OSCILLATIONS AND INSTABILITIES IN A PROPULSIVE MAGNETIC NOZZLE

<u>Mario Merino</u>, Davide Maddaloni, Matteo Ripoli, Jaume Navarro-Cavallé, Filippo Terragni, Eduardo Ahedo Equipo de Propulsión Espacial y Plasmas (EP2), Universidad Carlos III de Madrid, Leganés, Spain

76th Gaseous Electronics Conference, October 9-13, Michigan University, Ann Arbor, MI

AZIMUTHAL OSCILLATIONS IN A MAGNETIC NOZZLE

- Helicon plasma thruster consists of
 - Cylindrical dielectric ionization chamber
 - EM inductor ("antenna")
 - Converging-diverging applied B field \rightarrow Magnetic nozzle

- Losses to lateral walls are large and suggest anomalous transport
- Gradient-driven drift instabilities are a candidate mechanism for that enhanced transport
- Previous works identify oscillations in the magnetic nozzle plasma plume

EXPERIMENTAL SETUP

- HPT prototype running at 5 sccm Xe, 450 W EM power
- Max. B field (magnetic throat): 750 G
- Vacuum chamber: 1.5 m diameter, 3.5 m length, 10^{-5} mbar during operation
- 3 floating, cylindrical tungsten probe tips, 1 cm apart (along θ and d directions)
- Probe system displaced with radial-polar arm

 Averaging over 30 realizations to estimate the cross correlation spectrum between each 2 probes :

 $C_{12}(\omega) = X_1(\omega)X_2^*(\omega)$

• Mean and deviation of log power $c = \log C$:

$$\bar{\mu}_c = \frac{1}{n} \sum_{k}^{n} c_k \qquad \bar{\sigma}_c = \sqrt{\frac{1}{n-1} \sum_{k}^{n} (c_k - \bar{\mu}_c)^2}$$

 Mean and deviation phase difference (circular statistics):

$$ilde{z} = rac{1}{n} \sum_{k}^{n} \exp(i\phi_k) \quad ilde{\mu}_{\phi} = \arg ilde{z} \quad d_1 = rac{1}{n} \sum_{k}^{n} |\phi_k - \mu_{ ilde{\phi}}|$$

• Coherence (normalized cross correlation spectrum):

$$\hat{C}_{12}(\omega) = \frac{|C_{12}(\omega)|}{\sqrt{|X_1(\omega)|^2 |X_2(\omega)|^2}}$$

- At low α angles ($\alpha = 20$ deg), good coherence up to 100 kHz at 50 mm; not so good at 100 mm
- Dispersion relation in that range has $m=0\div 1$, $k_{\parallel}\simeq 0$, corresponding to essentially global oscillations

- At larger angles (α = 30 ÷ 35) and d = 100 ÷ 150 mm, a dominantly-azimuthal mode is found at f < 100 kHz with
 - $m=1\div4$, $k_{\parallel}<10$ rad/m
 - Peak in CSD power at ~60 kHz; harmonic at ~120 kHz

Similar features but flatter spectrum found at d = 150 mm

- Behavior at large α is more complex.
 - Good coherence at low frequencies far downstream
 - $m = 1 \div 2$, k_{\parallel} has a dispersion relation

SUMMARY OF FINDINGS - AND ISSUES

- 10 kHz Oscillations found everywhere, with $m\simeq 0$ and $k_{\parallel}\simeq 0$
- 40-60 kHz Oscillations at intermediate α angles downstream, with m < 4 and k_{\parallel} likely nonzero
- 40-60 kHz Oscillations at large $\alpha \simeq 50$ deg (plume periphery), with m < 2 and $k_{\parallel} \neq 0$
- Phase velocities (< 10⁵ m/s) comparable to estimated density-gradient and ExB drift velocities
- Coherence is not large (~ 1) in some of these
- Dispersion relation plots with bends could suggest multiple waves coexist
 - If two or more oscillations coexist at same ω,
 2-probe method is unable to resolve them
- Jumps exist at some, but not all locations, around ω_{lh}

DISPERSION RELATION DISCUSSION

- Other works (below) also found azimuthal oscillations in similar setups
 - Hepner et al: suggest ECDI
 - Takahashi: suggests oscillations are a magnetosonic wave

Hepner et al ECRT Appl. Phys. Lett. 116, 263502 (2020); Proposes outward electron transport

Takahashi's HPT Scientific Reports (2022) 12:20137; Proposes inward electron transport

