PRELIMINARY ANALYSIS OF THE MAGNETIC ARCH PLASMA IN A CLUSTER OF EPTS

Célian Boyé

Jaume Navarro, Mario Merino Universidad Carlos III de Madrid, Spain EUCASS - CEAS 2023 – 10th July 2023

CONTENTS

- ZARATHUSTRA motivation
- Cluster architecture
- Experimental setup
- Results and interpretation
- Conclusion

ZARATHUSTRA MOTIVATION

- **ZARATHUSTRA** thruster focuses on the *Electron-Cyclotron Resonance* (**ECR**) *thrusters*.
 - In a magnetic field, electrons have a circular motion due to the *Lorentz* force.
 - When this motion is overlaid by an axial motion, it transforms into a cycloid motion.
 - This cyclotron motion is defined by the strength of the applied magnetic field:

$$f_{ce} = \frac{e B}{2\pi m_e}$$

 Plasma generation is enabled by collisions between electrons and neutrals.

Power injection (Microwave Guide, Antenna, Coaxial Cable)

ZARATHUSTRA MOTIVATION

Cluster being assembled

- Classic *EPTs* acts like total magnetic dipoles, coupling with the Earth's magnetic field and therefore producing secular torque.
- The cluster is a dual coaxial *ECR* thruster (a) developing a magnetic arch with a closedline topology.
- Interaction in between two ECR sources enables:
 - Closed-line magnetic field topology.
 - Lowering of the plume divergence.

- 2.45*GHz* tunable (±50 MHz) solid state microwave generator (*Muegge* MR1000D-200ML).
- 7-16 DIN coaxial 2.45 GHz graded feedthrough (*Allectra* 242-7_16-K50).
- Coaxial 2.45*GHz* graded all females three ways splitter (*Microlab* D2-16FD).
- M3 termination 7-16 DIN panel crimp (*Telegartener* J01121A0721).
- Elements connected with coaxial cables:
 - LMR-600-FR coaxial cables
 - TC-600-716M-X coaxial connectors.

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

Cluster thrutster installed in the EP2 group vacuum chamber

- Technology in use:
 - Primary pump: Leybold Leyvac LV 80 ($80 m^3/h$)
 - <u>Turbomolecular pumps:</u> 2 **MAGW2.200iP** (2000 *l/s*)
 - <u>Cryopanels:</u> 3 Leybold **Leyvac 140 T-V**
 - <u>Leak dectector:</u> Leybold **L300i**

Vacuum chamber characteristics	
Length	3.5 <i>m</i>
Diameter	1.5m
Operational pressure	2e — 5mbar at 20sccm of Xe
Pumping speed	> 37000 <i>l/s</i> of <i>Xe</i>

EXPERIMENTAL SETUP - RPA

- Radial / Polar positioning system used in the vacuum chamber with a *Retarded Potential Analyzer* (*RPA*).
- *RPA* characteristics:
 - *Distance to the thruster:* 380mm
 - Number of holes per grid: 37
 - Ion collection area: $A = 1.86e 5 \text{ m}^2$
 - Transmission factor: T = 0.0625
 - *Set of angles:* [-50°, -25°: 5°: 25°, 50°]
 - *IEDF*, \overline{E}_i , \overline{v}_i , I_{Tot}

EXPERIMENTAL SETUP - RPA

Cluster in operation with "MF ARCH" configuration.

Cluster in operation with "MF SAME" configuration.

15 sccm of Krypton, 100 W at 2.45 GHz

EUCASS-CEAS 2023 - CÉLIAN BOYÉ - UC3M

RESULTS - ION FLUX

- Plasma is extracted from the closed-line magnetic topology, with less divergence than the other topologies.
- *MF SAME* ion flux plot symmetry is coherent with the corresponding magnetic topology.
- *MF OFF* ion flux plot lies one order of magnitude lower than the other magnetic topologies.

RESULTS - AVERAGE ION ENERGY AND VELOCITY

- Lowest average energy for *MF ARCH*.
- Closed-line magnetic field might prevent the acceleration of ions close to 0°.
- Measured ion average energy is directed in the perpendicular direction to the RPA.
- Differences in between the ion flux and the average energy plots could indicate the need to improve the probing setup.

RESULTS - ONE SOURCE THRUSTER COMPARISON

<u>Comparison of the ion flux in between</u> <u>one and two sources.</u>

<u>Comparison of the average energy and</u> <u>velocity in between one and two sources.</u>

CONCLUSION

- First dual EPT thruster to be ignited and run with different magnetic topologies.
- A decrease in divergence is reached with the *MF ARCH* topology, confirming previous simulation works.
- Presence of a magnetic field arch does not prevent plasma expansion nor ions acceleration.

- Plasma characteristics in between single and dual sources are comparable and lead to the need of a deeper study into the magnetic arch.
- Closed-line magnetic field thruster concept is compatible with in-space application to counter secular torque.

- Improved diagnostics are needed to measure accurately the plasma characteristics for *MF MARCH* topology.
- Power absorption / coupling need to be studied and measured to determine the real coupling efficiency regarding both the magnetic field topology and the thruster dimensions.
- Better definition of functioning points is needed in terms of mass flow rate and power.

THANK YOU!

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 950466)

