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MAGNETIC NOZZLES (MN)
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● Magnetic nozzles are used as the acceleration stage in some 
plasma thrusters.  Diverging 𝑩! created  by coils or magnets.

● Basic mechanisms well understood from fluid models

● Quasineutral, near-collisionless operation

● Radial confinement and axial acceleration by Lorentz force

● Thrust generation

● Azimuthal plasma current induces 𝑩"; reaction force on coils

● Thermal electron energy to ion kinetic energy conversion via 
the electrostatic potential

● Supersonic acceleration of ions

● However, fluid models fail to provide an accurate description of 
electrons, which lack local thermodynamic equilibrium in the near-
collisionless regime

● Electron kinetics, subpopulations and cooling need high fidelity 
and fast kinetic simulations (Implicit PIC)
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GOVERNING EQUATIONS
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Ebersohn, F. H., 
Sheehan, J. P., 
Gallimore, A. D., & 
Shebalin, J. V. (2017). 

𝐴!"(𝑧) ∝ 1/𝐵(𝑧)

● Drift-kinetic Vlasov equation (DKE). Perpendicular drifts 
can be neglected by virtue of the Paraxial approximation.

● Particle discretization of the EDFs.

● Paraxial approximation

Modification of the divergence operator to recover
solenoidal B. Conservation of the flux in magnetic tube

● Evolution equations for the particles

● Reduction to 1D geometry

● Magnetic mirror force with 𝜇 conserved
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IMPLICIT PIC	ALGORITHM

4

● Limitation of explicit PIC codes:

● Δ𝑥 < 𝜆#$%&$ (finite-grid instability ⟶ enforces a minimum spatial resolution)

● 𝜔"$Δ𝑡 < 1 (CFL-type instability ⟶ enforces a minimum temporal resolution)

● Inefficient for long time and large-scale simulations

● Basic implicit scheme based on Chen et al. 2011

● The evolution of the particles is a function of the potential; 
non-linear elimination of the particle coordinates (Particle 
enslavement)

𝑥"'() = 𝑥" Φ'() ; 𝑣"'() = 𝑣" Φ'()

𝐺 𝑥"'(), 𝑣"'(), Φ'() = 𝐺 𝑥 Φ'() , 𝑣 Φ'() , Φ'() = 1𝐺 Φ'()

● The residual is only a function of the potential

● Major reduction of the non-linear system unknowns

● Solution achievable with modern non-linear solvers. JFNK, 
Anderson …

● Fully Implicit Crank Nicolson discretization 

● Time centered, 2nd order, non-dissipative 

● This work adds the magnetic mirror

● Conserving 𝜇, 𝐸*+* and local charge

● Jacobian Free Newton Krylov (JFNK)

● No need to compute the Jacobian Matrix

● Jacobian vector product for Krylov subspace 
method (GMRES) 

● Easily preconditioned -> Potential for 
acceleration
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VLASOV-AMPERE FORMULATION
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● Advantages of Vlasov -Ampere vs Vlasov-Poisson 

● Exact global energy conservation

● Exact local charge conservation #$
#"
+ ∇ ⋅ 𝒋 = 0

● Amenable to orbit averaging 

● Can be extended to electromagnetic algorithms 

● Ampere’s equation

𝜖%𝜕"𝐸 + 𝑗 = ∇×𝑩

● Taking the divergence to eliminate ∇×𝑩

𝜖%𝜕"∇ ⋅ 𝑬 + ∇ ⋅ 𝒋 = 0

● Introducing the scalar potential 𝐸 = −∇𝜙

𝜖%𝜕"∇&𝜙 − ∇ ⋅ 𝒋 = 0

(equivalent to the time derivative 
of Poisson equation with charge 
conservation)
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SUBCYCLING AND MESH MAP
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● Hybrid push in mapped meshes

● Particle positions are advanced in a Cartesian 
logical (computational) space and velocity 
advanced in physical space

● New mover:

● Particles are allowed to cross several cells in a 
suborbit

● Averaged splines are used to recover energy and 
charge conservation

● In MN problems of interest,

● Fields vary slowly (Δ𝑡)
● Electron times are much faster (Δ𝜏 ≪ Δ𝑡)

● Particle orbits need to be resolved to avoid large 
errors, even when using large Δ𝑡
● Use small substeps such that ∑Δ𝜏 = Δ𝑡

● Estimator for the selection of Δ𝜏 based on CN 
truncation error

● Δ τ!" =
#$ ℰ,-

|| ' ( / ' * .||

/
0

● Reduces error in momentum 
conservation
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MAGNETIC NOZZLE STUDY
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● From previous studies and experimental evidence
● The plasma is quasi-neutral and ambipolar 
● There will be a potential drop in the entrance followed by 

a slow monotonic decay
● Accelerates ions and reflects some electrons

● The plasma is almost collisionless
● We consider a small convergent part + long divergent region

Injection boundary, 𝜙 = 𝜙!"#

Freeloss / reflection
BC for 𝜙 ?