- 3D wave dispersion relation for inhomogeneous plasma
 - Obtained from fluid approach
 - Locally Cartesian set of coordinates $(r, \theta, z) \rightarrow (x, y, z)$

$$-i\omega_{s}n_{s} + u_{sx}\frac{\partial n_{0}}{\partial x} + u_{sx0}\frac{\partial n_{s}}{\partial x} + n_{0}\nabla\cdot\boldsymbol{u}_{s} + n_{s}\frac{\partial u_{sx0}}{\partial x} = \nu_{p}n_{s}$$

$$-i\omega_{s}\boldsymbol{u}_{s} + u_{sx}\frac{\partial \boldsymbol{u}_{s0}}{\partial x} + u_{sx0}\frac{\partial \boldsymbol{u}_{s}}{\partial x} = -\left(\left(\frac{\nabla\cdot\Pi}{nm}\right)_{s}^{(1)}\right) - \frac{q}{m}\nabla\phi_{1} + \frac{q}{|q|}\omega_{cs}\boldsymbol{u}_{s} \times \boldsymbol{b} - N_{s}\boldsymbol{u}_{s}$$

• **B** || **z**

- Inertial, collisional and FLR effects considered for the electron flow
 - Stress tensor (II) comprised of both gyrotropic and gyroviscous parts

$$\Pi_{e} = p_{\perp} \boldsymbol{I} + \left(p_{\parallel} - p_{\perp} \right) \boldsymbol{b} \boldsymbol{b} + \hat{\Pi}_{e}$$

- 3D wave dispersion relation for inhomogeneous plasma
 - Obtained from fluid approach

$$\frac{k^2 c_s^2}{\omega_{Pi}^2} \left(\frac{\omega_{Pi}^2}{\omega_i^2} - 1 \right) = \underbrace{\begin{array}{c} \omega_D - \omega_B + D_\perp + D_\parallel} \\ \omega_e + \omega_D - \omega_B + D_\perp + D_\parallel \end{array}$$

$$\omega_e \equiv \omega - \omega_E - \omega_D$$

 $\partial \ln B_0$

• Drift frequencies:

$$\omega_D \equiv -k_\perp \frac{c_e^2}{\omega_{ce}} \frac{\partial \ln n_0}{\partial x} \qquad \qquad \omega_E \equiv -k_\perp \frac{E_{x0}}{B_0} \qquad \qquad \omega_B \equiv -k_\perp \frac{c_e^2}{\omega_c}$$

- Inertial, collisional and FLR effects are accounted for
 - For perpendicular propagation:

$$D_{\perp} = D_{\perp} \left(\rho_e k_{\perp}, \nu_{\perp}, \omega, \omega_E, \omega_D, \omega_B \right)$$

• For parallel propagation:

$$D_{\parallel} = D_{\parallel} \left(\rho_e^2 k_{\parallel}^2, \rho_e^2 k_{\perp}^2, \nu_{\parallel}, \omega, \omega_E, \omega_D, \omega_B \right)$$

- Delimited parametric regions for instabilities to occur
- For perpendicular propagation:
 - Blue region for collisionless instability
 - Dashed lines delimit region for collisional instability

- Delimited parametric regions for instabilities to occur
- For perpendicular propagation:
 - Blue region for collisionless instability
 - Dashed lines delimit region for collisional instability

- Delimited parametric regions for instabilities to occur
- For perpendicular propagation:
 - Blue region for collisionless instability
 - Dashed lines delimit region for collisional instability
- For both propagation directions:
 - Two different regions for collisonless instability
 - Collisions widen instability regions

- Delimited parametric regions for instabilities to occur
- For perpendicular propagation:
 - Blue region for collisionless instability
 - Dashed lines delimit region for collisional instability
- For both propagation directions:
 - Two different regions for collisonless instability
 - Collisions widen instability regions

SUMMARY AND WAY FORWARD

- At low frequency ranges (< 100 kHz), floating probe measurements show existence of mainly azimuthal oscillations with low m number (and likely nonzero k_{||}). Oscillations are more apparent downstream, at moderate and high angles α from axis. Likely, various types of oscillations are present at the same time.
- Present measurements are partially inconclusive: low coherence, "dirty" dispersion relation plots
- Adding a 3rd probe could help discriminate the coexistence of multiple waves (which would be affecting current results)
- Phase velocity is compatible with drift velocities
- Local linear dispersion analysis in slab geometry including collisionality, k_{\parallel} , and gyroviscous terms shows:
 - Collisionless regions of instability are affected by k_{\parallel}
 - Collisions add a weak instability almost everywhere in the parametric plane
 - Our operating point corresponds with one such weak instability condition, which could justify experimental observations
- Effect of oscillations/instabilities on \perp transport still unclear

