SIMULATIONS OF THE EFFECT OF NEUTRAL DYNAMICS IN MAGNETIC NOZZLE EXPANSIONS

Diego García Lahuerta, <u>Mario Merino</u>, Eduardo Ahedo

Equipo de Propulsión Espacial y Plasmas (EP2), Universidad Carlos III de Madrid, Leganés, Spain

76th Gaseous Electronics Conference, October 9-13, Michigan University, Ann Arbor, MI

MOTIVATION

- Background pressure is known to play a role on magnetic nozzle performance.
 - Collisions, ionization
- Previous MN studies were collisionless and ignored ionization, charge exchange, and electron collisions
 [Ahedo, Merino, Phys Plasmas 17, 073501 2010 and follow up articles]
- New DGFEM code to overcome previous limitations and explore other plasma expansion configurations (e.g. magnetic arch)
- Preliminary study to account for collisions and ionization in the nozzle

MODEL EQUATIONS

- Three-Fluid Model:
 - Quasineutral plasma
 - β = 0, negligible self induced magnetic field.
 - Massless, polytropic $(p_e \propto n_e^{\gamma})$, fully magnetized electrons (when collisionless).
 - Cold, singly-charged ions.
 - Euler equations for neutrals
 - Ionization and Charge-Exchange
 Collisions, electron collisions.

$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n\boldsymbol{u}_{\boldsymbol{e}}) = \boldsymbol{S}_{\boldsymbol{i}}$$

$$\boldsymbol{v} = -\boldsymbol{\nabla} nT_{\boldsymbol{e}} + en \, \boldsymbol{\nabla} \phi - en \boldsymbol{u}_{\boldsymbol{e}} \times \boldsymbol{B} - \boldsymbol{R}_{\boldsymbol{e}}$$

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n\boldsymbol{u}_i) &= \boldsymbol{S}_i \\ m \frac{\partial n\boldsymbol{u}_i}{\partial t} + m \nabla \cdot (n\boldsymbol{u}_i \otimes \boldsymbol{u}_i) \\ &= -en \,\nabla \phi + en \,\boldsymbol{u}_i \times \boldsymbol{B} + S_i \,\boldsymbol{u}_n + \boldsymbol{S}_{cex} \,(\boldsymbol{u}_n - \boldsymbol{u}_i) \end{aligned}$$

$$\frac{\partial n_n}{\partial t} + \nabla \cdot (n_n u_n) = -S_i$$
$$m \frac{\partial n_n u_n}{\partial t} + m \nabla \cdot (n_n u_n \otimes u_n) = -\nabla p_n T_n - S_i u_n + S_{cex} (u_i - u_n)$$
$$\frac{\partial E_n}{\partial t} + \nabla \cdot [(E_n + p_n) \cdot u_n] = 0$$

COLLISION MODELS

• Ionization:

$$S_i = n \, \nu_i = n \, n_n c_e \sigma_i$$

$$\sigma_i = \sigma_{i0} \left(1 + \frac{T_e E_i}{(T_e + E_i)^2} \right) e^{-E_i/T_e}$$

$$\sigma_{i0} = 5 \times 10^{-20} m^{-2} E_i = 12.1 eV$$

• Charge Exchange:

 $S_{cex} = n v_{cex} = n n_n \overline{c_{in} \sigma_{cex}}$

$$\sigma_{cex} = \sigma_{cex \ 0} \left(1 - 0.2 \ \log \left(\frac{c_{in}}{1 \ km/s} \right) \right)$$

$$\sigma_{cex \ 0} = 81 \times 10^{-20} \ m^2$$

 $c_{in} = |\boldsymbol{u}_i \ - \boldsymbol{u}_n|$

• Electrons (Only considered a posteriori):

$$\nu_e = \nu_{ei} + \nu_{en}$$

$$v_{en} = n_n c_e \sigma_{en}$$

$$\sigma_{en} = 27 \times 10^{-20} m^2$$

$$\nu_{ei} = n R_{ei}$$

$$\frac{R_{ei}}{10^{-12} m^3 s^{-1}} = 2.9 \left(\frac{1eV}{T_e}\right)^{3/2} \log \Lambda$$

$$\log \Lambda \sim 9 + \frac{1}{2} \log \left[\left(\frac{10^{18} m^{-3}}{n_e}\right) \frac{T_e}{1eV} \right]$$

[Enrique Bello-Benítez and Eduardo Ahedo 2021 Plasma Sources Sci. Technol. 30 035003]

