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MOTIVATION

● Data-driven analyses techniques do not replace, 
but complement, traditional approaches:

● Extract additional insight from existing data

● Automate data processing in a 

reproducible manner while reducing researcher bias

● Process large and/or high-dimensional data

● Still not widely used in plasma propulsion

● In this talk we explore the application of 4 algorithms
to process simulation and experimental data in 
plasma space propulsion:

● POD

● DMD

● SINDy

● CSD dispersion relation → Helicon plasma thruster 

              azimuthal oscillation data
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→ Hall effect thruster 

     breathing mode simulation data
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OVERVIEW OF HET SIMULATION DATA

● Axial-radial hybrid PIC/fluid code HYPHEN used to 
simulate the discharge of a SPT-100-like HET on Xe

● Code developed, verified and validated over
the last decade, building on previous experiences

● Includes ionization, excitation, charge-exchange
collisions and a tuned empirical model for 
anomalous transport

● Discharge exhibits global oscillations (breathing
mode) at 10-20 kHz, and traveling axial oscillations
(ion transit mode) at 100-200 kHz

● Discharge current oscillations (example below)
correspond well with experimental observations:
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Nominal operating point: 
𝑉𝑑 = 300 V

ሶ𝑚𝐴 = 5 mg/s Xe
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PROPER ORTHOGONAL DECOMPOSITION

● POD offers a quick first decomposition of the data
into spatio-temporal modes, optimal according to 
an energy norm

● “Most energy in less modes”

● All data (𝑛, 𝑇𝑒 , 𝜙, etc) concatenated into a 
column vector 𝒒𝑛 for each time instant, 
to form the snapshot matrix 𝑄

● Standard SVD breaks 𝑄 into spatial modes 𝑊, 
temporal modes 𝑈, and 
singular value diagonal matrix Σ:

● POD modes do not separate according to 
frequency. BM and ITTM oscillations are 
mixed in some of the modes, 
and hence offers limited insight
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First 5 POD modes for plasma density in nominal case 
[Maddaloni et al 2022 PSST 31 045026]
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HIGH-ORDER DYNAMIC MODE DECOMPOSITION

● Standard DMD seeks an expansion of 𝒒𝑛 into 
spatial modes 𝝍𝑘 and time exponentials exp[(𝛿𝑘 + 𝑖𝜔𝑘)𝑡𝑛]:

● The dynamic relevance of a mode is 
given by its real amplitude 𝑎𝑘

● This is adequate to represent linear phenomena like 
oscillations and exponential growth/decay, whose evolution
is given by Koopman matrix 𝐴:

● Higher-order DMD solves for:
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● Or equivalently:

with:
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HIGH-ORDER DYNAMIC MODE DECOMPOSITION

● The procedure followed is that of [Le Clainche S et al 2017 J. 
Appl. Dyn. Syst. 16 882–925]. In essence:

● Apply SVD filter on the original snapshot matrix 𝑄

● Build ෩Q based on reconstructed 𝑄∗

● Standard DMD is applied to ෩Q to obtain 𝛿𝑘, 𝜔𝑘

● Least squares are used to compute 𝑎𝑘

● All mode amplitudes and growth rates:
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BM 
cluster

ITTM
Cluster

Fundamental BM 
freq 13.1 kHz

Harmonics

(No contribution 
of neutral 

density to ITTM)
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HIGH-ORDER DYNAMIC MODE DECOMPOSITION

● HODMD enables isolating BM and ITTM, and separating transcients from steady state oscillations:

8Breathing mode reconstruction
(all variables)

(plasma density)

Magnitude and phase of dominant BM component:

● Global oscillation of 𝑛, 𝑛𝑛

● Traveling oscillation of 𝑇𝑒 , 𝜙
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HIGH-ORDER DYNAMIC MODE DECOMPOSITION

● ITTM consists instead of an essentially traveling
wave in the axial direction:
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● 4 Snapshots of an ITTM cycle (reconstructed 
data):
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SYMBOLIC REGRESSION (SINDY)
● We now try to obtain the BM dynamic equations in the form:

ሶ𝑛 = 𝛽11𝑛 + 𝛽12𝑛𝑛 + 𝛽13𝑇𝑒 + 𝛽14𝑛2 + ⋯
ሶ𝑛𝑛 = 𝛽21𝑛 + 𝛽22𝑛𝑛 + 𝛽23𝑇𝑒 + 𝛽24𝑛2 + ⋯

…
or, more generally, for a prescribed function library Θ𝑗:

● We use the data to numerically estimate the derivatives on 
the left hand side, and then least squares to minimize the 

error 𝜀 = 𝜀𝑆 + 𝜆𝜀𝜆, with:

● 𝜆𝜀𝜆 is a sparsity-promoting term that penalizes near-zero 
𝛽𝑖𝑗 coefficients
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● The Weak SINDy variant uses the 
weak form of the equation and 
replaces 𝜀𝑆 with the error:

● It is possible to apply e.g. linear 
constraints to the coefficients to 
exploit our physical knowledge of 
the system:

● Relevant to our analysis is also the 
integration error 𝜀𝐼, which 

measures how well the 
numerically-integrated model 
equations reproduce the data:
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GLOBAL ANALYSIS

● We first try to extract dynamic equations for the average plasma properties in the indicated domain