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 950466)

THANK YOU!

mario.merino@uc3m.es

STEADY-STATE RESULTS

B[G]160 140 120 100 $r \; [mm]$ 80 60 40 10^{1} 20 0 0 50 100 150 200 $z \,[\mathrm{mm}]$ $n \, [m^{-3}]$ ϕ [V] 10^{17} 100 80 90 60 $r \, [\mathrm{mm}]$ 10^{16} 40 70 20 100 120 140 40 60 100 40 60 80 80 120 140 $z \, [\mathrm{mm}]$ $z \, [\mathrm{mm}]$

• $B \simeq 10 \div 100 \text{ G}$

- $\omega_{ce} \simeq 2.8 \cdot 10^7 \div 2.8 \cdot 10^8 \text{ Hz}$
- $\omega_{ci} \simeq 1.2 \cdot 10^2 \div 1.2 \cdot 10^3$ Hz (Xenon)
- $\omega_{lh} \simeq 5.7 \cdot 10^4 \div 5.7 \cdot 10^5 \text{ Hz}$
- $n \simeq 10^{15} \div 10^{17} \text{ m}^{-3}$
 - $\omega_{pe} = 9.0 \cdot 10^8 \text{ Hz}$
- $T_e \simeq 12.5 \text{ eV}$
 - $c_s = 3 \cdot 10^3 \, \text{m/s}$
- Estimated gradient lenghts
 - $\ln n \rightarrow 1 \text{ cm}$
 - $e\phi/T_e \rightarrow 1 \text{ cm}$
 - $\ln B \rightarrow 10 \text{ cm}$
- Estimated drift velocities
 - $u_D, u_E \simeq 10^4 \div 10^5 \text{ m/s}$

 Collisionless instabilities arising from interaction between branches

• No parallel propagation:

- Collisionless instabilities arising from interaction between branches
 - Branch 1: non-trivial solution of parallel component of momentum ($\omega_{\parallel} = 0$)
 - Does not interact with other branches

• No parallel propagation:

- Collisionless instabilities arising from interaction between branches
 - Branch 1: non-trivial solution of parallel component of momentum ($\omega_{\parallel}=0$)
 - Does not interact with other branches
 - Branches 2 and 3: destabilization of «anti-drift wave» (modified SHI, with inertial and FLR effects)

No parallel propagation: Imaginary part of branch 2 $\rho_e/L_n = 0.008, \rho_e/L_E = 0.02, \sqrt{m_e/m_i} = 0.0001, \rho_e \kappa_{\parallel} = 0.0, \nu_{\perp} = 0.0, \nu_{\parallel} = 0.0$ 1.00 0.6 0.75 0.4 0.50 0.2 0.25 W_LH 0.0 × HI 0.00 Real parts of branches 2 and 3 -0.25-0.50-0.4-0.75-0.6 -1.000.1 0.2 0.4 0.5 0.0 0 Imaginary part of branch 3

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Branch 1 now «sees» other branches
 - Its solution is no longer decoupled from the rest of the problem

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Branch 1 now «sees» other branches
 - Branches 2 and 3 might still interact and destabilize under simil-SHI conditions

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Branch 1 now «sees» other branches
 - Branches 2 and 3 might still interact and destabilize under simil-SHI conditions
 - Stable close to the origin

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Depending on the choice of parameters, branch 1 might interact with one of the two sonic branches

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Depending on the choice of parameters, branch 1 might interact with one of the two sonic branches
 - New conditions for instability

- Collisionless instabilities arising from interaction between branches
- Including parallel propagation introduces new branches (and new ways for destabilizations to take place)
 - Depending on the choice of parameters, branch 1 might interact with one of the two sonic branches
 - New conditions for instability

• Collisions widen parametric range favourable for instabilities to arise

- Collisions widen parametric range favourable for instabilities to arise
- Consider a point where no collisionless instability takes place:

- Collisions widen parametric range favourable for instabilities to arise
- Consider a point where no collisionless instability takes place:

• Without collisions:

- Collisions widen parametric range favourable for instabilities to arise
- Consider a point where no collisionless instability takes place:

• With collisions:

- Collisions widen parametric range favourable for instabilities to arise
- Consider a point where no collisionless instability takes place:

• With collisions:

