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Abstract

The presented thesis contributes to the understanding and numerical modeling of electrodeless
plasma thrusters (EPTs). With an approach that combines mid-fidelity fast simulation software
and fundamental research models capturing a wider range of phenomena, the study tackles the
current modeling needs of the electric propulsion community and presents new insights into the
physics of these devices.

The understanding of the physics and the modeling of electromagnetic wave-plasma interac-
tion phenomena is at the forefront of the research. The study starts with an in-depth analysis
of the cold-plasma dielectric tensor model, tailored to understand wave propagation in Helicon
Plasma Thrusters (HPT). A central development is the introduction of PWHISTLER, a full-wave
simulation tool employing the finite element (FE) method. This model stands out for its im-
proved speed, accuracy, and ability to handle complex geometries, significantly improving the
modeling of electromagnetic phenomena in magnetized plasmas. Notable new features compared
to previous models include the introduction of azimuthal Fourier modes and waveport boundary
conditions.

Detailed analyses using both a finite-difference (FD) and the above-mention model underscore
their effectiveness in characterizing wave propagation and absorption in HPTs, with a key finding
being the concentrated power absorption at the electron-cyclotron resonance (ECR) surface that
appears in downstream plume.

The integration of PWHISTLER with the HYPHEN plasma transport solver facilitates a com-
prehensive study of a novel cusp magnetic HPT field topology. The simulations, verified against
experimental data, offer insights into performance losses and thrust efficiency, highlighting the
role of plasma currents to walls, the electron temperature, and the magnetic ring cusp’s influence.

Finally, the study presents the formulation of an advanced implicit particle-in-cell (PIC) al-
gorithm, specifically designed for magnetic nozzles. This innovative approach in the Electric
Propulsion (EP) field significantly enhances computational efficiency, marking a step in the sim-
ulation and optimization of magnetic nozzles for EPTs and paving the way for future studies of
other EP systems.
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Resumen

La tesis presentada contribuye a la comprensión y el modelado numérico de propulsores de
plasma sin electrodos (EPTs). Con un enfoque dual que combina herramientas prácticas de diseño
y modelos de investigación fundamental, este trabajo ofrece un conjunto de herramientas versátil
y completo para avanzar el estado del arte en física de plasmas de baja temperatura aplicada a
propulsión eléctrica.

El núcleo de la investigación lo constituyen los avances en el estudio de EPTs y tecnologías
para su modelado y simulación. Estos se enfocwan principalmente en la interacción de ondas elec-
tromagnéticas y su relación con fenómenos de transporte en el plasma. El estudio comienza con
un análisis detallado del modelo de plasma frío, aplicado a problemas de propagación de ondas en
propulsores de plasma de clase Helicón (HPT). Cabe destacar la introducción de PWHISTLER,
una herramienta de simulación de ondas que emplea el método de elementos finitos (FE). Este
modelo destaca por su mayor velocidad, precisión y capacidad para simular geometrías complejas,
mejorando significativamente el estudio de fenómenos electromagnéticos en plasmas magnetiza-
dos.

Una serie de análisis utilizando tanto un modelo de diferencias finitas (FD) como PWHISTLER
demuestran su efectividad en la caracterización de la propagación y absorción de ondas en HPTs,
siendo una observación clave la absorción de potencia concentrada en la superficie de resonancia
electrónica-ciclotrónica (ECR).

La integración de PWHISTLER con el código de simulación para el transporte de plasma
HYPHEN facilita un estudio exhaustivo de una nueva topología de campo magnético con cúspide
en HPT. Las simulaciones, verificadas con datos experimentales, ofrecen conclusiones sobre las
pérdidas de rendimiento y la eficiencia de empuje, destacando el papel de las corrientes de plasma
a pared, la temperatura de electrones y la influencia de la topología magnética.

Finalmente se presenta una nueva formulación de un algoritmo implícito de partículas en celda
(PIC), diseñado específicamente para toberas magnéticas. El método PIC implícito mejora la
eficiencia computacional frente a métodos bien establecidos, y constituye un avance sustancial en
la simulación y optimización de toberas magnéticas para EPTs.
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1. Introduction

1.1. Background

Electric Propulsion (EP) is a form of in-space propulsion that utilizes electric power from an exter-
nal source, such as solar panels or batteries, to ionize a neutral gas and accelerate charged particles
that collectively form a plasma. This approach has a major advantage in terms of propellant effi-
ciency compared to chemical rocket propulsion (CP). The potential of this moderate power, low
thrust, high efficiency, and long-duration propulsion method for in-space applications was first
noticed in the early 20th century by space pioneers Goddard and Tsiolkovsky [1], and can be
explained using the latter’s renowned rocket equation.[2]:

mp

m0
= exp

∆V
ve
− 1 (1.1)

For a given space mission, characterized by a certain ∆V budget, the ratio of propellant to dry
mass mp/m0 decreases exponentially with the effective exhaust velocity ve provided by the rocket
or thrusters. In a context where the cost of getting 1 kg of payload to low-earth orbit averages tens
of thousands of dollars, reducing on-board satellite propellant mass is of paramount importance to
the space industry. This explains the need for a high effective exhaust velocity ve, which has led
to the widespread adoption of efficient electric propulsion technologies.

EP systems can break the achievable ve limitation intrinsic to CP due to the finite availability
of potential energy in the chemical bonds of the propellant/s. EP systems typically have a specific
impulse of Isp ≈ ve = 10000 − 50000 m/s, compared to only 1000 − 5000 m/s . Today, almost
half of all commercial spacecraft deployed carry some kind of EP onboard. Applications range
from low-thrust station keeping and attitude control operations to transferring from LEO to higher
orbits for navigation and telecommunication satellites [3]. Deep-space scientific missions, with
the most demanding ∆V budgets, also rely heavily on EP, some examples are the BepiColombo
Venus orbiter (ESA), Hayabusa 1 and 2 asteroid sample return spacecraft (JAXA) or the NASA
Evolutionary Xenon Thruster (NEXT) platform powering future missions.

Since the first EP systems were launched in the late 1960s [4], many devices have been de-
signed and flown successfully; a typical classification of existing technologies is the following[5]:

1. Electrothermal: Electric power is used to heat the plasma which expands as a result of the
rising pressure and accelerates in a nozzle. These devices share similarities with CP, but the
additional Isp is modest compared to the former.

2. Electrostatic: The primary means of generating thrust is the acceleration of ions in an
electric field created between two electrodes with a very high voltage difference. Gridded-
ion thrusters (GITs) are a well-established technology in this group. These devices use
biased grids placed after an ionization chamber to accelerate ions. The plasma beam is
then neutralized by electrons from an external cathode. GITs offer a specific impulse of
more than 30000 m/s and an energy efficiency of around 70%. However, thrust density
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and throatability are restricted by grid current saturation. Despite modern improvements
in the systems lifetime, grid erosion caused by high-energy ions continues to be a major
concern. High voltages in the device and the need for several circuits require complex
power processing units (PPUs) and careful design to avoid uncontrolled discharges.

3. Electromagnetic: The thrust generation mechanism is the reaction forces between the
thruster magnetic circuit (composed of coils and/or permanent magnets) and the plasma
currents. The Hall Effect Thruster (HET) is the most mature device in this class. It has an
internal anode and an external hollow cathode emitting an electron current which serves a
dual purpose: a fraction of the electron current is directed to the chamber where it ionizes
the neutral gas, while the other part neutralizes the downstream ion jet. Inside the source, the
magnetic circuit creates a quasi-radial magnetic field that produces an E×B azimuthal drift,
which is essential for increasing the electron residence time and boosting the ionization rate.
The reaction of the azimuthal electron current against this magnetic field is the main con-
tributor to the total thrust. Compared to GITs, HETs usually have a lower specific impulse
and efficiency (∼ 20000 m/s and ∼ 50%), however, their high thrust density, reduced system
complexity, and potential to use alternative propellants instead of expensive Xenon (Xe),
are driving the industry toward adoption of this technology for many applications.

Research into GIT and HET continues to be conducted to overcome some of their limita-
tions; yet another option that has become increasingly popular in the past two decades is to move
away from the traditional architectures and develop new concepts that do not require electrodes.
Electrodeless Plasma Thrusters (EPTs) are electromagnetic devices that do not require a comple-
mentary hollow cathode to act as an ion beam neutralizer and do not suffer from erosion problems
associated with electrodes and grids. In addition, they simplify the complex power unit control
system of more mature technologies. EPTs offer the potential to use alternative propellants with a
lifetime longer than that of GIT or HET (∼ 60000 hours and ∼ 20000 hours, respectively, expected
for the newest generation devices) and are more cost-effective due to the simplification of the PPU
and the lack of electrodes. These thrusters can be used for a variety of applications, from low-
power propulsion for cube and nanosatellites to high-power interplanetary and deep-space explo-
ration propulsion plants, such as the Variable Specific Impulse Magnetoplasma Rocket (VASIMR)
[6].

Two types of EPTs, Helicon Plasma Thrusters (HPTs) [7]–[11] (also known as radiofrequency
or RF thrusters, see Figure 1.1) and Electron Cyclotron Thrusters (ECRs) [12]–[15] (also known
as microwave thrusters), currently dominate the research in the low and mid-power EPT segment.
They have a similar operating principle and consist of (1) a cylindrical discharge chamber made
of dielectric walls, (2) a gas inlet, usually at the back of the chamber, (3) an inductor/antenna,
emitting the EM power to be absorbed by the plasma, and (4) an external magnetic circuit, gen-
erating a magnetic field, which aims to make the plasma partially transparent to the EM waves,
to confine the plasma, and to guide and accelerate it externally through a magnetic nozzle (MN)
configuration. The main differences between the two technologies are the plasma heating mecha-
nism and the operating frequency. HPTs work in the MHz range and use the geometric coupling
of RF power provided by a helical antenna via Helicon and Trivelpiece Gould (TG) waves [16].
Conversely, ECRs employ a resonant mechanism, the Electron Cyclotron Resonance (ECR), to
deposit most of the electromagnetic power in a localized region where the applied magnetic field
intensity meets the resonant condition dictated by the excitation frequency, usually in the low-GHz
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range. Due to the short characteristic vacuum wavelengths at these high frequencies, comparable
to the dimensions of the device, some ECRT have replaced the antenna with a waveguide that
feeds EM power into the source [17].

Figure 1.1: Schematic of a Helicon Plasma Thruster

Despite their potential, the current specific impulse and thrust efficiency of these thrusters are
not as competitive as those of their more mature GIT and HET counterparts. Gaining a better
understanding of the physical mechanisms and plasma dynamics is essential for revealing loss
mechanisms and optimizing performance. EPTs share with other types of plasma thrusters a wide
range of complex plasma physics phenomena that are actively being studied by the EP community,
such as turbulence and instabilities, anomalous cross-field transport, kinetic effects, wall-plasma
interaction, and plasma chemistry. Furthermore, the electromagnetic wave propagation and ab-
sorption problem, which is a key phenomenon in the operation of EPTs, is also a factor that adds
complexity to the study of these new-generation thrusters. Needless to say, wave phenomena are
coupled to some extent to each of the mechanisms mentioned above. This results in a very in-
tricate non-linear behavior of the plasma, which explains the difficulty of thruster designers in
understanding and optimizing these devices.

1.2. State-of-the-art in EPT modeling

Modeling EPTs is a challenging undertaking, as it requires taking into account a variety of inter-
related processes. To begin with, the magnetized plasma transport must be addressed, including
ionization, the interaction with the walls, and the external expansion and acceleration to infinity
in the MN. Additionally, the plasma-wave interaction must be considered, which involves the RF
fields and the RF power deposition in the plasma. Since the timescales of the fast RF fields and
the slow plasma transport are significantly different, it is possible to address each subproblem
independently to some degree.

Regarding the fast electromagnetic (EM) fields, early work on helicon sources character-
ized the EM wave normal modes in simplified geometries [16] identifying two main propagation
modes, namely Helicon (H) and Trivelpiece-Gould (TG) waves [18], their damping rates and the
power deposition inside the plasma. In a cold-plasma description that includes electron inertia,
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these two modes are instances of the right-hand polarized whistler wave [19] at different propa-
gation angles with respect to the stationary magnetic field. Full-wave frequency-domain models
for EM wave propagation [20] are needed for an accurate simulation of realistic configurations.
These models study a stationary plasma through which waves can travel from an excitation region
(a volumetric current density) that corresponds to the antenna or coupler. Additionally, bound-
ary conditions can be introduced for an incoming wave (waveport) that is fed into the thruster
through a waveguide in some ECRT prototypes. Under the cold-plasma assumption, the magne-
tized plasma response is linear and can be captured by a full dielectric tensor [19]. The solution
for the electric-field components can then be used to compute the induced currents and calculate
the cycle-averaged power deposition into the plasma. Early one-dimensional radial models al-
ready detected H and TG waves in the cylindrical plasma source, as evidenced in several studies
[21]–[23]. However, these models do not account for the effects of axial variations in density and
axial magnetic field. To address these limitations, more advanced two-dimensional asymmetric
full-wave codes were developed [20], [24], albeit with the assumption of a magnetic field aligned
along the axis. More recently, Tian et al. [25] expanded upon these models by incorporating a
segment of the diverging MN plume, thus enabling the exploration of the magnetic field topology
and its impact on wave propagation. Following Tian’s finite difference (FD) approach, Jiménez et
al. [26] improved the capabilities of the model by introducing azimuthal Fourier modes to simu-
late helical antennas. In a different approach, Melazzi et al. [22] applied the method of moments
(MoM) to calculate both the surface electric current density in the antenna and the volumetric
polarization current within the plasma. The introduction of more versatile, accurate, and efficient
finite element (FE) models [26], [27] has been a significant recent development in EM modeling
for EPTs.

On the slow plasma transport side, investigations of plasma dynamics [28] and acceleration
mechanisms [29] preceded the development of two-dimensional (2D) simulation tools for plasma
transport. Fruchtman et al. were the first to apply such a model to HPTs [30], although it was
limited to axial magnetic field topologies. Ahedo and Navarro [31] then advanced the state-of-the-
art by extending the simulation to the plume region, applying the convergent-divergent MN model
of Merino and Ahedo [32] and performing extensive parametric studies on device performance.
Similar multifluid simulation codes have been extensively used in the study of EP systems [33]–
[35]. Instead, hybrid models treat heavy species kinetically while considering a fluid formulation
for much faster electrons [36]. The hybrid particle in cell (PIC) / fluid code HYPHEN [37], based
on previous models originally devised for HET studies [38], [39], was generalized to the study of
several EPTs including RF [40] and microwave thrusters [41]. This simulation platform overcame
important shortcomings of previous tools, such as the arbitrary imposition of current ambipolarity
at the boundaries, assuming isothermal or polytropic laws for the electron temperature at the plume
or assuming full magnetization of the electron fluid.