● We vary the sparsity penalty 𝜆 and evaluate different models, selecting the knee of the pareto front
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GLOBAL ANALYSIS

● Varing the breadth of the search library of functions we can search for models of varying complexity and 
detail, while still retaining physical interpretability

● The algorithm strives to match the derivative of each variable
(e.g., the ion density:)

● Best-fit equations found for 𝑇𝑒 , 𝑢𝑧𝑖

are less interpretable:
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Including only 𝑛_𝑛𝑛 

functions in the library:

Adding ionization 
rate 𝑅𝑖𝑜𝑛 𝑇𝑒 :

Adding axial velocity:
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GLOBAL ANALYSIS

● How well the numerical integration of the model describes the data 
does not follow directly from the quality of the fit in the derivatives:

● In this particular case, more complex models start to introduce 
spurious higher-frequency oscillations and a decaying behavior

● Alternatively to 𝜀𝑆 we can minimize 
𝜀𝑊 or 𝜀𝐼, and/or apply the constraint 

that the magnitude of the ionization 
term be equal in the ion and neutral 
equations:
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● Applying the same procedure at varying operating points we can 
find trends of the coefficients and fit simple laws:

● Increasing ሶ𝑚𝐴:

● 𝐿 increases slightly, 

suggesting a larger 
effective volume is involved
in the BM oscillations

● 𝑔𝑖𝑛𝑗 is proportional to ሶ𝑚𝐴 

(consistency)

● Ionization term decreases
slightly but remains ≃ 1

GLOBAL ANALYSIS
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POINT-WISE ANALYSIS

● Finally, we can do the SINDy analysis for the plasma variables at each point, rather than their volume 
averages

● Presence (and magnitude) of the various coefficients helps separate different regions of the dicharge 
channel: rear, lateral walls; upstream region; downstream region
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AZIMUTHAL OSCILLATIONS IN A MAGNETIC NOZZLE

● Helicon plasma thruster consists of 

● cylindrical dielectric ionization chamber

● EM inductor (“antenna”)

● Converging-diverging applied B field → Magnetic nozzle

● Losses to lateral walls are large and 
suggest anomalous transport

● Gradient-driven drift instabilities are a 
candidate mechanism for that enhanced 
transport

● Previous works identify oscillations in the 
magnetic nozzle plasma plume
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EXPERIMENTAL SETUP

● HPT prototype running at 5, 10, 20 sccm Xe, 450 W EM power

● Max. B field 750 G

● Vacuum chamber: 1.5 m diameter, 3.5 m length, 10−5 mbar during operation

● 3 floating, cylindrical tungsten probe tips, 1 cm apart (along 𝜃 and 𝑑 directions)

● Probe system displaced with radial-polar arm to desired locations
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1 3

2

𝑑 direction

𝜃 direction
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CROSS CORRELATION ANALYSIS

● 30 realizations of the cross correlation 
spectrum between 2 probes:

● Mean and deviation of log power 𝑐 = log 𝐶:

● Mean and deviation phase difference
(circular statistics):
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CROSS CORRELATION ANALYSIS

● Example at one location 
(𝑑 = 100 mm, 𝛼 = 30 deg)

● Peak in CSD power and coherence at ~60 kHz

● Harmonic at ~120 kHz suggests nonlinear

effects present

● Flatter spectrum found at 𝑑 = 150 mm

● Azimuthal dispersion compatible with 
gradient drift and 𝐸𝑥𝐵 drift estimated 
velocities (1-4 ⋅ 104 m/s)

● This is only found at intermediate 𝛼 angles

● Parallel dispersion relation is 𝑘𝑧 ≃ 0

● Oscillations die out as mass flow rate is 
increased

● Various candidate oscillations/instabilities

● Drift waves are a good candidate
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DISPERSION RELATION DISCUSSION

● Other works (below) also found azimuthal oscillations in similar setups

● Hepner et al: suggest ECDI 

● Takahashi: suggests oscillations are a magnetosonic wave 

● Further work (experimental and theoretical) needed to clarify nature of oscillations and role on transport+

21

Hepner et al ECRT
Appl. Phys. Lett. 116, 263502 (2020);
Proposes outward electron transport

Takahashi’s HPT
Scientific Reports (2022) 12:20137;
Proposes inward electron transport

40 kHz
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SUMMARY AND WAY FORWARD

● Data-driven analysis techniques can be (partially?) useful tools to interpret simulation and experimental 
results. We have explored a tiny subset of techniques and applied them to HET BM and MN azimuthal 
oscillation analysis

● Linear techniques like POD, (HO)DMD useful at decomposing data in different spatio-temporal bases, 
helping isolate modes of interest

● Best-suited technique depends strongly on data and research objectives

● Symbolic regression (SINDy) is great to identify simple, (interpretable?) models behind the data. Method is 
amenable to applying prior physical knowledge of the system

● In our analysis of BM oscillations, including spatial gradients of the variables in the SINDy search library 
and allowing for higher-order differential equations would lead to PDEs describing the time and space 
dynamics

● Cross correlation analysis among probes can help resolve dispersion relation of MN oscillations. This topic 
is still at a preliminary stage

● Understanding which oscillation/instabilities manifest requires additional data and further theoretical 
work

● Adding additional probes may help resolve the full 3D 𝒌 vector of the oscillation and disambiguate 

multiple waves at a given frequency
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