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ELECTRODELESS PLASMA THRUSTERS, IN TANDEM

● Existing electrodeless plasma thrusters (EPTs) feature a 
discharge chamber and a magnetic nozzle

● Single sources have a strong magnetic dipole that, in
orbit, would cause a secular magnetic torque when 

interacting with the geomagnetic field

● Simple solution: fly EPTs in tandem, with opposing polarities

● This also offers the opportunity of thrust vector control

● The connecting lines of the two magnetic nozzles 
generate a new topology: the magnetic arch

● Question: will the plasma expand and 
form a beam in spite of the 
closed magnetic lines?

● Secondary motivation: new thruster geometries
also feature a magnetic arch, like the C-thruster:

● Avoids rear walls of cylindrical sources;
tangential 𝑩 field shield all internal walls
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MAGNETIC ARCH PLASMA MODEL

● Quasineutral, collisionless, two-fluid (ions, electrons) 

● 2D planar (future work must deal with full 3D case)

● Applied magnetic field admits streamfunction 𝜓𝐵:

● Red streamline separates “inner” (connected)
and “outer” magnetic lines

● Fluid equations of massless, fully-magnetized,
polytropic electrons and cold ions (all dimensionless):
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● Simulation domain exploits symmetry plane

● Injection of known plasma profile on the left 
(Gaussian 𝑛, sonic ions)

● Free outflow boundaries elsewhere



Preliminary model of the plasma expansion in a magnetic arch thruster           

ELECTRON MODEL

● Electron momentum equation reduces to:

● This yields the following energy conservation law in the 
parallel direction (𝐻𝑒 is a function of the magnetic 

streamline):

● Perpendicular equation yields the out-of-plane electron 
velocity, which plays a central role in magnetic thrust 
generation:

● Continuity equation
yields 𝑢∥𝑒 a posteriori:
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Preliminary model of the plasma expansion in a magnetic arch thruster           

ION MODEL

● After substituting 𝜙 from

the ion equations read as follows and are integrated with a 
discontinuous Galerkin (1st order elements) until steady state:

● Ions initially accelerate as in a simple magnetic nozzle

● Oblique shock structure forms where ions from the two 
thruster outlets interact (at the symmetry plane). 

● Ion jet is able to propagate beyond the closed magnetic 
tube, in spite of closed magnetic lines
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Preliminary model of the plasma expansion in a magnetic arch thruster           

MAGNETIC FORCE DENSITY AND MAGNETIC THRUST

● Electron out-of-plane current density 
dominates and determines magnetic force on 
the plasma
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● Integrated magnetic thrust force up to 
𝑧 = const shows that net increase in thrust is 

achieved by the magnetic arch

● Small drag contribution where plasma
crossed the closed magnetic linesElectrons
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Preliminary model of the plasma expansion in a magnetic arch thruster           

PLASMA-INDUCED MAGNETIC FIELD

● Out-of-plane 𝑗𝑦
currents generate 
plasma-induced 
field 𝑩𝑝. The 

relative importance 
𝐵𝑝/𝐵𝑎 increases 

with 𝛽0 = 𝜇0𝑛0𝑇0/
𝐵𝑎0
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● Induced field 
stretches total field 
downstream, 
elongating the 
magnetic arch

● For high enough 𝛽0, 

new magnetic 
region 
(disconnected from 
source) forms
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● The plasma induced magnetic field changes 
the generated magnetic thrust 

● Higher values of 𝛽0 result in higher, 

monotonic thrust curve

Increasing 

plasma 

induced field
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LABORATORY SETUP WITH TWO ECR PLASMA SOURCES

● MAT2 thruster is a dual coaxial ECR thruster to experimentally validate the magnetic arch concept for 
plasma acceleration
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MAT2 ARCHITECTURE
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Ionisation chamber

Length 50 mm

Diameter 30 mm

Material 
Non-magnetic 
Stainless Steel

Electromagnets

Maximum total power 
per source

1 kW

Maximum magnetic 
field intensity

900 G

ECR resonance field 875 G

Total number of turns 
per source

≈ 1200

Gas feeding

Gas Krypton

Ignition mass flow rate 50 sccm

Operation mass flow 
rate

15 sccm

Inductor

Length 50 mm

Diameter 6 mm

Frequency 2.45 GHz

Power 50 W−500 W
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EXPERIMENTAL SETUP
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● Technology in use:

● Primary pump: Leybold Leyvac LV 80 (80 𝑚3/ℎ)

● Turbomolecular pumps: 2 MAGW2.200iP
(2000 𝑙/𝑠)