Although it is a valid initial approach to consider the wave and transport subproblems sepa-
rately, the self-consistent simulation of EPTs must take into account the interaction between them.
In particular, the propagation and absorption of EM power depend on plasma density and electron
collisionality, whereas the slow plasma dynamics is affected by the power deposition term that
drives the plasma energy balance [28]. At present, the self-consistent simulation of the coupled
slow-transport and fast-EM fields is still an open area of research. Magarotto et al. followed this
approach to study an HPT, connecting a fluid code for the HPT plasma source, a three-dimensional
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PIC model for the MN region, and a cold-plasma Maxwell solver to solve for fast fields [42]. How-
ever, this work does not consider any power deposition in the plume region or kinetic effects at
the source. Sánchez-Villar et al. [41] used the HYPHEN code in combination with a full wave
vector finite element (FE) frequency domain code to simulate an ECRT thruster, taking advantage
of the difference in time scales of the two subproblems to solve them sequentially. This work
evaluated power deposition, particle and energy fluxes to the walls, and thruster performance fig-
ures. Furthermore, the simulations were recently compared with experimental data [43] to validate
the models. Two-dimensional coupled simulations of this kind, some of which are presented in
this work for the study of an HPT prototype, constitute the most advanced reasonably affordable
numerical models to date in EPT research.

In certain areas and conditions, kinetic effects may be essential, rendering the fluid approxima-
tion for electrons inaccurate. Examples include low collisionality expansions in magnetic nozzles
[44]–[46], plasma sheaths at source walls [47], and kinetic instabilities that can lead to macro-
scopic turbulence and phenomena such as anomalous transport [48]. The addition of phenomeno-
logical parameters to the electron-fluid equations of the hybrid transport solver can effectively
capture phenomena such as anomalous transport. Zhou et al. [40] studied the role of phenomeno-
logical parameters (which can be fitted using experimental data) in the characterization of missing
physics and the correct simulation of device performances. These include anomalous cross-field
transport of momentum and energy, tackled by a modification to the effective local Hall param-
eter, and electron cooling at the plume, for which an empirical collisionality parameter is added,
which reduces the electron fluid parallel (to magnetic field lines) conductivity. Realistic device
simulations using this approach require a significant amount of experimental data. The purpose
of these data is two-fold: (1) to fit the parameters and (2) to verify the model after fitting. This
methodology was employed in [49] and is replicated in this thesis, resulting in reasonable agree-
ment between the experimental and numerical results. It is important to note that two-dimensional
numerical profiles offer insights that cannot be obtained through experiments, particularly in the
plasma source. The downside to this approach is that those phenomenological parameters tend to
be device-dependent and, consequently, it cannot replace experiments for rapid prototyping and
optimization.

Modeling from first principles, not requiring the introduction of additional phenomenologi-
cal terms, might be addressed by introducing two-dimensional (or even three-dimensional) fully
kinetic simulations. However, these simulations are very expensive. The particle-in-cell (PIC)
method, despite having a higher numerical noise than other alternatives, is the preferred option
for the integration of the Vlasov-Poisson system in the time domain due to its cost savings and
better phase-space dimensionality scaling than direct Vlasov algorithms [50]. PIC codes have
been used in the past to study electric propulsion systems, mainly Hall effect thrusters. Numerous
one-dimensional [51]–[53], and two-dimensional models [54]–[56] have appeared. Despite the
potential of the method, the high cost of executing these codes has led, in some cases, to the use
of numerical tricks such as an enlarged vacuum permittivity and the reduction of the ion mass to
alleviate the numerical load [57]. Few examples of realistic three-dimensional PIC simulations
applied to EP sources exist, and they require a large amount of computing power (large computing
clusters) and months of running time [58]. The current literature on EPTs includes only a few ex-
amples of high-dimensional full PIC electrostatic simulations of the plume [42], [59] but not many
of the source (where the Debye length constraint in the resolution is more stringent) of the devices.
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Because of the importance of EM wave propagation, kinetic electromagnetic algorithms that can
solve the Vlasov-Maxwell system in a self-consistent manner are better suited to study the heating
mechanisms and several wave-related phenomena in EPTs. However, these algorithms are even
more demanding than electrostatic PIC models because of the fast wave dynamics. Porto et al.
[60] conducted a one-dimensional study on an ECRT magnetic nozzle using a semi-Langrangian
scheme for the propagation of EM waves, which allows for a relaxation of the otherwise restrictive
time step constraint. The work revealed anisotropic plasma heating along a Doppler-widened zone
in the vicinity of the electron cyclotron resonance (ECR) surface and showed that a trapped pop-
ulation of electrons with a larger perpendicular energy can form in the plume. Two-dimensional
studies have also been conducted, which rely on approximations, including the reduction of ion
mass and a modified effective speed of light [61].

Classical PIC algorithms have a major limitation in that they require a more demanding time
and space resolution than is necessary for the evolution of the macroscopic fields in a quasi-neutral
plasma. This is due to stability, Courant-Friedrichs-Lewy (CFL)-like conditions for the integration
timestep, and aliasing effects on a finite grid, which can lead to undesired numerical heating [62].
This means that the time step must be on the order of the inverse plasma frequency ωpe, and the
cell size must be comparable to the local Debye length λD. Additionally, a statistically significant
number of particles per cell is needed to prevent excessive numerical noise, which increases with
a finer mesh. This is especially problematic in two or three dimensions, since the total number of
particles needed to resolve the Debye length increases as ∼ (L/λD)d, where L is the characteristic
length of the plasma macroscopic gradients and d is the number of spatial dimensions. If, as
a first approach, we take the number of floating point operations proportional to the number of
particles, with typical L/λD ≈ O(10) in most quasineutral propulsion plasmas, the computational
load increases by about ∼ 100 (for 2D) or ∼ 1000 (for 3D) due to the need to prevent finite
grid instability, rather than for accuracy in the resolution of the macroscopic plasma profiles or
probability distribution functions. In the case of electromagnetic PIC algorithms, this problem
is exacerbated because the time step and cell size are conditioned by the speed of light constant,
which, for most cases of interest in EP, is greater than the plasma thermal speed λDωpe.

In the last decade, the energy- and charge-conserving implicit PIC algorithm (IPIC) has been
developed as a solution to the above-mentioned problems. This algorithm has enabled a significant
reduction in computational resources when simulating a wide range of plasmas, as it eliminates
the need to consider the Debye length and plasma frequency resolution constraints. Furthermore,
when combined with the Darwin method for propagating fast EM fields [63], [64], it provides a
fast and accurate method to solve the Vlasov-Maxwell system without the need to consider the
very short time steps related to the light speed constant. The first model of this kind was a 1D
uniform grid electrostatic version [65], and since then, generalizations have been made to mapped
meshes [66], higher dimensions, electromagnetic cases [67], and even collisional plasmas [68].
Examples of the use of IPIC in radiofrequency magnetized plasmas have been presented with
many similarities to the plasmas found in EPTs [69], [70]. However, its application to EP studies
has only recently been explored [49], and there are still many practical problems that need to be
addressed to fully mature the existing simulation technology.
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1.3. Thesis scope and objectives

The fundamental goal of this thesis is to gain insight into the fundamental physics of EPT dis-
charges, enabling the optimization of performance that could promote their widespread adoption.
This is achieved by improving the modeling and simulation tools used in the design and devel-
opment of these propulsion systems. The thesis focuses on the electromagnetic wave side of the
problem, as well as on its connection to plasma transport phenomena. It builds on the gradual
introduction of models and simulation codes of increasing complexity and works toward the cur-
rent research community’s goal of cost-effective, high-precision, and self-consistent 2D/3D kinetic
electromagnetic models. The main objectives of this work are:

1. Develop and implement cold-plasma simulation models: Create and verify a versatile,
fast, accurate and user-friendly simulation platform for the study of the wave propagation
through cold-plasmas for EPTs, accomplished with the introduction of the full-wave two-
dimensional finite element (FE) PWHISTLER solver. Additionally, a previously developed
finite difference (FD) model will be used to characterize wave propagation and absorption in
an HPT. Both approaches will be compared, showing the improved accuracy and efficiency
of the FE model.

2. Couple the wave model with a hybrid plasma transport solver: Perform two-dimensional
coupled simulations using the full-wave PWHISTLER code and the HYPHEN plasma trans-
port solver, using experimental data for validation and parameter adjustment.

3. Apply these models to realistic HPT prototypes: Investigate, using the previously vali-
dated models, a novel cusp magnetic HPT field topology, assess performance, identify loss
mechanisms, and explore optimization avenues. This also aims to demonstrate the appli-
cability of our in-house developed models for routine aid in the design and optimization of
new prototypes.

4. Introduce a new implicit PIC Algorithm: Develop a novel electrostatic energy- and
charge- conserving IPIC algorithm for magnetized plasmas to achieve fast and accurate sim-
ulations of magnetic nozzles in a one-dimensional geometry. This work is among the first
studies to apply the fully implicit PIC method in EP. It also brings about significant improve-
ments to previous particle movers and introduces new boundary conditions, thus laying the
groundwork for more complex and higher-dimensional models. In addition, model verifica-
tion is carried out with several numerical experiments and a comparison with the results of
a magnetic nozzle study in the literature.

1.4. Thesis structure

This thesis begins by examining the cold-plasma model to address the issue of wave propagation
in EPTs. Under certain assumptions, this simplified model offers an insightful description of the
propagation of electromagnetic waves and the power deposition in the plasma. Chapter 2 reviews
the cold-plasma model which is the basic theoretical framework for wave propagation phenomena
in plasmas, such as wave topology (normal surfaces), cutoffs and resonances, absorption and re-
flection, and the different propagation parametric regimes in a uniform plasma as a function of the
governing parameters, i.e. the applied magnetic field strength and direction, the plasma density,
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and the effective electron collision frequency. Additionally, we include the particularization of
the basic theory and dispersion relation to HPTs, which leads to the identification of Helicon and
Tivelpiece-Gould (TG) modes.

Chapter 3 presents the PWHISTLER simulation platform, a parallel two-dimensional finite
element full-wave solver in the frequency domain. This software offers several pre- and post-
processing utilities that allow for the rapid simulation of plasma wave problems, particularly those
related to the simulation of electromagnetic phenomena in EPTs. Compared to previous solvers,
PWHISTLER introduces several noteworthy advances, such as Fourier azimuthal modes for the
spectral decomposition and solution of 3D problems in a 2D spatial discretization, and waveport
boundary conditions. The code is validated through a comprehensive set of tests.

In Chapter 4, two-dimensional full-wave simulations of a realistic HPT setup are presented,
corresponding to the journal publication [26]. These simulations, carried out with an existing finite
difference (FD) solver previously developed by the candidate, reveal the mechanisms of wave
propagation and the regions of plasma heating. Although this approximation does not take into
account the macroscopic long-term plasma response to the wave fields and, thus, does not solve
for the steady-state discharge self-consistently; it still provides useful insights into the physics of
the discharge. For instance, it is found that there is an important per-electron power deposition on
the downstream ECR surface.

To solve for the complete discharge, a self-consistent loop is established in which the de-
posited power is updated by the wave solver and the plasma transport is evolved accordingly via
the existing hybrid HYPHEN solver. This coupled strategy is used in Chapter 5 to study an HPT
prototype developed at the UC3M premises. In addition, experiments are used (1) to adjust some
phenomenological parameters in the transport model and (2) to validate the approach and the nu-
merical results. This is the most precise description of the HPT discharge our group has developed
to date. The validated simulations serve to analyze the novel cusp magnetic field topology, which
lacks extensive previous investigation, assessing performances and loss mechanisms and suggest-
ing avenues for optimization. The contents of this chapter have recently been published [49].

Finally, Chapter 6 presents a new electrostatic implicit PIC algorithm designed for the anal-
ysis of paraxial magnetic nozzles of HPTs and other electrodeless plasma thrusters. This chapter
contains proofs of exact global energy and local charge conservation properties, as well as numeri-
cal experiments that show the accuracy and computational speed advantages over other algorithms.
The contents of this chapter have been submitted for publication in the Journal of Computational
Physics (JCP) [71].
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2. Cold-Plasma wave interaction physics

This chapter derives the cold-plasma model [19] from first principles, specifically the fun-
damental electromagnetic theory based on Maxwell’s equations. It examines plasma dynamics,
which under the small perturbation assumption, leads to a linear response. This response is rep-
resented by a dielectric tensor in the wave equation, which depends on plasma conditions (density
and effective collisionality) as well as the orientation and strength of the magnetic field.

This framework is then applied to derive analytical solutions for electromagnetic wave prop-
agation through a uniform, magnetized, and anisotropic cold plasma. The analysis yields a
rich parametric classification of various propagating and evanescent waves, as illustrated in the
Clemmow-Mullaly-Allis (CMA) diagram.

Lastly, the chapter focuses on particularizing the general dispersion relation to the specific
operational regime of Helicon Plasma Thrusters (HPT). This approximation results in a simpler
expression that helps in identifying characteristic modes of operation.

2.1. Basic Electromagnetic Theory

The dynamics of electromagnetic fields are fully described by the four Maxwell’s equations:

∇ × E = −
∂B
∂t

(2.1)

∇ × H =
∂D
∂t
+ j (2.2)

∇ · D = ρ (2.3)

∇ · B = 0 (2.4)

Here, E(t, x), B(t, x) are the electric field and magnetic flux vectors; D(t, x) = ϵ0E , H(t, x) = B/µ0

are the electric displacement and magnetic field vectors; where the vacuum permittivity constant
is ϵ0 = 8.854187817 ·10−12 F/m and the permeability of vacuum is µ0 = 4π ·10−7 H/m. Taking the
divergence of Ampere’s equation (2.2) and substituting Gauss’s Law for the electric dispacement
field (2.3), we find the charge continuity equation:

∂ρ

∂t
+ ∇ · j = 0, (2.5)

likewise taking the divergence of Faraday’s equation (2.1) we obtain:

∂

∂t
∇ · B = 0. (2.6)

The last two equations demonstrate that, if (2.3) and (2.4) are fulfilled at a certain instant, they
will still hold for any other time after the system evolves according to (2.2)-(2.1). Taking the curl
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of either Ampere’s or Faraday’s equation and substituting, we obtain, respectively:(︄
1
c2

∂2

∂t2 − ∇
2
)︄

E = −µ0
∂ j
∂t
−

1
ε0
∇ρ, (2.7)(︄

1
c2

∂2

∂t2 − ∇
2
)︄

B = µ0∇ × j, (2.8)

where we have used the vector identity ∇ × (∇ × V) = ∇(∇ · V) − ∇2V, and introduced the speed
of light in free space c = 1/

√
µ0ϵ0 = 2.99792 · 108 m/s. These are the so-called Wave Equations,

hyperbolic equations that describe the propagation of electromagnetic waves. In the absence of
source terms, this is, with zero right-hand side in (2.7), the solution of this equations are waves
traveling at speed c in the E × B direction. An alternative form of (2.7) comes from undoing the
previous vector transformation. It is known as the curl-curl equation:

1
c2

∂2E
∂t2 + ∇ × (∇ × E) = −µ0

∂ j
∂t

(2.9)

2.1.1. Energy density and Power Flow

We dot multiply Faraday’s equation (2.1) by H and Ampere’s equation (2.2) by E

H · ∇ × E = −H ·
∂B
∂t
, (2.10)

E · ∇ × H = E ·
∂D
∂t
+ E · j, (2.11)

then, using the vector identity ∇ · (E×H) = H · (∇× E)− E · (∇×H) and subtracting the previous
equations,

E ·
∂D
∂t
+ H ·

∂B
∂t
+ ∇ · (E × H) = −E · j, (2.12)

which can be expressed in the following conservative form:

∂u
∂t
+ ∇ · S = − j · E. (2.13)

Above the electromagnetic energy stored in the fields is:

u =
1
2

(E · D + B · H) =
1
2

(︄
ε0E2 +

1
µ0

B2
)︄

(2.14)

and the Poynting vector i.e. the flux of electromagnetic energy is:

S = E × H =
1
µ0

E × B (2.15)

2.1.2. Time harmonic fields

We may now express any time varying field as:

F(t, x) = ℜ[F̂(x) exp(−iωt)] =
1
2

[︂
F̂(x) exp(−iωt) + F̂∗(x) exp(+iωt)

]︂
(2.16)
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where ω ∈ R is the angular frequency such that f = ω/(2π) is the standard frequency of the
oscillating fields. The hat in F̂ denotes the complex amplitude of the field; the argument for the
complex amplitude is the phase angle. Note that any function of time can be decomposed into
a generally infinite superposition of F̂(x) exp(−iωt) time harmonic components using a Fourier
transform. Thereafter, any time derivative in the equations transforms to ∂/∂t → −iω, and the
curl-curl equation 2.9 takes the form:

∇ × (∇ × Ê) −
ω2

c2 Ê = iωµ0 ȷ̂ (2.17)

which is an elliptic equation that can be solved for the spatial distribution of the complex amplitude
Ê(x) for a given excitation frequency ω. The curl-curl operator in a Cartesian coordinate system
with vector basis {1x, 1y, 1z} is:

∇ × (∇×) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−∂2

y − ∂
2
z ∂x∂y ∂x∂z

∂x∂y −∂2
x − ∂

2
z ∂y∂z

∂x∂z ∂y∂z −∂2
x − ∂

2
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.18)

similarly in right-handed cylindrical coordinates with vector basis {1z, 1ρ, 1θ}, reads:

∇ × (∇×) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−∂2

r −
1
r2 ∂

2
θ ∂z∂r

1
r
∂z∂θ

∂z∂r −∂2
z −

1
r2 ∂

2
θ

1
r
∂r∂θ

1
r
∂z∂θ

1
r
∂r∂θ −∂2

z − ∂
2
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−

1
r
∂r

1
r
∂z 0

0 0
1
r2 ∂θ

0 −
1
r2 ∂θ

1
r2 −

1
r
∂r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.19)

Finally, the power deposition of a source j, i.e. the right-hand side of (2.13), when we consider
time harmonic fields is:

j · E =
1
4

[︁
ȷ̂ exp(−iωt) + ȷ̂∗ exp(+iωt)

]︁
·
[︂
Ê exp(−iωt) + Ê∗ exp(+iωt)

]︂
=

1
4

[︂
ȷ̂ · Ê∗ + ȷ̂∗ · Ê

]︂
+

1
4

[︂
ȷ̂ · Ê exp(−2iωt) + ȷ̂∗ · Ê∗ exp(+2iωt)

]︂
=

1
2
ℜ

(︂
ȷ̂∗ · Ê

)︂
+

1
2
ℜ[ ȷ̂ · Ê exp(−2iωt)].

(2.20)

Above, ℜ
(︂
ȷ̂∗ · Ê

)︂
/2 is a stationary DC term that represents the cycle-averaged power deposition

by the EM fields. The double frequency term is an oscillatory power exchange between fields and
charges with zero mean that vanishes upon time integration over a wave cycle. The real part of
ȷ · E is also known as resistive power while the imaginary part is commonly known as inductive
power.

2.1.3. Linear media

The presence of electric charges in a medium other than vacuum can generate non zero macro-
scopic current density jm and charge density ρm source terms in response to the wave electro-
magnetic fields. In some special cases, ȷ̂m is linear to the local value of Ê for a given frequency,
then,

ȷ̂m = σÊ = −iωε0χÊ (2.21)
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where χ is the susceptibility tensor and σ the conductivity tensor of the medium. We then rede-
fine the source term in (2.17) to refer only to external current density sources ȷ̂ → ȷ̂ + ȷ̂m and,
introducing the relative permittivity tensor κ = 1 + χ, we may rewrite (2.17) as:

∇ × (∇ × Ê) −
ω2

c2 κ · Ê = iωµ0 ȷ̂ (2.22)

where the ȷ̂m was moved to the left-hand side of the equation. This is equivalent to a modification
of the electric displacement field D̂ = ε0Ê+ i/ω ȷ̂m = ε0κ · Ê = ε · Ê. In addition to the introduction
of a permittivity tensor ε, a more general local and linear medium may require a permeability
tensor µ such that Ĥ = µ

−1
· B̂. This is sometimes refer to as the macroscopic formulation of

Maxwell’s equations.

2.1.4. Planar waves

In many problems of interest, such as the propagation of waves through a uniform, infinite linear
medium or through a sourceless vacuum, the solution to (2.22) is a planar wave, or clollection of
planar waves, of the form:

E(t, x) = Ẽ exp(−iωt + ik · x), (2.23)

where Ẽ is a new complex amplitude that captures both the harmonic time and space variations of
the field. Equation(2.23) represents an infinite collection of wavefronts, i.e. surfaces at constant
phase angle θ(t, x) = arg(Ẽ)+ k ·x−ωt traveling at a speed vph = ω/k. The wavevector k indicates
the direction of propagation 1k and the distance between wavefronts or wavelength is λ = 2π/k.
While ω ∈ R, k ∈ C3, the imaginary part indicating wave attenuation/amplification.

Introducing fields of the (2.23) form into the curl-curl equation (2.17) with right-hand side 0,
the curl operator transforms ∇× → ik×, and we arrive to the following algebraic equation:

k × (k × Ẽ) +
ω2

c2 κ · Ẽ = −iωµ0 ȷ̃ (2.24)

Equation (2.24), constitutes the dispersion relation for wave-propagation through a medium char-
acterized by κ. Non trivial solutions require:

det
(︄
ω2

c2 κ + kk − k21
)︄
= 0 (2.25)

which gives a resulting ω(k). The solution to the system in vacuum is simply ω(k) = ±ck.

For a given k there are two independent planar wave solutions for the vector Ẽ, these are
the wave polarizations. We can represent any polarization using a polarization basis. Common
choices are the linear polarization basis and circular polarization basis. For 1k = 1z these take re-
spectively the form {1x, 1y} or

{︂
(1x + i1y)/

√
2, (1x − i1y)/

√
2
}︂
, the later corresponding to a rotating

field ⊥ k representing either right-hand side or left-hand side waves.

It is customary to introduce the refractive index vector n = (c/ω)k. This vector is directed
along the wave propagation direction and is has a magnitude inverse to the phase velocity over the
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speed of light. The dispersion relation then reads:

det
(︃
κ + nn− n21

)︃
= 0 (2.26)

In vacuum n = 1 while for a general medium the dispersion relation admits solutions with n < 1
implying vph > c, i.e. a wavefront traveling faster than the speed of light. However, it can be
shown that the group velocity, which is the velocity at which information travels vg = ∂ω/∂k,
always has a magnitude vg < c.

2.1.5. Boundary conditions

In most problems, the solution as the superposition of planar waves presented in 2.1.4 is not valid
due to the presence of a finite domain. In that case, boundary conditions must be included in
the formulation. These will affect the eigenmodes of the wave operator. Beyond some simple
cases, such as rectangular or cylindrical cavities, general studies require the numerical integration
of (2.17). As presented in the next chapter, the implementation of the boundary conditions is then
particular to the simulation method used. In practice, some idealized boundary conditions are
usually employed, constraining some of the electric and magnetic field vector components at the
boundaries:

• A perfect electric conductor (PEC) is a material in which the tangential components of the
electric field E, as well as the normal component of the wave magnetic field B, are both
zero. Metals, which are good conductors, can be accurately represented as PECs.
• As a dual condition to PEC, a perfect magnetic conductor (PMC) is a material in which the

tangential components of B and the normal component of the wave electric field E are 0.

In the presence of a sudden transition or discrete jump between two different media, certain
conditions must be met. The normal components of D and B must be equal on each side, as
indicated by the divergence equations 2.3 and 2.4, unless a thin layer of charge is allowed at
the interface, in which case the normal component of D would jump accordingly. Similarly, the
tangential components of E and H must be equal on each side, as indicated by the curl equations
2.1 and 2.2, unless a thin layer of charge current is allowed at the interface, in which case the
tangential components of H change accordingly [72].

2.2. Plasma response

The strong relationship between plasmas and electromagnetic fields is a consequence of the fact
that plasmas are composed of free charged particles i.e. sources in the free-space formulation
of Maxwell’s equations. The motion of the plasma is significantly affected by the electric and
magnetic fields, and the electric and magnetic fields are also affected by the plasma currents.
To accurately capture these phenomena, complex models are often necessary, particularly when
kinetic effects are taken into account. This subsection will focus on an approximate formulation,
the cold plasma model, which is capable of revealing the most dominant effects of the plasma
response on the electromagnetic field under certain assumptions.
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2.2.1. Cold plasma dielectric tensor

We start by considering the momentum equation of a species s in the cold fluid limit; that is,
we neglect forces related to the divergence of the pressure tensor −∇ · P compared to the EM or
Lorentz’s force on charged particles qp/mp(E + vp × B). The macroscopic momentum equation
equation for a species s with particle density ns and average velocity us reads:

msns

(︄
∂us

∂t
+ us · ∇us

)︄
= nsqs (E + us × B) − msnsνsus (2.27)

We rewrite all variables as the sum of a zeroth-order plus a time-harmonic, first-order pertur-
bation. The species are assumed to be at rest, with a negligible velocity compared to the wave
phase velocity. This assumption may not be valid in the presence of large flows or drifts, or near
resonances.

B ↦→ B0 + B̂1 exp(−iωt),
ns ↦→ ns0 + n̂s1 exp(−iωt),
E ↦→ Ê1 exp(−iωt),
us ↦→ ûs1 exp(−iωt).

(2.28)

We introduce these approximations into (2.27), then keeping only first order terms and cancel-
ing out the time harmonic exponential everywhere, we get:

−iωmsûs1 = qs
(︂
Ê1 + ûs1 × B0

)︂
− msνsûs1, (2.29)

and, without loss of generality, we may assume that the DC magnetic field B0 is directed along 1z

to arrive to the following expression for the Cartesian components of the perturbed velocity:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ûsx1

ûsy1

ûsz1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = qs

ms

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−is −d 0
d −is 0
0 0 −ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Êx1

Êy1

Êz1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.30)

where,

s =
r + l

2
, d =

r − l
2
,

r = −
1

(ω + ivs) + ωcs
, l = −

1
(ω + ivs) − ωcs

, p = −
1

(ω + ivs)
,

(2.31)

where we introduced the angular cyclotron frequency of species s, ωcs = qsB0/ms. The species
current density is simply ȷ̃s1 = qsnsûs, after which the conductivity and susceptibility tensors
(2.21) read:

σs =
q2

sns0

ms

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−is −d 0
d −is 0
0 0 −ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; χs =
ω2

ps

ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s −id 0
id s 0
0 0 p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.32)

By virtue the problem linearity, we may sum over all charged species to find [19]:

ε = ε0

⎛⎜⎜⎜⎜⎜⎝1 +∑︂
s

χs

⎞⎟⎟⎟⎟⎟⎠ = ε0κ = ε0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S −iD 0
iD S 0
0 0 P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.33)
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where,

S =
R + L

2
, D =

R − L
2
,

R = 1 −
∑︂

s

ω2
ps

ω [(ω + ivs) + ωcs]
, L = 1 −

∑︂
s

ω2
ps

ω [(ω + ivs) − ωcs]
,

P = 1 −
∑︂

s

ω2
ps

ω (ω + ivs)
,

(2.34)

with the plasma frequency of species s defined as ωps =

√︂
q2

sns,0/(msε0). The nondimensional
parameters that governed the plasma response are thus ωps/ω (proportional to the square root of
the density), ωcs/ω (proportional to the magnetic field strength), and νs/ω. According to (2.33)
the magnetic field introduces anisotropy in the medium and the dielectric tensor should be rotated
so that 1z = B0/B0. In many problems of interest ω >> ωpi, ωci and the ion response can be
ignored. The dielectric tesor κ can also be expressed in terms of its Hermitian and anti-Hermitian
parts, κ = κ

H
+ κ

A
, with:

κ
H
=

1
2

(︃
κ + κ

†
)︃
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ℜ{S } −iℜ{D} 0
iℜ{D} ℜ{S } 0

0 0 ℜ{P}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.35)

κ
A
=

1
2

(︃
κ − κ

†
)︃
= i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
iℑ{S } ℑ{D} 0
−ℑ{D} iℑ{S } 0

0 0 iℑ{P}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.36)

where κ
†

denotes the conjugate transpose of κ, also known as Hermitian transpose. The dielectric
tensor elements S ,D, P only have an imaginary part when the collisional term in the denominator
of (2.34) is nonzero, therefore κ

A
= 0 if νs = 0 for all species [27].

2.2.2. Infinite uniform plasma dispersion relation

The solutions to the Maxwell system in a uniform infinite cold magnetoplasma without external
sources are plane waves of the form 2.23. Such a solution is valid everywhere except at singular-
ities where thermal and/or kinetic effects might be important. The dispersion relation for plane
waves in an anisotropic medium is: (︃

κ + nn− n21
)︃
· Ẽ1 = 0 (2.37)

which in a Cartesian basis {1z, 1x, 1y} reads:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S − n2

y − n2
z −iD + nxny nxnz

iD + nxny S − n2
x − n2

z nynz

nxnz nynz P − n2
x − n2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽx1

Ẽy1

Ẽz1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 (2.38)
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which, with no loss of generality, can be expressed as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S − n2 cos2 θ −iD n2 cos θ sin θ

iD S − n2 0
n2 cos θ sin θ 0 P − n2 sin2 θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽx1

Ẽy1

Ẽz1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (2.39)

where we expressed n = n cos(θ)1z + n sin(θ)1x and n · 1y = 0. This is an eigenvalue problem that,
after some algebra, results in the following equation for non-trivial solutions:

tan2 θ = −
P

(︂
n2 − R

)︂ (︂
n2 − L

)︂
(︁
S n2 − RL

)︁ (︁
n2 − P

)︁ . (2.40)

For each value of θ, that is, for each propagation angle of k with respect to B0, we obtain a
different set of solutions to this equation. For example:

• For propagation parallel to B0, θ = 0:

n2 = R, n2 = L, P = 0. (2.41)

• For propagation perpendicular to B0, θ = π/2:

n2 = RL/S , n2 = P. (2.42)

For each solution, it is possible to find the eigenmodes in (2.39) giving the relative phases and
the relation between the Ẽ1 components. The polarization of the transverse fields can be found
straightforwardly from the middle line of Equation 2.39,

iẼx1

Ẽy1
=

n2 − S
D

(2.43)

Using the definitions in (2.41) for the case of θ = 0 with n2 = R, Equation (2.43) becomes
iEx/Ey = 1, while for the case of θ = 0 with n2 = L, we get iEx/Ey = −1. Thus, the polarization
is circular with a right-hand or left-hand sense according to n2 = R or n2 = L, respectively.

Likewise after some algebra for the 1st order fluid velocities,

iũsx1

ũsy1
= −

(ω + ωcs)
(︂
n2 − R

)︂
+ (ω − ωcs)

(︂
n2 − L

)︂
(ω + ωcs)

(︁
n2 − R

)︁
− (ω − ωcs)

(︁
n2 − L

)︁ (2.44)

The denominator of (2.44) is in agreement with the resonance condition for electrons and
ions. Electrons, which are negatively charged, rotate in a right-handed direction in the presence
of the static zeroth-order magnetic field B0 and resonate with the R-wave when ω = −ωce. On the
other hand, ions, which are positively charged, gyrate in a left-handed sense and resonate with an
L-wave when ω = ωci.
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2.2.3. Cutoffs and resonances

The solution to the cold-plasma dispersion relation is, in general, a complex vector n (or k), char-
acterized by its magnitude n and a given propagation angle with respect to B0, θ. In the absence
of damping, n is either real, corresponding to propagating waves, or imaginary, corresponding to
an evanescent mode.

