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equations
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A framework developed to derive simple algebraic models from data is presented. When applied to the ion and neutral dynamics in the
downstream channel region of a Hall Effect Thruster, it returns equations matching the ones coming from the theory. Parametric and pointwise
analyses extend the OD models to other operating points and thruster locations, providing Further model interpretability and insight .

 Hall EFfect Thrusters are one of the most mature electric
space propulsion systems.

« They exhibit oscillations linked to plasma instabilities.

BREATHING MODE DYNAMICS

1eld

SPT-100 HET SCHEMATICS

density [1/m3]

Data-driven equation discovery allows the description of
complex physical phenomena where prior knowledge is lacking.
In this work, sparse regression is used to recover the Breathing
Mode equations with few initial assumptions. Some notable

 The most prominent is the Breathing Mode, a low-frequency
oscillation linked to an ionization instability.

« The simplest model that described it is the Lotka-Volterra
predator-prey equations between ions and neutrals:
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« More complex OD models have been developed from
analytical grounds [1].
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without researcher bias.

« Several extensions to the original equation discovery
algorithm SINDy [2] to Facilitate real-world applications.

« Pointwise analysis to study the change in the Dominant
Physics Balance along the thruster
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EP2-SINDy Framework

« Expressing the system dynamics as a library of functions of the
state variables (features) multiplied by a set of coefficients

X (t) = fi(x(t),t) = B;;0;(x(t),t) ,

» The coefficients g;; can be obtained by minimizing the Least

Square error: y y L
2 3 2 of x;;, and O:(x(t,), t. ).
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where X;;, denotes the data-point of variable /at time k.

« By adding a sparsity promoting term to the minimization we
can expand 0©; without overfitting. We use the Adaptive LASSO

penalty [3]:
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* |In this way, the coefficients are obtained from solving
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COMPLEX SYSTEM

(Magnetic confinement, Non-Maxwellian electrons, Plasma-
wall interaction (recombination, SEE, particle wall

accommodatio omalous transport, Plasma instabilities...)

COMPLEX
 — DATA

COMPLEX MODELING

(Axisymmetric model, Kinetic ions and neutrals, Drift-diffusive
magnetized fluid model for electrons, Empirical turbulent transport,

Collisions (lonization, excitation, elastic, CEX), Plasma sheath model
coupled with wall type...)
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1. The correct sparsity level is not known a-priori

Simple models
f; = f(ny, Ny, Rion)

Pointwise analysis
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Parametric analysis
n; = f(Vp,ny)

and much
more!

2. Regressing on the derivatives amplifies noise and does not
account for the sequential nature of time-series data

It does not benefit from the knowledge of conservation laws
and symmetries of the physical system.

4. Feature selection can be inconsistent for different samplings

In our work we address all these issues by expanding upon
standard SINDy:

1. For a wide range of 4;, plot the resulting models in a Model

front where the "knee” denotes the simplest model able to
describe the data.

2. We define weak form and integral error variants
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Leading to the minimization of B} = argmin{},,, &}y + 4; ¥, &/}
and Bj; = argmin{}; X, &f, + 1%, X e{lj}, respectively.
3. We introduce linear constraints through a matrix C;;,

i = 1% — Cijlbl(')j(;(tk):tk)”z
leading to g;; = C;j; argmin{Y; ¥, €5 + NN eiﬂjc}.

4. We repeat the sparse regression procedure for several

eff = |a;;Cijiby|

A model selection procedure for large parametric searches

Errorvs Model Complexity plot. This will form a L-shaped Pareto

Researcher . . .
insight bootstraps obtained from random subsampling with
replacement of the data.
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For x(t) = [n;,ny,]

APPLYING THE EXTENSIONS (Model 1)
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We have the possibility of forcing the ionization terms to be equal.

POINTWISE ANALYSIS
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« Parametric analysis obtained by re-fitting Model 3 for
data coming from several operating points.

optimal model for every point in the thruster channel

distribution.
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« Pointwise analysis is carried out by obtaining the Pareto-

using the library of Model 3 and plotting the coefficient
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The EP2-SINDy was able to retrieve models resembling those derived
from analytical grounds, both in shape and magnitude, in a completely
data-driven way.

The fine-tuned Model 1 outperforms the rest when integrated

Adding the ionization rate leads from a proportional injection to a
constant injection neutral influx term.

Parametric analysis reveals that the ionization term also accounts for

other phenomena (possibly recombination + others)

Pointwise analysis revea
term depending on the ¢
transport close to walls and the overall global ion dynamics.

s the spatial dependence of the neutral influx
istance to the anode, the relevance of axial ion
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