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A framework developed to derive simple algebraic models from data is presented. When applied to the ion and neutral dynamics in the 
downstream channel region of a Hall Effect Thruster, it returns equations matching the ones coming from the theory. Parametric and pointwise 

analyses extend the 0D models to other operating points and thruster locations, providing further model interpretability and insight .

Breathing Mode Objectives

• Hall Effect Thrusters are one of the most mature electric 
space propulsion systems.

• They exhibit oscillations linked to plasma instabilities.

• The most prominent is the Breathing Mode, a low-frequency 

oscillation linked to an ionization instability.

• The simplest model that described it is the Lotka-Volterra 
predator-prey equations between ions and neutrals:
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• More complex 0D models have been developed from 

analytical grounds [1].

Data-driven equation discovery allows the description of 
complex physical phenomena where prior knowledge is lacking. 
In this work, sparse regression is used to recover the Breathing 
Mode equations with few initial assumptions. Some notable 

achievements include: 

• A model selection procedure for large parametric searches 
without researcher bias.

• Several extensions to the original equation discovery 
algorithm SINDy [2] to facilitate real-world applications.

• Pointwise analysis to study the change in the Dominant 
Physics Balance along the thruster

EP2-SINDy Framework

• Expressing the system dynamics as a library of functions of the
state variables (features) multiplied by a set of coefficients

ሶ𝑥𝑖 𝑡 = 𝑓𝑖 Ԧ𝑥 𝑡 , 𝑡 = 𝛽𝑖𝑗Θ𝑗 Ԧ𝑥 𝑡 , 𝑡

• The coefficients 𝛽𝑖𝑗 can be obtained by minimizing the Least 

Square error:

𝜀𝑖𝑘
𝑠 = ሶො𝑥𝑖𝑘 − 𝛽𝑖𝑗Θ𝑗

෠Ԧ𝑥 𝑡𝑘 , 𝑡𝑘
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      where ො𝑥𝑖𝑘 denotes the data-point of variable i at time k.

• By adding a sparsity promoting term to the minimization we 
can expand Θ𝑗  without overfitting. We use the Adaptive LASSO 

penalty [3]:

𝜀𝑖𝑗
𝜆 = 𝑎𝑖𝑗𝛽𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝑗 = argmin ෍
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• In this way, the coefficients are obtained from solving

𝛽𝑖𝑗 = argmin ෍

𝑘
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Results

1. The correct sparsity level is not known a-priori

2. Regressing on the derivatives amplifies noise and does not 
account for the sequential nature of time-series data

3.   It does not benefit from the knowledge of conservation laws 

and symmetries of the physical system.

4. Feature selection can be inconsistent for different samplings 

of ሶො𝑥𝑖𝑘 and Θ𝑗
෠Ԧ𝑥 𝑡𝑘 , 𝑡𝑘 .

In our work we address all these issues by expanding upon 
standard SINDy:

1. For a wide range of 𝜆𝑖, plot the resulting models in a Model 

Error vs Model Complexity plot. This will form a L-shaped Pareto 

front where the “knee” denotes the simplest model able to 
describe the data.

2. We define weak form and integral error variants

𝜀𝑖𝑛
𝑤 = ො𝑥𝑖𝑘 − 𝛽𝑖𝑗Θ𝑗(

෠Ԧ𝑥 𝑡𝑘 , 𝑡𝑘) 𝜙𝑖𝑛𝑤𝑖𝑘
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𝜀𝑖𝑛
𝐼 = ො𝑥𝑖𝑘

(𝑛)
− ෤𝑥𝑖𝑘

(𝑛) 2
𝑤ℎ𝑒𝑟𝑒 ෤𝑥𝑖

𝑛 (𝑡) ൝
ሶ𝑥𝑖 = 𝛽𝑖𝑗Θ𝑗 Ԧ𝑥 𝑡 , 𝑡 ∀𝑖

𝑥𝑖 𝑡0
𝑛 = ො𝑥𝑖(𝑡0

𝑛)

Leading to the minimization of 𝛽𝑖𝑗
𝑤 = argmin σ𝑛 𝜀𝑖𝑘

𝑤 + 𝜆𝑖 σ𝑗 𝜀𝑖𝑗
𝜆  

and 𝛽𝑖𝑗
𝐼 = argmin σ𝑖σ𝑛 𝜀𝑖𝑛

𝐼 + 𝜆σ𝑖σ𝑗 𝜀𝑖𝑗
𝜆 , respectively.

3. We introduce linear constraints through a matrix 𝐶𝑖𝑗𝑙

𝜀𝑖𝑘
𝐶 = ሶො𝑥𝑖𝑘 − 𝐶𝑖𝑗𝑙𝑏𝑙Θ𝑗

෠Ԧ𝑥 𝑡𝑘 , 𝑡𝑘
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𝜀𝑖𝑗
𝜆𝑐 = 𝑎𝑖𝑗𝐶𝑖𝑗𝑙𝑏𝑙

leading to 𝛽𝑖𝑗
𝑐 = 𝐶𝑖𝑗𝑙 argmin σ𝑖σ𝑘 𝜀𝑖𝑘

𝑐 + 𝜆σ𝑖σ𝑗 𝜀𝑖𝑗
𝜆𝑐 .

4. We repeat the sparse regression procedure for several 
bootstraps obtained from random subsampling with 
replacement of the data. 

We use data coming from simulations of the SPT-100 HET using the 
in-house code HYPHEN [4]. We build Θj  with all polynomial 

combinations of the Ԧ𝑥 𝑡  state variables up to degree 3. Running 

the EP2-SINDy framework we obtain the following Pareto optimal 
models:

Model 1 ൝
ሶ𝑛𝑖 = 4.12 ∙ 10−14 𝑛𝑛𝑛𝑖 − 1.45 ∙ 105 𝑛𝑖

ሶ𝑛𝑛 = −4.89 ∙ 10−14 𝑛𝑛𝑛𝑖 + 4.58 ∙ 104 𝑛𝑛
       

for Ԧ𝑥 𝑡 = [𝑛𝑖 , 𝑛𝑛] 

Model 2 ൝
ሶ𝑛𝑖 = 1.16 𝑛𝑛𝑛𝑖𝑅𝑖𝑜𝑛 − 2.66 ∙ 105 𝑛𝑖
ሶ𝑛𝑛 = −0.77 𝑛𝑛𝑛𝑖𝑅𝑖𝑜𝑛 + 1.83 ∙ 1023

           

for Ԧ𝑥 𝑡 = [𝑛𝑖 , 𝑛𝑛, 𝑅𝑖𝑜𝑛(𝑇𝑒)] 

Model 3 ൝
ሶ𝑛𝑖 = 0.82 𝑛𝑛𝑛𝑖𝑅𝑖𝑜𝑛 − 41.2 𝑛𝑖𝑢𝑖,𝑧

ሶ𝑛𝑛 = −0.77 𝑛𝑛𝑛𝑖𝑅𝑖𝑜𝑛 + 1.83 ∙ 1023
  

for Ԧ𝑥 𝑡 = [𝑛𝑖 , 𝑛𝑛, 𝑅𝑖𝑜𝑛 𝑇𝑒 , 𝑢𝑖,𝑧, 𝑢𝑖,𝑟] 

We have the possibility of forcing the ionization terms to be equal.

• Parametric analysis obtained by re-fitting Model 3 for 
data coming from several operating points.

• Pointwise analysis is carried out by obtaining the Pareto-
optimal model for every point in the thruster channel 

using the library of Model 3 and plotting the coefficient 
distribution.

• The EP2-SINDy was able to retrieve models resembling those derived 
from analytical grounds, both in shape and magnitude, in a completely 
data-driven way.

• The fine-tuned Model 1 outperforms the rest when integrated

• Adding the ionization rate leads from a proportional injection to a 
constant injection neutral influx term. 

• Parametric analysis reveals that the ionization term also accounts for 
other phenomena (possibly recombination + others)

• Pointwise analysis reveals the spatial dependence of the neutral influx 

term depending on the distance to the anode, the relevance of axial ion 
transport close to walls and the overall global ion dynamics.
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Discussion
POINTWISE ANALYSIS

1 𝒏𝒏 𝒏𝒊 𝒖𝒊,𝒛 𝒏𝒊 𝒖𝒊,𝒓 𝒏𝒏𝒏𝒊𝑹𝒊𝒐𝒏(𝑻𝒆)
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COMPLEX SYSTEM
(Magnetic confinement, Non-Maxwellian electrons, Plasma-

wall interaction (recombination, SEE, particle wall 

accommodation), Anomalous transport, Plasma instabilities…)

COMPLEX MODELING
(Axisymmetric model, Kinetic ions and neutrals, Drift-diffusive 

magnetized fluid model for electrons, Empirical turbulent transport, 

Collisions (Ionization, excitation, elastic, CEX), Plasma sheath model 

coupled with wall type…)

HYPHEN-HET

Simple models
ሶ𝒏𝒊 = 𝒇(𝒏𝒊, 𝒏𝒏, 𝑹𝒊𝒐𝒏)

Pointwise analysis

Parametric analysis
ሶ𝒏𝒊 = 𝒇(𝑽𝑫, ሶ𝒎𝑨)

and much
more!
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