In the parametric space of plasma properties, we speak of a cutoff whenever n goes to 0.
When propagating modes cross a cutoff, they become evanescent and vice versa. Following (2.40)
a cutoff takes place when:

P = 0; R = 0; L = 0 (2.45)

The other kind of critical transitions are called resonances, taking place when n → ∞ (only in
the absence of collisional damping). This is a singularity in the cold-plasma model, and a proper
treatment requires adding kinetic effects to recover physical solutions, at least in the collisionless
limit. Taking the limit of (2.40) we find the resonant condition:

tan2(θ) = −P/S (2.46)

Contrary to cutoffs, which are independent of the angle of propagation, resonances can occur at
some definite value of θ, for some propagating modes, this leads to the formation of a resonance
cone. Approaching the critical value of θ, shorter wavelength modes propagate. Beyond the critical
values, all waves become evanescent.

For parallel propagation θ = 0, some cases of interest are S → ∞ that can take place for
R → ∞ (electron cyclotron resonance) and L → ∞ (ion cyclotron resonance); and P → 0 that
corresponds to both a cutoff and resonance and is an ill-defined double limit (also known as the
underdense-overdense transition) that has been shown to be difficult to solve in numerical simula-
tions [26]. For perpendicular propagation θ = π/2, we find the so-called hybrid resonances when
S → 0. These particular solutions for parallel and perpendicular propagation are called principal
resonaces.

The addition of collisions eliminates the above-mentioned singularities, i.e. the refractive in-
dex does not diverge to infinite values. The only damping mechanism in the cold-plasma model
comes from a collisional term in the fluid momentum equation (2.27). It is well known that kinetic
effects can be the main damping mechanism, especially near resonances. These effects are not
captured by the cold-plasma model, although some works have shown that an effective collisional
term can act as a very good phenomenological parameter to model all damping phenomena recov-
ering an acceptable solution even when the cold-plasma model is used in the vicinity of resonances
[73].

It is possible to plot the refractive index vector solution for a uniform plasma as a wave normal
surface. This kind of figure indicates the magnitude of the vector at different propagating angles
with respect to B0, an example is shown in Figure 2.1. There are two solutions to the dispersion
relation in Figure 2.1, these are an interior ellipse and a exterior hyperbola-like wave normal sur-
face. The latter presents a resonance cone at a certain angle with the vertical; the waves become
evanescent (with fully imaginary n) for higher propagation angles. Normal surfaces are actually
3D figures of revolution, the axis of revolution corresponds to the 0th order magnetic field direc-
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Figure 2.1: Wave normal surfaces of a fast wave (interior ellipse) and an ion cyclotron wave. Solid
lines correspond to real solutions, and dashed lines correspond to imaginary n. The magnetic field
is oriented along the vertical.

tion, in the case of Figure 2.1 this is the vertical. In the literature (see [19]) it is common to plot
the normalized phase velocity vector u = (1/n2)n. In this representation, the branches that diverge
to infinity go to 0 instead, and a close figure is obtained for all cases (the topology of the ellipse-
like normal surfaces is unchanged). We can plot the zoo of all possible possible waves that might
propagate through a cold magnetized plasma as a function of the plasma parameters ωcs and ωps

normalized by the excitation angular frequency ω. For a single-ion species plasma this results in
a 2D diagram as displayed in Figure 2.2. Notice that for visualization purposes, an non-realistic
mass ratio mi/me = 2.5 was chosen.

The different propagation regions, in which the topology of propagation modes remains con-
stant are delimited by cutoffs and principal resonances. Upon crossing from one region to another,
a wave may suffer partial or total reflection, mode conversion, or, if collisions are added, absorption
leading to power deposition into the plasma. The labels next to each normal surface correspond
to the polarization. There is a label for parallel propagation, with R being the right-hand and L
the left-hand circularly polarized waves; while in the perpendicular direction we define the coun-
terparts O (ordinary) and X (extraordinary) waves. At intermediate angles, the polarization is not
that well defined, and we can find any general orientation of the wave vectors E and B vectors
with respect to the propagation direction.

2.2.4. Power deposition

The oscillatory wave-induced plasma current can be found from (2.21); in terms of the plasma
dielectric tensor, it reads:

ȷ̂1 = −iωε0

(︃
κ − 1

)︃
· Ê1. (2.47)



2.2. Plasma response 19

Figure 2.2: Clemmow–Mullaly–Allis (CMA) diagram of the wave propagation through a infinite
cold magnetized plasma. Plasma with a single ion species and Z = 1, mi/me = 2.5, B0 oriented in
the vertical direction. Region numbering following [19].

We can introduce this definition to look for the DC power term in (2.20); the wave-cycle-averaged
volumetric power delivered by the electromagnetic fields into the plasma is:

Qa =
ℜ

(︂
ȷ̂∗ · Ê1

)︂
2

= −
ωε0

2
ℑ

{︃
Ê∗1 · κ

†
· Ê1

}︃
= −
ωε0

2
ℑ

{︃
Ê∗1 ·

(︃
κ

H
− 1 − κ

A
)︃
· Ê1

}︃
. (2.48)

The term κ
H
− 1 is Hermitian and, according to the properties of any Hermitian matrix H, the

double product with a generic complex vector v∗Hv is always a real number (this is related to the

fact that all the eigenvalues of H are real). The opposite occurs for an anti-Hermitean matrix, in
which case the double product is always purely imaginary. We can finally write

Qa =
ωε0

2i
Ê∗1 · κ

A
· Ê1, (2.49)

which, recalling that κ
A
= 0 if νs = 0 for all species, demonstrates that the only energy transfer

mechanism from an electromagnetic wave to the plasma is (in the cold plasma formalism) the
collisional damping modelled through νs in the plasma momentum equation (2.27).
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2.3. Approximations in the HPT regime

We next attempt to derive a simplified dispersion relation for the typical plasma conditions in HPT
sources. This approximation is useful for recognizing the electromagnetic waves and operational
modes of the devices. One might verify that the assumptions that follow are reasonable by looking
at the characteristic plasma conditions for an HPT prototype in Table 4.1 of Chapter 5.

Due to its much larger mass over unit charge, ions are considerably less mobile than electrons
and it is a usual approximation to consider them static at high enough frequencies i.e. they do not
contribute significantly to the plasma current induced by the wave. In particular, ions might be
neglected far away from the lower hybrid resonant frequency ω >> ωlh, where ωlh = eB0/

√
memi

[19]. If we ignore the displacement current — a good approximation in dense plasmas far from

cutoffs and, in particular, when ωpe >> ω— the dielectric tensor becomes κ = 1 + χe ≃ χe and
the components in (2.34) are:

R = −
ω̃2

pe

1 + ω̃ce
, L = −

ω̃2
pe

1 − ω̃ce
, P = −ω̃2

pe, (2.50)

where the tildes denote normalization with the excitation frequency ω̃x = ωx/ω. We also find

RL =
ω̃4

pe

1 − ω̃2
ce
, S =

R + L
2
= −

ω̃2
pe

1 − ω̃2
ce
,

RL
S
= −ω̃2

pe = P and
P
S
= 1 − ω̃2

ce. (2.51)

Equation (2.39) can be written as:

tan2 θ =
1

cos2 θ
− 1 = −

P
S

n4 − 2S n2 + RL
(n2 − P)2 = −

(P/S )n4 − 2Pn2 + P2

(n2 − P)2 . (2.52)

Introducing x = n2/P,dividing the numerator and denominator by P2 and substituting the above
expressions:

1
cos2 θ

= −
(1 − ω̃2

ce)x2 − 2x + 1
(x − 1)2 + 1 =

ω̃2
cex2

(x − 1)2 (2.53)

x(−1 ± ω̃ce| cos θ|) = 1 (2.54)

and the simplified dispersion relation is:

n2 =
ω2

pe

ω(±ωce| cos θ| − ω)
, (2.55)

or, following the same procedure and keeping track of the collisonal term,

n2 =
ω2

pe

ω(±ωce| cos θ| − (ω + iνe))
, (2.56)

It is common to express this dispersion relation as:

k2d2
e =

ω

±ωce| cos θ| − (ω + iνe)
(2.57)

where we have introduced the plasma skin depth de = c/ωpe =
√︁

me/(e2µ0ne). This eliminates the
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dependence on the plasma density on the right-hand side of (2.57). It is evident that, in the absence
of collisions, the only polarization that potentially propagates is the one with −ωce (because ωce <

0 for electrons); this corresponds to the whistler wave in region 8b of the CMA diagram in Figure
2.2. Next, we use (2.57) with −ωce to plot the nondimensional parallel k∥de and perpendicular
k⊥de wave numbers in Figure 2.3.

Analyzing (2.57) and Figure 2.3 several propagation regimes can be identified. For simplicity,
we focus on the collisionless case (a), finding [74]:

• Inductive Regime (IR): There is no real k which implies that there cannot be propagating
modes. This regime takes place for applied magnetic fields lower than the ECR condition,
i.e. ωce/ω < 1. We find such conditions in the downstream plume of EPTs as the magnetic
field necessarily decays far from the magnets and solenoids that are used to generate it. At
high excitation frequencies, e.g. in ECRT thrusters, this region can appear inside the plasma
source.
• Single Wave Regime (SWR): There is only one k⊥ for each k∥ i.e, if we plot a vertical

line from this value in Figure 2.3a, we only find one crossing with the dispersion relation
curve. This single wave has been identified in the literature as the Trievelpiece-Gould (TG)
mode and propagates at relatively high angles with respect to B0. Usually, k⊥ >> k∥ so
θ >> 45 deg, implying that TG waves propagate near perpendicular to the applied field.
This regime appears when 2 > ωce/ω > 1.
• Double wave regime (DWR). Both TG waves and Helicon waves propagate. For a given

k∥ there are two possible k⊥s; the smallest solution, propagating at small angles from the B0

direction, corresponds to the Helicon wave, whilst the one with largest k⊥ is the TG wave.
The transition condition from SWR to DWR can be found in Figure 2.3a. In order to have a
double crossing for vertical lines traced from a given k∥ value, there should be at least one
point where dk⊥/dk∥ = ∞, which is equivalent to dk∥/dθ = 0. Differentiating (2.55)· cos θ,
it is easy to find that the DWR regime exists for ωce/ω > 2.

This traditional terminology can be somewhat misleading. It is important to remark that both
the TG and Helicon waves are instances of the whistler wave (the eight-shaped wave normal sur-
face in region 8b of Figure 2.2). For a given propagation angle θ, there is a single solution given by
one k∥ and one k⊥. In early works, the dispersion relation was derived using different approaches,
which often included some less precise approximations. The Helicon mode was first identified
and only after taking into account the electron inertia (me ≠ 0) was the TG wave discovered [16].

Analyzing Figure 2.3, it can be seen that the wavenumber decreases with increasing B0 for
both Helicon and TG waves. This is especially relevant in Helicon thrusters, as it is usual to
find resonant conditions when some mode wavelength matches the geometric dimensions of the
thruster source, yielding higher wave fields and stronger absorption. Some works have found that
there can therefore be an optimal B0 particular to the thruster [75] and operating frequency.

Another important consideration is that HPTs generally operate best in the DWR regime. To
explain this, we might analyze Figure 2.3b where some collisionality, typical of the dense plasma
of an HPT source, is added. Tracing a line from the origin at some angle, we find the real and
imaginary parts of k∥ and k⊥ at the point where that line intersects the solid (real) and dashed
(imaginary) lines, respectively. The imaginary part of the wavenumber for TG modes is large
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(a) νe/ω = 0 (b) νe/ω =0.1

Figure 2.3: Simplified whistler wave dispersion relation (2.57)
for a collisionless and collisional plasma with different magnetic field strength. Solid lines

correspond to the real part of k, dashed lines correspond to the imaginary part. Two DWR cases
(purple and yellow), one SWR (red) and one IR case (blue).

compared to the Helicon one. This means that these waves are quickly damped and absorbed
in the surface of the dense plasma column and are generally not capable of penetrating toward
the thruster’s axis. Being exited by an external antenna, TG waves heat the plasma near the lateral
thruster walls; on the other hand, in order to avoid wall losses, it is generally desired to concentrate
heating near the axis and this is better achieved with the weakly damped Helicon wave. However,
there is considerable debate in the literature about which is the main power carrier in many HPT
devices [76].

There are some other interesting findings from the collisional case dispersion relation. The
real branches are little affected by the addition of damping for angles smaller than the resonant
one. Infinite wavenumbers are eliminated and, instead, we find highly damped solutions outside
of the resonant cone. The evanescent mode for ωce < 1 now has a small real component, but the
damping rate continues to be high, similar to the collisionless one.
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3. Finite Element (FE) simulation code for the cold-plasma
full-wave model

This chapter introduces a Finite Element simulation platform designed for the discretization
and solution of the cold plasma Maxwell system discussed in the previous chapter. The platform
operates within a 2D domain and allows for the utilization of azimuthal Fourier modes. This
enables the simulation of not only axisymmetric systems but also inherently 3D problems, such as
those encountered when dealing with helical antennas in Helicon plasma thrusters.

The development of the code prioritizes usability and rapid configuration. This chapter ex-
plains the structure of the code, including its modules and functionalities. In addition, it presents
boundary conditions, notably perfect electric conductor (PEC) and axial continuity boundary
conditions that apply to arbitrary azimuthal modes. The chapter also addresses the modeling of
helical antennas and the implementation of waveports. These advances extend the capabilities
beyond previous axisymmetric solvers [27].

To verify the code, it is tested against analytical solutions for the normal modes of rectan-
gular/cylindrical cavities. Furthermore, a convergence analysis is conducted using the Method of
Manufactured Solutions (MMS), considering scenarios both with and without plasma and utilizing
finite elements of different orders.

3.1. Formulation

The Finite Element method is a powerful technique for discretizing partial differential equations
(PDEs), particularly well-suited for solving elliptic PDEs. It operates as a variational method with
the aim of minimizing the residual of a chosen quantity across the entire integration domain. In this
method, a trial function denoted E is used to represent the unknown field throughout the domain,
which, in our case, represents the electric field vector. Additionally, a test function labeled T is
introduced and multiplied by the PDE under study, serving as a weighting term. The objective is
to minimize the residual of the weighted equation.

Both the test and trial functions are discretized within a mesh using finite elements. These
elements can assume various shapes and orders, but possess a limited spatial support or application
area within the simulation domain. For instance, in the simplest scenario, one could utilize a mesh
with — typically triangular or quadrilateral — elements with a constant test function across each
mesh entity (discontinuous Galerkin elements of order 0).

