 𝑠, 𝐸, 𝜇 is constant along each magnetic line (𝑠) 
as long as 𝑣∥ ≠ 0

● We fix a semi-Maxwellian electron distribution
upstream, and compute all free and reflectd 
electrons this way

● Trapped electrons depend on the transient plume 
set up process, collisions, and/or instabilities.

● Here, we assume the same distribution as
upstream is valid for trapped electrons

11
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KINETIC ELECTRON RESPONSE

● Reflected electrons dominate at the beginning of the 
expansion

● Doubly-trapped electrons dominate soon afterward

● Free electrons are a minority, but give rise to all 
odd-moments of 𝑓𝑒 (e.g. bulk velocity)

● Electrons exhibit collisionless cooling and 
develop anisotropy downstream

● This behavior is missed by simple polytropic models
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KINETIC ELECTRON RESPONSE

● Electric potential 𝜙 with the kinetic electrons
goes to a well-defined asymptote, 𝜙∞

● This value controls the net electron current
to infinity, given by the free electrons, while it
does not affect the net ion current

● For a globally current free MN, this
value is given by the ion current
extracted from the source

● The approximate polytropic model with 
same 𝜙∞ approaches this value at a 

lower rate. Differences are important 
in the major part of the expansion

● Electric potential map differs from simpler, but
unjustified, fluid models. The actual potential map
is a key aspect for plume-spacecraft interaction
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kinetic model

Polytropic 𝛾 = 1.155
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AZIMUTHAL OSCILLATIONS IN MAGNETIC NOZZLES

● The FFT of two synced probes can be used to resolve the dispersion diagram
(see previous work by Hepner et al, Appl. Phys. Lett. 116, 263502 (2020)):

𝑘 𝜔 =
Δ𝜃 𝜔

𝑑

● Multiple realizations are needed to average out noise

● This can be done e.g. for the floating potential or the ion saturation current

● The plume of the permanent-magnet HPT is studied in this manner to reveal
azimuthal oscillations 

● Different spectra in the
10s of kHz is seen in the 
floating potential at
the center of the plume
and its periphery 

● Low 𝑓 oscillations (axial?)

● moderate 𝑓 azimuthal oscillations
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AZIMUTHAL OSCILLATIONS IN MAGNETIC NOZZLES

● The reconstructed dispersion diagrams show

● A 𝑘𝜃 = 0 oscillation at low frequencies (< 10 kHz) at all three polar angles sampled

● A dispersion relation with 𝑘𝜃 𝜔 ≠ 0 outside of the plume centerline, extending up to about 100 kHz

● Slope is dependent on polar angle, as expected for azimuthal modes

● Stronger oscillations along this branch at specific 𝜔, 𝑘𝜃 ranges, likely integer azimuthal 𝑚 modes

● Assessment of these oscillations is still ongoing, but likely drift-like oscillations

● Ongoing work at EP2: using 4 probes it is possible to resolve the wavenumber vector

15
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PLASMA ACCELERATION IN A MAGNETIC ARCH

● When two cylindrical EPTs with opposing polarities are flown 
side by side (for zero magnetic torque on the platform) their 
MNs connect and form a magnetic arch

● This magnetic topology differs from an axisymmetric MN

● It is fully 3D

● The two beamlets interact and may form shock-like
structures

● Applied field lines are essentially ⊥ to the flow

downstream

● The novel Magnetic Arch thruster concept also uses a 
magnetic arch for plasma acceleration

● Removes rear walls in cylindrical sources; all walls are now
magnetically shielded
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MAGNETIC ARCH PLASMA MODEL

● Two-fluid (ions, electrons) model [IEPC-2022-423]

● Quasineutral, collisionless, no induced field 𝑩𝑝

● 2D planar (future work must deal with full 3D case)

● Ions initially accelerate as in a simple magnetic nozzle

● Oblique shock structure forms where ions from the two thruster 
outlets interact (at the symmetry plane). 

● Ion jet is able to propagate beyond the closed magnetic tube

17
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PLASMA-INDUCED MAGNETIC FIELD

● From the simulation 𝑗𝑦 we can compute the plasma-induced field 𝑩𝑝 solving Ampère’s equation with FE

● The relevant parameter here is the plasma beta upstream 𝛽0
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● 𝑩𝑝 opens the lines and 

stretches them to infinity

● Eventually a separatrix 
forms

● Separate magnetic 

domains exist:

● Inward closed lines 

● Outward stretched 
lines

● New domain after 
separatrix
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