MODEL EQUATIONS

ELECTRON EQUATIONS

- A posteriori estimation of the importance of electron collisions.
 - Resistive force in electron momentum equations leads to:

$$0 = -\nabla H_e - e u_{e\theta} B \mathbf{1}_{\perp} + e u_{e\perp} B \mathbf{1}_{\theta} - \mathbf{R}_e$$

 $\boldsymbol{R}_{e} = m_{e} v_{e} \boldsymbol{u}_{e} = -eB \chi^{-1} \boldsymbol{u}_{e} \qquad \qquad \chi \rightarrow \text{Hall parameter}$

• Projected onto magnetic field frame:

$$\frac{\partial H_e}{\partial 1_{\parallel}} = -eB\chi^{-1}u_{e\parallel}$$
$$u_{e\perp} = \chi^{-1}u_{e\theta}$$
$$\Delta u_{e\theta} = u_{e\theta} - u_{e\theta} \Big|_{\nu_e = 0} = -\chi^{-2}u_{e\theta}$$

- This equations act as leading order corrections to electron velocity. One can observe:
 - Perpendicular corrections are $\mathcal{O}(\chi^{-1})$ while azimuthal correction is $\mathcal{O}(\chi^{-2})$
 - Parallel velocity results from solving continuity equation and is affected by $u_{e\perp}$ and S_i

SIMULATION SETUP

- Numerical setup:
 - Discontinuous Galerkin discretization (FEniCS)
 - Order 1 elements in this work.
 - Runge Kutta time-stepping (and final solve for steady state)
 - Unstructured mesh (Gmsh):
 - Cell diameter such that the nozzle throat is resolved in 40 cells.
- Physical parameters:
 - Sonic axial velocity
 - Gaussian density profile:
 - $n(0) = n_0$ and $n(R_0) = 10^{-3}n_0$ for ions.
 - $n_n(0) = \alpha n_0$ and $n_n(R_0) = \alpha 10^{-3} n_0$ for neutrals.
 - α calculated to match ionization percentage in the source.
 - $\eta_u \in [1, 0.95, 0.5]$ (utilization <u>at the source</u>)
 - $T_{e0} = 10 \text{ eV}$ (fixed for all cases)
 - Coil radius: $R_L = 2R_0$
 - $\gamma_e = 1.2$

Results - $\eta_u = 0.95$

• Overall characteristics of the discharge not much affected by collisions and ionization at $\eta_u = 0.95$

Ions:

- Expansion follows the magnetic field lines initially then separates inwards due to increasing ion Mach number.
- Consistent with previous results [Merino, Ahedo, PSST 23 (2014) 032001]

 Charge exchange collisions accelerate neutrals downstream adding to their thermal expansion.

Results - Parametric Study

- Decreasing $\eta_u \rightarrow$ more neutrals near the exit:
 - External ionization increases plasma density and decreases ion velocity locally
- Total potential fall essentially unchanged (we are holding *T_e* constant).
- Beam current and density increases downstream,
- Magnetic thrust scales as $enu_{\theta e}B$, and since $u_{\theta e}$ is not affected, magnetic F/F_0 increases (again, for T_e fixed)
 - But for fixed power and total mass flow rate, F_0 depends on η_u and T_e . These essential trends are not studied here!

Role of electron Collisions – $\eta_u=0.95$

• Parallel Component

- Perpendicular Component:
 - In black collisionless electron streamlines.
 - In magenta collisional streamlines.

Ζ

 $\Delta u_{e\theta}/u_{e\theta}$

10

8

6

4

2

0

0

10-7

- 10⁻⁸

- 10-9

- 10⁻¹⁰

10-11

10

8

CONCLUSION

- New model in DGFEM allows studying effect of collisions and ionization on MN plasma expansions. Here, we have analyzed the effect of incomplete ionization in the source
- Ion current increases downstream due to late ionization; CEX energizes neutrals; electrons are essentially unaffected in the explored regimes
- Keeping T_e fixed and normalizing with F₀, total thrust increases with presence of neutrals due to mass entrainment
 - However, downstream ionization is a bad thing: those neutrals should have been ionized in the source and undergo acceleration across the full potential fall!
 - Proper power balance taking into account downstream ionization must be carried out to compute T_e consistently
- Background pressure has not been simulated here, but expected to play a similar role: it provides a "free" additional mass flow rate to the thruster by late ionization; will decrease T_e with respect to collisionless case

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 950466)

THANK YOU!

dieggarc@ing.uc3m.es