By employing this procedure, integral forms are derived, which can subsequently be trans-
formed into a linear system whose unknowns are the degrees of freedom of the problem. These
degrees of freedom are the coefficients associated with the unknown field E. When both the trial
function E and the test function T share the same finite element basis and only differ in the coeffi-
cients that multiply E, this approach is known as the Galerkin method.
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3.1.1. Variational form

We start by considering the time harmonic wave equation (2.17) and taking the inner product with
a generic time harmonic testing function T̂, then integrating over a volume Ω,$

Ω

∇ × (∇ × Ê) · T̂ dV − k2
0

$
Ω

κ̄Ê · T̂dV = iωµ0

$
Ω

ȷ̂a · T̂ dV, (3.1)

where k0 = ω/c0 and the inner (Hermitian) product of two complex vectors is defined taking the
complex argument of one of its factors,

u · v =
n∑︂

i=1

u∗i vi. (3.2)

After integration by parts, the first term in (3.1) can be expressed as,$
Ω

∇ ×
(︂
∇ × Ê

)︂
· T̂ dV =

$
Ω

(︂
∇ × T̂

)︂
·
(︂
∇ × Ê

)︂
dV +

"
δΩ

T̂ ·
(︂
n× ∇ × Ê

)︂
dS (3.3)

where δΩ denotes the boundary surface enclosing the domain and n is a normal vector to the
boundary pointing in the outwards direction. To solve non-axissymmetric cylindrical 3D problems
in a 2D domain characterized by axial z and radial r coordinates with associated unit vectors 1z

and 1r, a Fourier expansion of the time harmonic complex amplitudes Ê and ȷ̂a, is taken in the
periodic 1θ direction,

Ê(z, r, θ) =
∞∑︂

m=−∞

E(m)(z, r)eimθ,

ȷ̂a(z, r, θ) =
∞∑︂

m=−∞

j(m)
a (z, r)eimθ.

(3.4)

where m is the azimuthal Fourier mode number. Then we select the testing function to be

T̂(z, r, θ) =
∞∑︂

m=−∞

T(m)(z, r)eimθ, T̂∗(z, r, θ) =
∞∑︂

m=−∞

T(m),∗(z, r)e−imθ. (3.5)

Upon integration in θ and canceling out 2π terms, the volumetric integrals naturally convert to
surface integrals over Σ — the 2D simulation domain corresponding to a meridian plane of the
cylindrical geometry — and we finally obtain the weak formulation of the time harmonic wave
equation for each azimuthal mode m,"

Σ

{︃[︃(︃
∇t + 1θ

im
r

)︃
× T(m)

]︃
·

[︃(︃
∇t − 1θ

im
r

)︃
× E(m)

]︃
− k2

0T(m) · κ · E(m)
}︃

dS+

+ ik0

∫︂
δΣ

T(m) ·

[︃
n×

(︃
∇t − 1θ

im
r

)︃
× E(m)

]︃
dl = iµ0ω

"
Σ

T(m) · j(m)
a dS

(3.6)

where ∇t is the in-plane differential operator:

∇t × F =
1
r
∂Fθ
∂r

1z −
∂Fr

∂z
1r +

(︄
∂Fr

∂z
−
∂Fz

∂r

)︄
1θ (3.7)

If sources can be broken down into or approximated by a finite number of Fourier components, the
3D solution can be determined by solving for each mode separately and adding up all the modes
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considered, taking advantage of the linearity of the system. In general, this spectral procedure is
computationally much faster than solving its 3D counterpart.

3.2. Boundary conditions

To close the problem, a suitable set of boundary conditions must be imposed at the external borders
of the domain, in particular the path integral term over δΣ in (3.6) must be determined. If Perfect
Electric Conductor (PEC) conditions are imposed at some walls of the problem, the electric field
must locally satisfy the following:

n× E(m) = 0, ∂Σ ∈ ∂ΣPEC (3.8)

rearringing the boundary term, and considering a Galerkin’s formulation i.e. with T(m) and E(m)

sharing the same functional space,∫︂
δΣPEC

T(m) ·
[︂
n× (∇ × E(m))

]︂
dl = −

∫︂
δΣPEC

(︂
n× T(m)

)︂
·
(︂
∇ × E(m)

)︂
dl = 0. (3.9)

Consequently, the integral term vanishes and the Dirichlet conditions for the tangential component
of the electric field (essential BCs, Et = 0) can be imposed without the need to compute the
∇ × E(m) at the PEC boundary. Likewise, Perfect Magnetic Conductor (PMC) conditions require:

n× B(m) = (i/ω)n×
(︂
∇ × E(m)

)︂
= 0, ∂Σ ∈ ∂ΣPMC (3.10)

where we have used Faraday’s equation (2.1) to find the magnetic field vector as a function of the
electric field. Substitying in the boundary integral, we find,∫︂

δΣPMC

T(m) ·
[︂
n× (∇ × E(m))

]︂
dl = 0. (3.11)

The latter is a Neumman condition for the electric field, also known as a natural condition, which
is automatically satisfied —i.e. with no need to impose Dirichlet conditions as before— if the
boundary integral is not included in the weak formulation and the tangential components of the
electric field remain unknown.

Finally, in an isotropic medium or vacuum, when a plane wave impacts a surface perpendicu-
larly, the surface can absorb all the incoming energy without any reflection if its surface impedance
matches the intrinsic impedance of the propagation medium. It can be easily verified that, under
such circumstances, the electric field Ê satisfies the relation,

n× (∇ × Ê) + ik0n× (n× Ê) = 0, (3.12)

this is equivalent to Sommerfeld radiation condition [77]. Then the boundary integral in (3.6)
becomes, ∫︂

δΣABC

T(m) ·
(︂
n× ∇ × E(m)

)︂
dl = ik0

∫︂
δΣABC

(︂
T(m) × n

)︂
·
(︂
E(m) × n

)︂
dl. (3.13)

This represents a first-order absorbing boundary condition (ABC), utilized to truncate simulation
domains. It functions effectively when the boundaries are set at a considerable distance from the
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source, where most waves impact the truncation boundary at minimal angles from the normal,
resulting in their effective absorption. For plasma thruster simulations, the density should also be
sufficiently low to approximate free space conditions, e.g. in the downstream plume or thruster
periphery.

3.2.1. Axial boundary conditions

Previously, the Fourier expansion into azimuthal modes was introduced as a means of eliminating
the functional dependence of the fields on the azimuthal coordinate θ, allowing 2D simulations to
solve inherently 3D problems. However, concerning the treatment of the fields at the domain’s
axis, we note that the truncation of this domain is not straightforward, and a set of boundary
conditions must be identified. Here, a suitable, though not necessarily unique, procedure for
finding those BCs is described.

It should be noted that, if a cylindrical reference system is used, the coordinate θ is not pre-
cisely defined on the axis. Therefore, the dependence on the angle θ should vanish at the axis for
any physical field. This dependence is revealed by expressing the fields in Cartesian coordinates:

E(m)
x =

[︂
E(m)

r cos(θ) − E(m)
θ sin(θ)

]︂
eimθ =

[︄
E(m)

r
eiθ + e−iθ

2
− iE(m)

θ

e−iθ − eiθ

2

]︄
eimθ (3.14)

E(m)
y =

[︂
E(m)

r sin(θ) + E(m)
θ cos(θ)

]︂
eimθ =

[︄
iE(m)

r
e−iθ − eiθ

2
+ E(m)

θ

eiθ + e−iθ

2

]︄
eimθ (3.15)

E(m)
z = E(m)

z eimθ (3.16)

Considering, for example, m = 0, it is easy to observe that, the axial field Ez is well posed since
the only explicit function of θ, the complex exponential is exactly one and no longer depends
on θ. To eliminate sinusoidal terms for the other fields, Er and Eθ must be set to zero. The
following conditions eliminate the θ dependence and must be met on the axis r = 0 for the complex
amplitudes of the time and azimuthally expanded fields and for any mode number:

E(0)
r = E(0)

θ = 0 m = 0,

E(±1)
r = ∓iE(±1)

θ , E(±1)
z = 0 m = ±1,

E(m)
r = E(m)

θ = E(m)
z = 0 |m| > 1.

(3.17)

As shown next, these conditions are naturally implemented through the selection of an appropriate
finite element basis for the the trial and testing functions E(m) and T(m).

3.2.2. Waveport modeling

Analytical solutions for the waves propagating in rectangular, cylindrical waveguides or coaxial
transmission lines can be found. The reflected field in a homogeneous and isotropic waveguide can
be expressed as the combination of orthogonal TEM (if it exists), TE, and TM waveguide modes.
Separating the contribution of the incoming wave (prescribed), the total electric field reads:

Ê = Êinc + Êref = Êinc + a0êTEM
0 eγ

TEM
0 z +

∞∑︂
m=0

∞∑︂
n=1

amnêTE
mneγ

TE
m z +

∞∑︂
m=0

∞∑︂
n=1

bmnêTM
mn eγ

TM
m z (3.18)
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where γm =

√︂
k2

cm − k2
0 is a propagation constant in the axial direction that depends on the waveg-

uide geometry and material and kcm is the characteristic cutoff wavenumber. Since there is no
internal conductor, TEM waves cannot propagate through a rectangular or circular waveguide and
êTEM

0 = 0, though it is generally finite in coaxial lines. Equipped with this description, it is possi-
ble to find an expression for the boundary integral term in (3.6), in particular, after some algebra
[77]:

n× (∇ × Ê) =n ×
(︂
∇ × Êinc

)︂
+ γTEM

0 a0eTEM
0 eγ

TEM
0 z+

+

∞∑︂
m=0

∞∑︂
n=1

γTE
m amneTE

mneγ
TE
m z +

∞∑︂
m=0

∞∑︂
n=1

−k2

γTM
m

bmneTM
mn eγ

TMz
m .

(3.19)

A possible normalized basis for circular waveguide modes is [78]:

êTE
mn = eimθeTE

mn =

=
eimθ √ν/2

π
√︁

p′2mn − m2Jm (p′mn)

[︄
1r

m(1 + i)
r

Jm
(︁
p′mnr/a

)︁
− 1θ

p′mn(1 − i)
a

J′m
(︁
p′mnr/a

)︁]︄
,

(3.20)

êTM
mn = eimθeTM

mn =

=
eimθ √ν/2
πpmnJ′m (pmn)

[︄
1r

pmn(1 − i)
a

J′m (pmnr/a) + 1θ
m(1 + i)

r
Jm (pmnr/a)

]︄
.

(3.21)

where ν = 1 for m = 0 and ν = 2 for m ≠ 0; Jm(r) is a Bessel function of the first kind, whose nth
root is pnm, and J

′

m(r) is its first derivative with roots p
′

mn. Particularizing at the port surface, and
by virtue of orthogonality of the azimuthal modes, the coefficients in (3.18) are

amn =

"
δΩp

êTE
mn ·

[︂
Ê − Êinc

]︂
dS = 2π

∫︂
δΣp

eTE
mn ·

[︂
E(m) − E(m),inc

]︂
dl, m = 1, 2, . . . (3.22)

bmn =

"
δΩp

êTM
mn ·

[︂
Ê − Êinc

]︂
dS = 2π

∫︂
δΣp

eTM
mn ·

[︂
E(m) − E(m),inc

]︂
dl, m = 1, 2, . . . (3.23)

where δΩp denotes the 2D port surface in 3D and δΣp is the port 1D surface in the quasi-
axissymmetric problem. The new weak formulation for the wave problem reads:"

Σ

{︃[︃(︃
∇t + 1θ

im
r

)︃
× T(m)

]︃
·

[︃(︃
∇t − 1θ

im
r

)︃
× E(m)

]︃
− k2

0T(m) · κ · E(m)
}︃

dS−

−

∫︂
δΣp

2π
µr

T(m) · P(E(m))dl = iµ0ω

"
Σ

T(m) · j(m)
a dS −

∫︂
δΣp

2π
µr

T(m) · U(m),incdl,
(3.24)

where we have introduced:

P(E(m)) = − γTEM
0 eTEM

0

∫︂
δΣp

eTEM
0 · E(m)dl −

∞∑︂
n=1

γTE
m eTE

mn

∫︂
δΣp

eTE
mn · E

(m)dl−

−

∞∑︂
n=1

−k2

γTM
m

eTM
mn

∫︂
δΣp

eTM
mn · E

(m)dl,

(3.25)
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and

U(m),inc =n×
(︂
∇ × E(m),inc

)︂
− γTEM

0 eTEM
0

∫︂
δΣp

eTEM
0 · E(m),incdl−

−

∞∑︂
n=1

γTE
m eTE

mn

∫︂
δΣp

eTE
mn · E

(m),incdl −
∞∑︂

n=1

−k2

γTM
m

eTM
mn

∫︂
δΣp

eTM
mn · E

(m),incdl.
(3.26)

If a waveguide is designed in such a way that only one or a few modes can propagate through
it at a given frequency (higher order m,n modes have higher cutoff frequencies and are usually
evanescent) instead of the infinite combination of modes in (3.25) and (3.26), only some of them
may be taken into account in the simulations, since for a sufficiently long waveguide, any other
reflected wave will decay before reaching the port.

3.3. Mixed finite element discretization

Nédélec elements are a class of finite elements specifically designed to solve electromagnetic prob-
lems within the framework of the finite element method (FEM). They emerged from the need to
address a critical challenge in electromagnetic simulations: the accurate representation of vector
fields that obey Maxwell’s equations, requiring the tangential components of electric and magnetic
fields to be continuous across material interfaces [79]. Nédélec elements are uniquely tailored to
enforce this tangential continuity, making them particularly suitable for electromagnetic simula-
tions where field behavior at interfaces is a key concern. This attribute is essential for modeling
phenomena like wave propagation, scattering, and resonance in complex geometries and diverse
materials.

In practical simulations, these elements exhibit a remarkable ability to reduce the occurrence of
spurious modes, non-physical solutions that can compromise the accuracy of results [80]. In many
plasma thruster applications, it is important to consider the behavior of EM waves passing through
the (dielectric) source walls. Nédélec elements are well suited for representing the discontinuity
in the dielectric tensor of certain devices, like HPTs, where the walls are transparent to EM waves
but near-vacuum conditions are found on one side and an overdense plasma on the other.

For an edge that joins the nodes l and k the associated first-order Nédélec basis function reads:

Ne
lk(r) = ℓlk (λl∇λk − λk∇λl) (3.27)

where llk denotes the edge length and λi is the simplex coordinate associated to node i. Figure
3.1 shows the three basis functions in a triangular element, which are used to represent the electric
vector field in the plane {Ez, Er}. In our quasiaxisymmetric formulation, the azimuthal out-of-plane
direction is periodic, and the dielectric tensor is considered to be uniform along this coordinate.
Therefore, simple nodal element basis functions Li, that is, Lagrange polynomials with degrees
of freedom corresponding to the field at the mesh nodes, are chosen to represent the azimuthal
field Eθ, and the tangential continuity is automatically satisfied. This mixed element formulation
has proven to be quite effective and accurate in overcoming issues related to spurious noise in
traditional all-nodal implementations [81]. The final expression for the electric field vector used
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Figure 3.1: First order Nédélec vector basis functions for a triangular element.

in the weak formulation of the frequency harmonic wave equation (3.6) is:

E(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︁Nedge

i=1 Ni(z, r)e(m)
t,i + 1θ

∑︁Nnode
i=1 Li(z, r)e(m)

θ,i m = 0∑︁Nedge

i=1 rNi(z, r)e(m)
t,i + (1θ ∓ i1r)

∑︁Nnode
i=1 Li(z, r)e(m)

θ,i m = ±1∑︁Nedge

i=1 rNi(z, r)e(m)
t,i + 1θ

∑︁Nnode
i=1 Li(z, e)e(m)

θ,i |m| > 1

(3.28)

Above, the electric field is projected such that some field components automatically vanish and
the boundary conditions in (3.17) are naturally imposed. As usual, the Galerkin method is used,
where the testing function T(m) is selected to match the trial function E(m) except for the solution
coefficients e(m) (which, rather than unknown, are exactly 1 for T(m)).