● Fixing 𝜙. [Sanchez et al. 2018]
● Does not guarantee 𝑗3 = 0
● Also, sheath development

Downstream particle and field BCs ?
Expansion to infinity in a finite domain

● Li, Merino et al. 2019
● Some electrons must be reflected 

downstream the boundary 
● Reflection controlled to get  𝑗3 = 0

● Fixing E=0 still limiting
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OPEN DOWNSTREAM BOUNDARY BC:	NEW APPROACH
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● Integral condition coming from Ampere’s equation in the Electrostatic limit

𝜕"𝐸 + 𝑗 = 𝐶 𝑡 /𝐽'

● 𝐶 𝑡 constant in 1D domain

● If we evaluate at z = ∞ ⇒ 𝜕"𝐸 + 𝑗 = 0
● Results in Dynamic Inhomogeneous Neumann condition for exit field      𝐸(!)*/&

()* = 𝐸(!)*/&
( − Δ𝑡 ⋅ 𝑗(!)*/&

()*/&

● Current vanishes at steady state j = 0, 𝐼 = 0
● No need for a current control! 

● Correct physics during the transient

● Downstream electron reflection control 

● Critical energy 𝐸,-." related to the potential at infinity 𝜙/
● Electrons are reflected upon arrival to the boundary if 𝐾0 < 𝐸,-."

● We adjust 𝐸,-." to get a quasi-neutral plasma at the exit. Heuristic proportional control

● Δ𝐸,-." = 𝜌(! ⋅ 𝐺
● Stationary solution Δ𝐸,-." = 0 & 𝜌(!= 0 
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SYSTEM EVOLUTION
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Downstream dielectric wall Expansion to infinity (new BC)

● We get a  similar 𝜙/ = −2.82 𝑡𝑜 − 2.75 and sheath
● New potential is self-consistent, not imposed
● Same sheath appears downstream at steady state

● Electron reflection → Exit is quasi-neutral
● The sheath disappears 
● The initial drop is equivalent
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STEADY STATE RESULTS
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● Excellent convergence of our results

● We also proved solution is insensitive to our numerical 
control parameters (e.g. control gains)

● Some differences observed compared with published results 
[Sanchez et al. 2018]

● Possible sources of discrepancy

● Strict conservation properties

● Steady state dependent on the transient (trapped 
electrons)

free

trapped

reflected
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EFFICIENCY AND COMPUTATIONAL SCALING

● Linear time scaling with particles/cell and number of cells  

● For the first time, t121 ∝ 𝑛3 . New mover allows particles to travel across several cells while exactly 
conserving energy and local charge

● Speed up of 𝑂(10) with respect to explicit PIC

● Estimation based of typical mesh and timesteps

● Speedup of O(30) with respect to Semi-Langrangian Vlasov code in the MN study [sanc] 

● Plus, strict conservation properties
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CONCLUSIONS AND FUTURE WORK

● Time-implicit → breaks 𝜆45 and 𝜔05 constraints

● Cell size and time step can be larger than in explicit PIC

● Exactly global-energy and local-charge conserving

● Adaptive mesh

● Advanced boundary conditions for injection and free space

● Important performance gain compared to state-of-the-art

● Future work:

● 2D dimensional code -> will require preconditioning

● GPU parallelization (Julia lang abstractions and packages)

● Electromagnetic extension -> Darwin approximation
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● iPIC Applications in Electric Propulsion
● Nozzles and expansions
● Plasma sources

● Need for collision, plasma chemistry and wall 
interaction algorithms

● Anomalous transport studies (oscillations in 𝜃
direction)

● Electrodeless Thrusters (EM version)
● Helicon, Electron Cyclotron Resonance …
● Mechanism of plasma heating

● Electromagnetic power coupling 
● Antennas, inductors …
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