● Cryopanels: 3 Leybold Leyvac 140 T-V

● Leak dectector: Leybold L300i

Vacuum chamber characteristics

Length 3.5𝑚

Diameter 1.5𝑚

Operational 

pressure

2𝑒 − 5𝑚𝑏𝑎𝑟 at 20𝑠𝑐𝑐𝑚 of

𝑋𝑒

Pumping 

speed
> 37000 𝑙/𝑠 of 𝑋𝑒

MAT2 Thrutster installed in the EP2 group vacuum chamber
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EXPERIMENTAL SETUP

● Radial / Polar positioning system used in the vacuum 
chamber with a Retarded Potential Analyzer (RPA) 
and two Faraday Cups (FC).

● RPA characteristics:

● Distance to the thruster: 380𝑚𝑚

● Number of holes per grid: 37

● Ion collection area: 𝐴 = 1.86𝑒 − 5 m²

● Transmission factor: 𝑇 = 0.0625

● Set of angles: −50°, −25°: 5°: 25°, 50°

● 𝐼𝐸𝐷𝐹, ഥ𝐸𝑖, ഥ𝑣𝑖, 𝐼𝑇𝑜𝑡

● FC characteristics:

● Distance to the thruster: 380𝑚𝑚

● Set of angles: −90°: 90°

● 𝐼𝑡𝑜𝑡
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This presentation
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EXPERIMENTAL SETUP
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● Two magnetic topologies have been characterized.

Magnetic field with “MF ARCH” 
configuration.

Magnetic field with “MF SP” 
configuration.

Thrusters in operation with Krypton 
in MF ARCH configuration.
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RESULTS – ION FLUX

● Ion flux computed with data from the 𝑅𝑃𝐴:

𝐼𝑇𝑂𝑇 =
𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 𝑓(𝐸) 𝑑𝐸

𝐴

● MF Arch is seen to generate a single-peaked ion 
beam, in spite of the closed magnetic lines, 
validating the concept for plasma acceleration

● MF Reverse: two-peaked ion flux, consistent 
with the two “deflected” magnetic nozzles.

● MF Off: ion flux flat and one order of 
magnitude lower (larger area expansion ratio 
and  worse plasma production)
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RESULTS – AVERAGE ION ENERGY AND VELOCITY

● Mean energy computed with data from the 𝑅𝑃𝐴:

ഥ𝐸𝑖 =
𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 𝐸 𝑓 𝐸 𝑑𝐸

𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 𝑓 𝐸 𝑑𝐸

● Ion energy depends, at least partially, on area 
expansion ratio (greater for MF Off)

● Lower energy in MF Arch could be due to

● Lower area expansion ratio (good, less 
plume divergence)

● Small drag contribution due to closed lines

● Lower overall electron temperature (ion 
acceleration ∝ 𝑇𝑒)
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RESULTS – ONE SOURCE THRUSTER COMPARISON

● Lower plume divergence and lower ion energy than single source magnetic nozzle 

● Results support first two hypotheses  (lower area expansion ratio and effect of drag contribution due to 
closed lines)
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Comparison of the ion flux in 
between one and two sources.

Comparison of the average energy and 
velocity in between one and two 

sources.
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CONCLUSIONS
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● A (2D planar) two fluid model and an experimental setup with two ECR sources have 
demonstrated the magnetic arch for plasma acceleration

● Relevant for tandems of electrodeless plasma thrusters (to cancel magnetic dipole) and 
for new geometries (C-shaped thruster)

● Free plasma beam forms in spite of closed lines

● Model shows the crucial role of the plasma-induced magnetic field
to stretch the field lines and increase magnetic thrust. 
In contrast, in an axisymmetric magnetic nozzle, induced field plays a secondary role

● Experiments show single-peaked ion current profile, in contrast with same-polarity 
configuration. Lower ion energy is partially justified by the lower plume divergence in 
the magnetic arch configuration, and due to the small drag contribution of closed lines

[First simulation results just accepted on PSST: DOI 10.1088/1361-6595/acd476]
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MAT2 ARCHITECTURE

● 2.45 GHz tunable (±50 MHz) solid state microwave generator (Muegge MR1000D-200ML).

● 7-16 DIN coaxial 2.45 GHz graded feedthrough (Allectra 242-7_16-K50).

● Coaxial 2.45𝐺𝐻𝑧 graded all females three ways splitter (Microlab D2-16FD).

● M3 termination 7-16 DIN panel crimp (Telegartener J01121A0721).

● Elements connected with coaxial cables:

● LMR-600-FR coaxial cables

● TC-600-716M-X coaxial connectors.
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