3.4. Antenna modeling

Helical antennas are known to be effective in the radiofrequency operating range in terms of power
delivery to the plasma [16], as they have been found to be capable of exciting whistler wave
normal modes, driving up the effective plasma resistance. At typical operation frequencies, the
characteristic vacuum wavelength is much longer than the antenna λ >> la and the plasma currents
are in phase with the antenna current. The effectiveness of the Helicon wave as a power carrier
in HPTs and plasma sources is often attributed to the geometric resonance of wave modes in the
source cavity under certain plasma conditions [76]. This drives up the field magnitude and power
absorption. Recent works have also highlighted additional mechanisms such as ECR heating [26],
[82] and kinetic effects [83]. This section focuses on the modeling of helical antennas, which are
essential in Helicon Plasma Thruster (HPT) simulations.

Figure 3.2: Nagoya III and half turn helical antenna [20], [84]

The helix angle of an antenna, located at a radius ra, with length la, thickness dt and h turns
per loop, is α = arctan(2πhra/la). The axial and azimuthal currents in the central helix are found
by projecting along the helix direction jza ∝ Ia cos(α) and jθa ∝ Ia sin(α). The radial current
density component is exactly zero. The water-bag function is used to limit the antenna in the axial
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direction,

G (z; z1, z2) = H (z − z1) − H (z − z2) =

⎧⎪⎪⎨⎪⎪⎩ 1, z1 < z < z2

0, otherwise
, (3.29)

where H(z − z0) is Heaviside unit step function. Then, for the upper branch, we obtain

jza,up ∝
Ia√︁

(2πhra/la)2 + 1
G(z; z1, z2)δ

(︄
θ −

2πh[z − z1]
la

)︄
, (3.30)

where the Dirac Delta δ(θ−θ0) represents the twisting of the branch in the azimuthal direction. The
current density must be normalized to ensure that the prescribed current intensity flows through
the cross section of each of the branches i = [up, down],

!
jza,irdθdr = Ia. Once the lower branch

is included:

jza(z, r, θ) =
IaF(r)

ra
√︁

(2πhra/la)2 + 1
G(z; z1, z2)

[︄
δ

(︄
θ −

2πh[z − z1]
la

)︄
− δ

(︄
θ − π −

2πh[z − z1]
la

)︄]︄
.

(3.31)

Above, we assumed dt << ra and introduced an arbitrary function, F(r) that gives some
thickness to the antenna in the radial direction. This function is such that its integral from 0 to the
radius of the rectangular domain, rw, is equal to 1. For an infinitely thin antenna, F(r) is equal
to δ(r − ra). A normalized Gaussian profile of characteristic thickness dt is a good choice for
numerical simulations, as it provides a smooth current that does not lead to numerical artifacts
upon discretization,

F(r) = w−1 exp
(︄
−

(r − ra)2

d2
t

)︄
with w =

∫︂ rw

0
exp

(︄
−

(r − ra)2

d2
t

)︄
dr =

1
2
√
πdt

[︄
erf

(︄
ra

dt

)︄
− erf

(︄
ra − rw

dt

)︄]︄
≈
√
πdt.

(3.32)

In the azimuthal direction, in addition to the central helix, two lateral loops, through which half
the total current flows, must be included,

jθa(z, r, θ) =Ia

⎡⎢⎢⎢⎢⎢⎣ 2πhF(r)

la
√︁

(2πhr/la)2 + 1
G(z; z1, z2)

{︄
δ

(︄
θ −

2πh[z − z1]
la

)︄
− δ

(︄
θ − π −

2πh[z − z1]
la

)︄}︄
−

−
1
2
δ (z − z1) {G(θ; 0, π) −G(θ; π, 2π)}+

+
1
2
δ(z − z2) {G(θ; 2πh, 2πh + π) −G(θ; 2πh + π, 2πh + 2π)}

]︄
,

(3.33)
An expansion in Fourier series along the θ direction is used to model the 3D antenna in the 2D
axisymmetric code,

f (θ) =
∞∑︂

m=−∞

f (m)eimθ, f (m) =
1

2π

∫︂ 2π

0
f (θ)e−imθdθ. (3.34)

The Fourier series terms, as a function of the selected mode number m, are:

j(m)
za (z, r) =

IaF(r)(1 − e−imπ)

r
√︁

(2πhra/la)2 + 1

[︄
G(z; z1, z2)

e−2imπh[z−z1]/la

2π

]︄
, (3.35)
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The (1− e−imπ) term makes the current vanish for even modes and double for odd m, a well-known
characteristic of Helical antennas. To find the azimuthal component, we might enforce current
continuity per mode, ∇ · j(m)

a = 0,

∇ · j(m)
a =

∂ jza

∂z
+

1
r
∂ jθa
∂θ
= 0 (3.36)

jθa = −
ir
m
∂ jza

∂z
, (3.37)

or alternatively, take the Fourier transform of (3.33).

3.5. Code structure and description

The Plasma-Wave HIgh-fidelity Simulation finite-eLEment solveR (PWHISTLER) code devel-
oped for this thesis covers the entire simulation process, from the initial setup to the generation of
outputs in formats amenable to result visualization. The code is written in Python and is structured
in a modular fashion, emphasizing extensibility and the reuse of routines. This design approach
not only facilitates the customization of the simulation process but also promotes the efficient inte-
gration of different computational tasks. Central to the code’s capabilities is its use of the FEniCSx
library, which enables the efficient and parallelized solution of large-scale problems.

FEniCSx is the latest version of the FEniCS Project [85], a collection of free software with
a wide range of features for solving differential equations. It is commonly used for the solution
of mathematical formulations (weak forms), allowing for the direct translation of models from
mathematical notation into parallelized code. FEniCSx has been developed to provide improved
performance and flexibility, particularly for large-scale and complex simulations. Its design is
geared towards high-level problem solving while still providing the necessary low-level control
for sophisticated algorithm development. The library is especially robust in handling finite el-
ement method (FEM) computations, which is the basis of the simulation code discussed in this
thesis. PWHISLTLER leverages the powerful FEniCSx routines through access to its user facing
interface DOLFINx that provides a convenient Python API. However, compute-intensive opera-
tions, abstracted from the high-level Python code, are conducted in the background, harnessing
the speed and efficiency of lower-level programming languages, in particular C++.

The next subsections describe the main modules of the simulation platform, these and the
corresponding data flow are displayed in Figure 3.3. The usual workflows of a standard and a
PWHISTLER - HYPHEN (hybrid transport solver) coupled simulation are presented in Section
3.5.5.

3.5.1. User Configuration and Input

The configuration of the simulation code is managed through a .yaml file, which serves as the
interface for user input. This file allows for the specification of various simulation parameters, in-
cluding the simulation frequency, azimuthal modes, and the degree of finite elements. In addition,
it includes the definition of sources, antennas, and post-processing options in a readable format.

The properties of the different materials are defined per domain and can be specified in the



32 3. Finite Element (FE) simulation code for the cold-plasma full-wave model

Figure 3.3: PWHISTLER simulation platform FlowChart. Preprocessor module (blue), solver
(red), postprocessor modules (yellow) and HYPHEN wrapper (green).

.yaml file. This includes the assignment of different materials by either defining the full dielec-
tric tensor, specifying cold plasma properties, using isotropic materials, or interpolating plasma
profiles from the output files of the HYPHEN transport solver (plasma density, collisionality, and
magnetic field). The boundary conditions are also configured in the .yaml file. These include the
specification of waveport mode, phase, and power.

The geometric layout and mesh discretization are imported from a .msh file whose path is
indicated in the configuration file. This file is typically generated using the Gmsh software [86].
Within the .msh file, geometric entities are tagged to identify different domains and boundaries.
These tags are then referenced in the .yaml configuration file for the assignment of materials to
the respective domains and for the accurate definition of boundary conditions. The use of tags
in the .msh file and their reference in the .yaml file facilitates a coherent integration between the
geometric setup and the simulation parameters.

3.5.2. Preprocessor Module

The preprocessor module is tasked with parsing the user-provided configuration from the .yaml
file and initializing the simulation. Modifications to the file setup can be performed via a Python
dictionary passed to the PWHISTLER PRE function, which takes as input the path to the con-
figuration file and the user options dictionary. This can be used to overwrite specific options, an
essential feature for parametric studies.

The module also creates the required FEM function spaces and interpolates the necessary in-
formation and profiles into these spaces. The preprocessor is parallelized, employing MPI (Mes-
sage Passing Interface) routines to enhance computational efficiency.
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The output of the PRE function is a dictionary of discretized FEM functions (DOLFINx ob-
jects), in particular the dielectric tensor and source current functions, miscellaneous objects such
as the Dirichlet boundary condition object, and configuration options (azimuthal modes, antenna
frequency, solver options, etc.).

3.5.3. Solver Module

This module is accessed through the SOLVE function that reads the dictionary previously output
by PRE containing the interpolated FEM functions and several other configuration parameters.

The module proceeds to assemble the linear system from the weak formulation written in UFL
(Unified Form Language) that resembles the original mathematical form. This assembly process
is a pivotal step where the weak formulation is converted into an algebraic system of equations.
Both the assembly of the linear system and the handling of the FEM functions are parallelized and
managed using DOLFINx routines.

The solver module uses the PETSc toolkit to solve the assembled equations. PETSc is a suite
of data structures and routines intended for the scalable solution of systems of equations. It is
particularly adept at managing large, sparse linear systems, which are typical in FEM analyses.

Within this framework, the MUMPS (MUltifrontal Massively Parallel Sparse direct Solver)
solver has been integrated. MUMPS is a distributed memory parallel direct solver, optimized for
large sparse systems. Additional iterative and direct solvers are planned to be implemented in
PWHISTLER in future versions.

Finally, the solver module includes an eigensolver functionality, leveraging the SLEPc [87]
platform. SLEPc extends PETSc’s capabilities to handle large-scale sparse eigenvalue problems.

3.5.4. Post-Processor Module

The post-processor module, accessed through the high level POST function, primarily focuses on
the computation of derived fields from the electric field components. Key among these are the
volumetric power absorption term and the induced plasma currents.

Furthermore, the module is responsible for the parallel output of .xdmf files. These files con-
tain the interpolated results mapped onto the mesh. The .xdmf format is particularly suited and
straightforwardly readable by the Paraview visualization toolkit, allowing a detailed and intuitive
exploration of the simulation results.

Another significant capability of the post-processor is the interpolation and writing of the
electromagnetic (EM) power deposition term into the HYPHEN SimState.hdf5 file [88]. This is
required for coupled plasma transport and EM wave simulations [71].

3.5.5. Integration and Dataflow

The internal data flow leverages Python dictionaries for managing and transferring data. This ap-
proach is chosen for its simplicity and readability, making it convenient for handling the simula-
tion’s internal data structures. Python dictionaries efficiently store pointers to DOLFINx objects.
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This method does not compromise performance, as the actual computational operations on the
DOLFINx objects are executed by optimized and parallelized routines.

Externally, for mesh reading and handling files that by default use the .hdf5 format, the code
utilizes parallel libraries. The nature of these dependencies aligns with the overall computa-
tional strategy of the code, which is designed to handle extensive numerical calculations and
data-intensive tasks in a parallel computing environment. The output process also follows this
parallel approach, particularly in the generation of .xdmf files.

A standard PWHISTLER simulation is performed by calling the three highest-level functions:

• PRE Function:

– Input: Path to the .yaml configuration file and an optional Python dictionary for user-
specific configuration overrides (‘user_config_dict‘).

– Output: ‘simdata‘ object, containing the prepared simulation environment and data
structures.

• SOLVE Function:

– Input: ‘simdata‘ object from the PRE function.
– Output: Updated ‘simdata‘ with the resulting electric field components, FEM func-

tions, holding the numerical results of the simulation.

• POST Function:

– Input: ‘simdata‘ from SOLVE function.
– Output: Output .xdmf file per azimuthal mode m for visualization and/or interpolated

fields into the HYPHEN SimState.hdf5 file.

PWHISTLER has been fully integrated with HYPHEN. The simulation procedure is similar,
but the user must provide a path to a HYPHEN SimState.hdf5 in the material definition section of
the .yaml file for every domain whose plasma properties (density, collisionality, magnetic field)
will be interpolated from the transport solver output. Additionally, a configuration option can be
set to interpolate the output power deposition back into the HYPHEN mesh in its corresponding
SimState.hdf5.

Standard coupled simulations will execute this loop (HYPHEN → PWHISTLER → HY-
PHEN) until convergence to steady in the transport solution as described in Section 5.3 and Figure
5.4. Coupled simulations are called from within HYPHEN.

3.5.6. Customization and Extensibility and Scalability

While the high-level functions have been highlighted, the simulation code also encompasses a set
of internal (private) functions that offer further customization and tailoring capabilities. These
functions, embedded within the three main modules, are accessible to experienced users who wish
to adapt or extend the code for specific applications. They cover a wide range of tasks, including
but not limited to:



3.6. Verification 35

• Interpolation into FEM spaces.
• Post-processing of results and computation of derived fields such as power deposition.

Scalability is a critical aspect of the code, addressed through the adoption of the parallel MPI
(Message Passing Interface) paradigm across all processes. This approach ensures that the code
is well suited for multi-core architectures and can be efficiently scaled up for use in computer
clusters.

A notable point in terms of scalability is the current use of direct solvers like MUMPS, which
can be a bottleneck in certain scenarios. However, this limitation is mitigated by the flexibility of
the PETSc toolkit, which includes various iterative Krylov methods, although this approach has
not yet been tested and may require the use of preconditioners.

3.6. Verification

Three verification cases are implemented. The first two test core PWHISTLER functionality and
the last one is meant to verify the new waveport boundary conditions.

3.6.1. Rectangular and cylindrical cavity resonant frequencies

If we set the right-hand side of (3.6) to 0, with PEC walls, we find the following weak formulation
of the wave equation:"

Σ

(︂
∇ × T(m)

)︂
·
(︂
∇ × E(m)

)︂
dS = k2

0

"
Σ

T(m) · κ · E(m)dS (3.38)

After discretization of the two integrals into finite element forms, the system can be expressed as
a generalized eigenvalue problem:

Aϕi = λiBϕi, ∀i ∈ {1, . . . , d}, (3.39)

where A and B correspond to the discretization of the right and left-hand-side respectively in ma-
trix form. Note that ϕi ∈ C

d and λi ∈ C for a system with d degrees-of-freedom. The eigenvalues
λi correspond to many, but discrete, k2

0 that make the system have a nontrivial solution E(m) ≠ 0.

SLEPc is a software library for computing eigenvalues and their corresponding eigenvectors
in large sparse matrices. It is built on top of PETSc and follows the same programming paradigm.
The library is designed for problems in which the associated matrices are sparse, such as those
arising from the discretization of partial differential equations. It offers a variety of methods,
including projection methods like Arnoldi and Lanczos, as well as more advanced algorithms
like the Krylov-Schur method [89]. It also provides built-in support for spectral transformations,
such as the shift-and-invert technique. SLEPc can handle standard and generalized eigenvalue
problems, both Hermitian and non-Hermitian, with real or complex arithmetic [87].

Support for SLEPc eigensolvers was added to PWHISTLER leveraging the built-in DOLFINx
PETSc interface. All preprocessing operations are equivalent to the standard problem solution,
but sources are ignored if an eigensolver is set in the configuration file. In a general scenario,
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with A and B not symmetric and non-Hermitean, the Krylov-Schur method appears as the fastest
solution and is set as default for the following analyses. Furthermore, to speed up the computation
of solutions, a spectral transformation technique is used, which relocates the original eigenvalues
within the spectrum while preserving the eigenvectors [87]. The tolerance of the iterative solver is
set to a value of ∼ 10−10, which is considerably lower than the expected discretization error.

The numerical values of the resonant k0 should correlate well with the analytical solution for
the resonant frequencies of the system if the latter can be found in close form. For a rectangular
cavity of length a and b, setting the propagation wavenumber to zero in the out-of-plane direction
ky = 0, and with PEC boundary conditions, the analytical resonant frequencies can be found as
[78]:

fmn =
ck0

2π
=

c
2π
√
µrϵr

√︃(︃
πm
a

)︃2
+

(︃
πn
b

)︃2
∀(m, n) ∈ N (3.40)

In this particular case, using the usual nomenclature for waveguide normal modes, the resonant
frequencies coincide for both the Transverse Electric mode TEmn and the Transverse Magnetic
mode TMmn. As a consequence, multiple eigenvalues are found with different corresponding
eigenmodes.

As a verification test for planar simulations, WFEM was used to find resonant frequencies
for a square cavity with a = b = 1 m in vacuum, that is, εr = µr = 1. An initial guess for the
eigenvalue is set through the usual configuration file and a search of 10 eigenvalues around the
target one is performed. Using a mesh with 41984 elements, the relative error in the eigenvalues
of the discretized system compared to the analytical solution was found to be < 10−7 for (m, n) ∈
[0, 4] (in addition to the trivial k0 = 0 for m = n = 0), these are 24 modes with frequencies
fmn ∈ [149.89, 847.94] MHz.

A more interesting study case, also serving as verification of the axial boundary conditions,
is to consider a cylindrical cavity or truncated circular waveguide. For a cylinder of radius R
and length d, with the axis oriented in the z-direction and PEC walls, the transverse electric field
eigenmode can be found to be [78]:

Ez = 0,

Er =
−iωµ0n

k2
cr

(A cos mθ − B sin mϕ)Jm (kcr) sin(πℓz/d),

Eθ =
iωµ0

kc
(A sin mθ + B cos mθ)J′m (kcr) sin(πℓz/d),

(3.41)

which is very similar to (3.20) with an added sinusoidal term in z to satisfy the PEC boundary
conditions. Finally, ℓ = 1, 2, ... is the axial mode number. The resonant frequency of the TEmnℓ

mode is

fmnℓ =
c

2π
√
µrϵr

√︄(︄
p′mn

R

)︄2

+

(︄
ℓπ

d

)︄2

, (3.42)

Performing the analysis for R = d = 1 m and using a discretization with just 2720 elements,
WFEM is capable of finding the 27 resonant frequencies (in the range fmnℓ ∈ [173.74, 661.72]
MHz) and their corresponding normal modes for m ∈ [0, 2], n ∈ [1, 3] and ℓ ∈ [1, 3] with a relative
error < 10−4 for all cases and in less than a minute of single core total (for all modes) compute
time on an Intel Xeon 6230 machine. An example of one of these normal modes is shown in
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Figure 3.4, which is in excellent agreement with the analytical solution in (3.41).

Figure 3.4: Electric field components of the numerical normal mode TE121 of a circular waveguide
at 295.24 MHz. The magnitude of the axial field ∥Ez∥ is of the order of the machine round-off error.

It is also possible to find the transverse magnetic modes TMnmℓ whose resonant frequency is

fmnℓ =
c

2π
√
µrϵr

√︄(︃ pnm

R

)︃2
+

(︄
ℓπ

d

)︄2

(3.43)

where pmn is the nth root of Jm(r).

3.6.2. Method of manufactured solutions

The Method of Manufactured Solutions (MMS) is a common technique to validate and verify
the accuracy of numerical simulations and, in particular, of the solution of Partial Differential
Equations (PDEs) with Finite Element analysis or other techniques.

Considering the frequency domain wave equation 2.17 we can create a known solution to the
problem that complies with the boundary conditions Êa. Afterwards, we can compute the resulting
forcing term ȷ̂a by the straightforward application of the Helmholtz operator

(︂
∇ × ∇ × −k2

0κ
)︂

Êa.
Notice that the method is valid for any generic non-uniform anisotropic linear material character-
ized by the dielectric tensor κ. The forcing term is then fed into the FE solver and the solution Ên

is compared to the original Êa. In particular, we will use:

E(m=0)
a = (1 − r2)1z + r sin(2πz)1r

E(m=±1)
a = r sin(2πr)1z + (1 − r2) sin(2πz)1r + im(1 − r2) sin(2πz)1θ

E(∥m∥>1)
a = r sin(2πr)1z + r2 sin(2πz)1r + imr2 sin(2πz)1θ

(3.44)

The vectors in (3.44) satisfy the axial boundary conditions outlined in 3.2.1 and do not diverge
to infinity on the axis when the curl-curl operator in (2.17) is applied; this imposes certain con-
ditions on the radial derivatives of the vector components. The following study is carried out on
a metallic cylinder of radius 1 m and length 1 m. The manufactured electric field vector compo-
nents are shown in Figure 3.5 for mode m = −1. The nominal frequency is set at f = 500 MHz.
These parameters push the simulation model, resulting in wavelengths considerably shorter than
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Figure 3.5: Test solution used in the manufacture of solutions verification for mode m = −1.

the typical ones for HPTs (length of cm and frequencies of tens of MHz).

We want to carry out a convergence analysis using the MMS method, for which we define
the following global residual using the L1-norm of the difference between the numerical and the
manufactured electric field vectors:

residual =
"
Σ

⃦⃦⃦⃦
E(m) − E(m)

a

⃦⃦⃦⃦
dS (3.45)

With this definition, a parametric analysis is performed, refining the mesh and varying the
order of the finite elements employed. The order, p, of the vector (for Ez and Er) and node
elements (for Eθ) are kept the same for simplicity. The results are shown in Figure 3.6 with two
different materials, these are vacuum and an overdense and magnetized plasma in region 8 of the
CMA diagram 2.2.

The error decreases as expected with the average node spacing h, which, in 2D, is proportional
to the square root of the number of elements Ne. For both vacuum and uniform plasma conditions,
a very strong residual correlation ∝ h−p is observed. The additional dissipation provided by the
collisional plasma seems to enhance the convergence rates even further, although the difference
from the expected scaling law is small. The simulation times show a near linear relationship with
the number of elements when the system size is greater than approximately 100,000 elements.

When an Electron Cyclotron Resonance (ECR) was added to the domain (at z = 0.85 m), a
significant deviation was observed in the convergence rate of the high-order element cases. The
behavior is observed even when the plasma frequency and collisionality are increased. This sug-
gests the excitation of spurious high k modes in the vicinity of the resonant surface [73] that,
according to the breakdown in the convergence rates of Figure 3.7-(left), might only be present
when using high-order elements. As shown in Figure 3.7-(right), numerical noise seems to prop-
agate to other regions and is particularly prominent near the symmetry axis. A dedicated study
to find the cause of this numerical behavior is needed. The need for mesh refinement near the
resonance has already been highlighted by Sanchez et al. [41]. For the rest of the simulations
presented in this thesis, first-order elements will be used, and mesh refinement will be performed
whenever needed. This methodology is allegedly the most robust, although probably not optimal
in terms of computational resources.
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Figure 3.6: Residual (left-axis, continuous lines) as defined in (3.45) and CPU wall times (right-
axis, dashed lines) as a function of the average node spacing h . Convergence study for vacuum
(left) and uniform magnetized plasma (right). Different lines correspond to different finite element
orders: 1st order (blue circles), 2nd order (orange squares) and 3rd order (green triangles). All
solutions are for m = −1.

Figure 3.7: Left: Convergence of the solution in the method of manufactured solutions for a plasma
with an ECR resonance surface at z = 0.85 m. Right: local error (L1-norm) in the manufactured
solution for m = −1, the red dashed line corresponds to the ECR surface location. Simulation with
43130 2nd order elements.

3.6.3. Port BCs Verification

We verify next the wave port boundary conditions presented in section 3.2.2. We set up a waveg-
uide with a radius of R = 0.018 m and a length of 0.2 m. At a frequency of f = 5.8 GHz, the only
propagating mode is TE11 with a cutoff frequency of approximately 4.9 GHz. All other modes
are evanescent at this excitation frequency. The upper wall is a perfect electric conductor, and the
lower domain boundary corresponds to the axis of symmetry. We send a wave from the leftmost
wall, an inbound port with equal power in m = 1 and m = −1 components. The right wall, an
outbound port, is set to absorb all incoming waves, i.e. Êinc = 0. To verify the correct functioning
of the ports and the absence of any reflection or numerical artifacts, we tracked the motion of a
wavefront and observed an axial displacement of L = 0.096 m in one period T = 1/ f , obtaining a
corresponding phase velocity vph = L/T = 5.57 · 108m/s > c0. Similarly to in Section 3.2.2, the
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analytical solution for propagation of a right-traveling TE mode through a waveguide is:

E ∝ êTE
11 ei(ωt−βz), (3.46)

where β =
√︂

k2
0 − k2

c11 = 65.69 rad/s and kc11 = p′11/R. From this we can compute an analytical
phase velocity vph = 2π f /β that coincides with the measured value up to the third significant digit,
the error mainly attributed to the lack of precision in computing L. Despite the superluminal phase
velocity, it can be shown that the group velocity remains physical (≤ c0).

3.7. Finite element vs finite differences discretization

Figure 3.8: Finite Element (FE) and Finite Difference (FD) full thruster and plume wave solutions
[26]. E1

θ electric field magnitude (1st column), and power deposition (2nd column). Putative
spurious noise is localized near the ω = ωpe = ωce crossing in the FD simulations and, in the
coarse case, extends throughout most of the plume region. Coarse meshes have about ∼ 3 · 105

nodes and fine meshes ∼ 1.4 · 106 nodes.

Previous full-wave solvers [25], [90] applied to Helicon thrusters have relied on Finite Differ-
ence (FD) discretizations of Maxwell’s equations, predominantly based on structured staggered
grids and Yee’s method [91].

The presence of a full dielectric tensor for waves traveling through a magnetized plasma
medium introduces the need for interpolations in the electric field components placed at different
nodes of the staggered grid. These interpolations can induce spurious noise in transition regions
where the dielectric tensor does not vary smoothly [26]. Additionally, the quality of the solu-
tion seems to depend on the relative alignment of the mesh and the applied magnetic field, and,
moreover, the spatial variation of the dielectric tensor with plasma properties calls for widely dif-
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ferent mesh sizes at locations with long and short wavelengths. A conforming Finite Element (FE)
discretization on an unstructured grid allows us to partially tackle these problems.

The performance of the new FE code is compared with the older FD code from [26] and
presented in Chapter 4, for the same simulation setup of that work (see Section 4.2). Figure 3.8
shows the magnitude of the azimuthal field and the power deposition map for m = 1. Although the
FE results are essentially invariant under two different mesh sizes and therefore we can claim mesh
convergence, this is not true for the FD results with comparable or even finer grids. Furthermore,
the FD results feature spurious large field values near the triple point whereω = ωpe = ωce, around
z = 50 cm, r = 10 cm. This numerical error is prevalent in most of the plume region and clearly
affects the power deposition maps.

In addition to the increase in accuracy and the elimination of spurious features, the efficiency of
the FE solver is much higher than that of the FD one, achieving an average reduction factor of 5 in
the CPU wall time with comparable meshes. These advances come mainly from the parallelization
of the FE library and the solvers used.
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4. Wave propagation and absorption in a Helicon plasma
thruster and its plume

The contents of the following chapter have been peer-reviewed and published in [26] and
are reproduced here without modifications. Please excuse any duplicity or repeated information,
especially in the introduction, that might occur as a result of its inclusion in other chapters of this
work.

A two-dimensional, full-wave, frequency domain, cold plasma model is used to study electro-
magnetic power propagation and absorption in a helicon plasma thruster, including its far plume
region and surrounding space. Results show that a fraction of power is absorbed in the plume re-
gion, and that power deposition in the source is essentially unperturbed by the simulation domain
size, the presence of metallic obstacles, or the plasma density in the environment. An electron-
cyclotron resonance (ECR) surface always exists downstream that effectively prevents radiation to
the space beyond along the plume. In the presence of an overdense environmental plasma, like the
one expected in a vacuum chamber, fields are fully evanescent beyond this transition, and vacuum
chamber boundary conditions affect but little the wavefields before this surface. In the absence
of an environmental plasma, a double wave regime transition exists at the interface between the
plasma and vacuum that hinders accurate numerical simulation in the plume region.

4.1. Introduction

Helicon Plasma Thrusters (HPTs) are electric propulsion devices currently under research and de-
velopment [28], [31], [92]–[98]. Their operation relies on the heating of a magnetically-confined
plasma in a cylindrical vessel via oscillating electromagnetic fields generated with an inductor/an-
tenna [99], [100], and the expansion and acceleration of that plasma in an external magnetic noz-
zle (MN), where magnetic thrust is generated before detachment occurs [32], [101], [102]. Being
electrodeless, HPTs promise certain advantages compared to traditional electric propulsion tech-
nologies such as gridded ion thrusters or Hall thrusters, such as a potentially enhanced lifetime and
the simplification of the overall system and electrical architecture [5]. The ease of control of the
magnetic nozzle topology suggests a high throttlability. Moreover, the absence of hollow cathodes
with sensitive material inserts opens the possibility of using alternative propellants. However, re-
ported thrust efficiencies are still bellow 20% [95], [103], and there are still open questions in the
understanding of the physical mechanisms that drive the performance of the HPT, in particular the
problem of plasma heating by the electromagnetic waves.

The propagation and absorption of the electromagnetic fields is central to the operation of
the device, and constitutes the object of study of the present work. These processes depend on
the antenna geometry and currents, the shape of the source, the magnetic topology and strength,
the plasma density map and, to a lesser extend, on the plasma temperature affecting the effective
collisionality. In turn, the electromagnetic power deposition determines the plasma properties in
the device. While the two aspects are intimately coupled, the timescale of the electromagnetic
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problem (10−7 s, or tens of MHz) is much faster than that of the plasma transport problem (ion
transit times are in the order of 10−5 s). This enables the approximate study of these phenomena
separately, an approach that has been successfully used to analyze the slow plasma dynamics in
the source on the one hand [104]–[107], and the internal electromagnetic field problem on the
other hand [22], [108].

At the MHz-level frequencies used, typically 13.56 MHz, the ion response to the fast fields
is negligible, and the electron response determines the propagation and absorption characteris-
tics. For plasma densities n greater than 1012–1013 m−3 and applied magnetic field strengths Ba

greater than 1–10 G, the excitation frequency ω is smaller than the electron plasma frequency
ωpe and the electron cyclotron frequency ωce, i.e. ω < ωpe, ωce. This means that the left-hand
polarized (L) wave is evanescent and only the right-hand polarized (R) whistler wave propagates
inside the HPT plasma, and only if its wavevector k falls within a cone of half angle αc about
the magnetic field vector Ba [19]. On the surface of this cone, k → ∞ and therefore it is re-
ferred to as a resonance cone. Traditionally, this wave has been called helicon (H) wave [99],
[109] (longer wavelengths) when k is essentially parallel to Ba, and Trivelpiece-Gould (TG) [110]
waves (shorter wavelengths) when k is essentially parallel to the resonance cone (and therefore
has an important k⊥ component). For high Ba, both types of R waves are present, meaning that
there are some values of k∥ for which there are two solutions of k⊥, one associated to the H wave
and another to the TG wave. This is known as the double wave regime (DWR) [16]. In contrast,
at lower Ba, only a single value of k⊥ exists for each propagating k∥, this is known as the single
wave regime (SWR). In general, both H and TG waves contribute to plasma heating, but a larger
share of the power deposition is sometimes attributed to TG waves, especially near the surface of
the plasma [67].

As the plasma expands into the MN, the magnetic field strength and plasma density gradually
decrease. At some surface downstream in the plume, the electron-cyclotron resonance (ECR)
eventually takes place where ω = ωce. With the typical operating frequency the resonant magnetic
field strength is 4.84 G. Beyond the ECR surface, and as long as the plasma continues to be
overdense (ω < ωpe), the fields become evanescent. Eventually, the critical density transition
(ω = ωpe) is also reached, albeit typically this happens much farther out from the device.

Also, part of the electromagnetic excitation may leak out into the surrounding peripheral space.
The situation here depends on the environmental conditions: in a perfect vacuum, both L and R
waves propagate equally and unaffected by Ba, with speed c and wavelength of tens of meters,
obviously much larger than the device dimensions. At the interface between the dense HPT plasma
and the vacuum, the L wave cutoff and the critical density transition are quickly traversed in
succession.

However, in an the environment with a tenuous plasma, propagation continues to be deter-
mined by n and Ba. The ECR transition also exists in the peripheral space, and may affect the
wavefields substantially. In particular, for plasma densities higher than the critical one, the propa-
gation regime for R waves is qualitatively the same as inside the device—whistler waves propagat-
ing up to an angle with Ba, and evanescence beyond the ECR surface And, for densities roughly
twice the critical value, the L wave does not propagate. These environmental conditions are rel-
evant to experiments in laboratory vacuum chambers, which are intended to be representative of
in-flight conditions, but where only a non-perfect vacuum may be achieved.
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The simplest 1D radial models already show the presence of H and TG waves inside the cylin-
drical plasma source [21]–[23]; however, they miss the effect of axial nonuniformities in n and
Ba. Full-wave 2D asymmetric codes have been developed in the past to tackle this problem [20],
[24], but under the assumption of an axially-aligned magnetic field Ba = Baz1z. Recently, Tian
et al. [25] relaxed this limitation and included a small portion of the diverging MN plume in the
model, enabling the analysis of the influence of the magnetic field topology on the wave propaga-
tion. Melazzi et al. [22] used a different approach relaying on the Method of Moments to solve for
the surface electric current density on the antenna and the volume polarization current within the
plasma. Relatedly, Sánchez-Villar et al. [41] presented a full-wave Finite Element Method (FEM)
tool that has been successfully used for the simulation of a different type of electrodeless thruster,
the Electron Cyclotron Resonance Thruster (ECRT).

Existing studies of the electromagnetic fields in HPTs have been restricted to the plasma source
and the very near plume. This leaves out several major questions on the propagation and absorp-
tion problem, such as whether this limited simulation domain is sufficient to understand power
absorption by the plasma as a whole; or whether part of the radiofrequency (RF) radiation can
escape downstream along the plume and be absorbed there. The role of the distant ECR surface
has not been considered, to the best of our knowledge, in the operation of HPTs. Finally, it is rel-
evant to ask what are the effects of the surrounding environment, i.e. whether a tenuous plasma or
metallic obstacles can change the performance of the absorption by opening/closing propagation
paths.

This work extends the 2D Finite Difference Frequency Domain (FDFD) model of [25] with an
improved numerical implementation and interpolation routines for larger domains, and uses it to
simulate the propagation and absorption of the RF fields in the source, surroundings, and far plume
of an HPT, beyond the ECR surface, increasing the axisymmetric domain size from 15 cm to 67 cm
axially and 2 cm to 20 cm radially, enabling the full simulation of the ECR transition. Furthermore,
instead of a simple expansion for the plasma density and a constant collision frequency in the
whole domain, a realistic map of plasma density is obtained from transport codes, one for the
internal plasma dynamics [111], and another for the external expansion in the MN [32], and a
collisionality map based on this density is used. Four different simulation cases are used to explore
the questions above. Finally, we identify and comment on the modeling and numerical difficulties
found when solving for the wavefields in the presence of critical density transition that takes place
between the dense HPT plasma and a perfect vacuum.

The device of reference for the study is a medium size HPT (about 350–500 W) similar to the
HPT05 prototype developed jointly by SENER Aeroespacial and UC3M [10].

The rest of this paper is structured as follows: Section 4.2 describes the plasma-wave model,
the numerical implementation, and the the geometry and plasma profile inputs to the simulations.
Section 4.3 provides a discussion of the electromagnetic fields and power deposition profiles ob-
tained in four different simulation cases. Finally the difficulties of modeling and simulating the
electromagnetic fields across critical density transitions, and the convergence of the numerical
results, are surveyed in Section 4.4. Section 4.5 gathers the conclusions of this work.
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4.2. Electromagnetic model

The 2D, frequency-domain, electromagnetic model considers the physical domain represented in
figure 4.1. The HPT source and its near plume are labelled as region 1, the magnetically guided far
plume as region 2, and the periphery of the device as region 3. An axisymmetric plasma of known
properties fills regions 1 and 2. The regions are determined based on the plasma transport code
used to obtain the input profiles to the wave code as described in section 4.2.2. Additionally, an
environmental plasma may exist in region 3, depending on the study case. With the exception of
the axis of symmetry, the domain is terminated at metallic walls representing a vacuum chamber,
which can be considered perfect conductors. Additionally, the magnetic coils and the HPT support
equipment box (power processing unit, gas feed system, etc) inside the domain are treated as
perfect-conductor metallic boxes.

The domain of figure 4.1 is excited by a known applied electric current J a at frequency
ω/(2π) = 13.56 MHz in the half-helical antenna located around the source. The applied magnetic
field Ba is also shown in the figure. The Ba topology is slowly converging inside the source and
diverging in the plume, with the magnetic throat placed approximately at the exit of the thruster
tube. As the magnetic field strength decreases away from the source, an electron-cyclotron reso-
nance surface appears on which ω = ωce. Following the nomenclature of [16], the plasma source
and part of the plume is in the DWR, and only as Ba decreases, the plasma enters the SWR (near
the ERC surface).

The HPT dimensions and characteristics are displayed in table 4.1. Four simulation cases are
defined as follows:

Case R This is the main simulation case and used as reference in the discussion. Region 3 is
filled with a tenuous plasma of density n = 1014 m−3, a reasonably low value for a typical
laboratory vacuum chamber operation. This results in an overdense plasma in the peripheral
space of the thruster. The internal metallic elements (coils, electronics ...) are treated as
perfect electric conductors.

Case T This case is identical to Case R, except that the internal metallic boxes are removed from
the simulation and therefore are transparent to the fields. The comparison of this case with
Case R illustrates the effect of obstacles on the propagation of the electromagnetic fields.

Case V The difference with respect to Case R is that the plasma density in region 3 is removed,
n = 0, i.e. region 3 is a perfect vacuum. The comparison of this case with Case R shows
the influence of the environmental plasma, and the complexities associated with the critical
density transition that takes place at the plasma-vacuum edge.

Case S This smaller version of Case R restricts the integration domain to region 1 and just the
minimal part of region 3 to make the domain rectangular, with size [20–40] cm ×[0–4] cm.

In the following, we employ a cylindrical right-handed vector basis {1z, 1r, 1θ}. The unitary
vectors parallel and perpendicular to the locally applied magnetic field also allow forming an
auxiliary vector basis, {1∥, 1⊥, 1θ}.
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Figure 4.1: (top). Simulation regions, applied magnetic field strength and field lines. The red
line is the limit between the 3 different domains considered, the solid section corresponding to the
plasma source. The green line depicts the electron cyclotron resonance location. The antenna is
highlighted in magenta. The black dashed lines are additional conductor boundaries that represent
thruster subsystems like the magnetic coils, structure, power processing unit, etc. (bottom). Zoom
of Region 1.

Parameter
Full simulation domain size 67 cm × 20 cm
Chamber length lc 12.5 cm
Chamber radius rc 1.25 cm
Antenna type Half-turn Helical
Coil current 11 · 103 Ampere-turn
Antenna frequency f = ω/(2π) 13.56 MHz
Antenna Power 350 W
Antenna loop radius ra 1.75 cm
Antenna length la 7.5 cm
Antenna central position za 27.5 cm
Antenna thickness dt 0.5 cm
Propellant species Xe
Propellant mass flow rate 1.0 mg/s

Table 4.1: Design and operational parameters.

4.2.1. Model formulation

A cold plasma model is used to describe the linearized plasma response to the electromagnetic
fields. While the plasma itself is axisymmetric, we allow for non-axisymmetric fields, which we
decompose into azimuthal m modes. Any vector quantity F (z, r, θ, t) is expressed as the real part
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of a superposition of such modes,

F (z, r, θ, t) = ℜ

⎡⎢⎢⎢⎢⎢⎣ ∞∑︂
m=−∞

Fm(z, r) exp(−iωt + imθ)

⎤⎥⎥⎥⎥⎥⎦ , (4.1)

where Fm(z, r) is the complex magnitude vector at t = 0, θ = 0 for mode m. We do this, in
particular, for the fast electric and magnetic fields E and B. Under these premises, the m-th
complex amplitude of the electric displacement fieldD can be expressed as

Dm(z, r) = ε0κ(z, r) · Em(z, r), (4.2)

where κ(z, r) is the (axisymmetric) local cold plasma dielectric tensor [19], whose components in
the vector basis {1∥, 1⊥, 1θ}, after neglecting the contribution of ions, are:

κ(z, r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
P 0 0
0 (R + L)/2 −i(R − L)/2
0 i(R − L)/2 (R + L)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.3)

with

R = 1 −
ω2

pe

ω(ω + iν − ωce)
,

L = 1 −
ω2

pe

ω(ω + iν + ωce)
,

P = 1 −
ω2

pe

ω(ω + iν)
;

where the electron cyclotron and plasma frequencies are defined as

ωce(z, r) =
eBa

me
, ωpe(z, r) =

√︄
ne2

meε0
; (4.4)

and the rest of symbols are conventional. The electron cyclotron and plasma frequencies, ωce ∝ Ba

and ωpe ∝ n−1/2, are the main plasma parameters in the electromagnetic model, while the electron
collisionality, ν, is secondary as long as ν/ω ≪ 1. The ECR transition occurs when ω = ωce and
R → ∞, while the critical density transition occurs when ω = ωpe and P → 0. The L wave cutoff
takes place when L = 0. The tensor κ is rotated to the cylindrical vector basis used in the problem
discretization.

To model the antenna current J a, we define the helicity number h as the number of complete
turns of the antenna wire around the cylindrical source; for a half-turn helical antenna, h = 0.5.
Inside the antenna, for z ∈ [za − la/2, za + la/2] and r ∈ [ra − dt/2, ra + dt/2], the axial current
density is proportional to

Jza ∝ δ

(︄
θ −

2πh
la

(z − z1)
)︄
− δ

(︄
θ − π −

2πh
la

(z − z1)
)︄
, (4.5)

where δ is the Dirac delta distribution and z1 = za − la/2. This equation represents the two wires
of the antenna as they wind about the cylindrical source a number of turns determined by the helix
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number (one full turn for h=1). The antenna is 1D in the z, θ plane and has thickness dt in the
radial direction. For further reference in the modelling of helical antennas see [20], [84]. The
radial current density Jar is zero, and the azimuthal current density is determined by continuity,
∇ · J a = 0 [25]. As the electromagnetic problem is linear, the total current in the antenna is
normalized to 1 A to compute the fields response.

Faraday’s and Ampère’s laws in (ω,m) space yield the following equations on the complex
field amplitudes:

im
r

Em
z −
∂

∂z
Em
θ − iωBm

r = 0, (4.6)

∂

∂z
Em

r −
∂

∂r
Em

z − iωBm
θ = 0, (4.7)

1
r
∂

∂r

(︂
rEm
θ

)︂
−

im
r

Em
r − iωBm

z = 0, (4.8)

im
r

Bm
z −
∂

∂z
Bm
θ + iωµ0Dm

r = µ0Jm
ar, (4.9)

∂

∂z
Bm

r −
∂

∂r
Bm

z + iωµ0Dm
θ = µ0Jm

aθ, (4.10)

1
r
∂

∂r

(︂
rBm
θ

)︂
−

im
r

Bm
r + iωµ0Dm

z = µ0Jm
az, (4.11)

As boundary conditions, the lateral and top walls in cases R, T, V and S are modelled as
Perfect Electric Conductors (PEC), and so are the support equipment boxes in cases R and V.
PEC boundaries are characterized by a null tangential electric field E × 1n = 0 and a null normal
magnetic field B ·1n = 0., where 1n is the unit normal vector to the domain boundaries. At the axis
of symmetry, the following smoothness conditions apply for each mode m for any field Fm [77],

Fm
r = Fm

θ = 0 for m = 0,

Fm
r = ∓iFm

θ , Fm
z = 0 for m = ±1,

Fm
r = Fm

θ = Fm
z = 0 for |m| > 1

(where the components of F correspond to either E or B).

The plasma current density induced by the wave electric field is

Jm
p = iωϵ0(1 − κ) · Em, (4.12)

where 1 is the identity tensor and the time-averaged power density deposited into the plasma by
mode m is Qm

a = R
(︂
(Jm

p )∗ · Em/2
)︂
. The total resistive power seen at the antenna can be computed

as the sum of the volume integral over the simulation domain for all the azimuthal modes,

Pa =
∑︂

m

∫︂
Ω

Qm
a dΩ. (4.13)

(alternativa)

Pa =
∑︂

m

Pm
a , Pm

a =

∫︂
Ω

Qm
a dΩ. (4.14)
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While we used a total power of 350 W to obtain the realistic plasma profiles from the transport
simulations, observe that the wave problem is linear, and therefore fixing the antenna current at 1
A makes Pa numerically equal to the total resistance of the plasma, as seen by the antenna, and
makes Qm

a numerically equal to the local plasma resistivity, in SI units.

In the light of previous studies [107], [112] showing that the vast majority of the plasma resis-
tance corresponds to the interaction of the electromagnetic fields with the currents in the azimuthal
mode m = 1, this work focuses on this mode; the importance of higher modes is evaluated in sec-
tion 4.3.

4.2.2. Magnetic field and plasma profiles

The cold plasma dielectric tensor κ at each point depends on the applied magnetic field Ba, the
plasma density n, and—to a lesser extent—the effective electron collisionality ν. The magnetic
field Ba, already shown in figure 4.1, is obtained analytically by modeling the magnetic coils of
the device as a collection of current loops.

The plasma density n inside the source region 1, shown in figure 4.2, is obtained from the
simulation of the plasma transport with the HYPHEN hybrid code [107]. The full details of
HYPHEN can be found in [113]. This code solves the plasma properties in the source and near
plume treating heavy species (ions and neutrals) kinetically and magnetized electrons as a fluid.
Neutral gas injection, plasma sheaths, recombination at the walls and both elastic collisions and
ionization are included in the model. Once HYPHEN reaches a stationary solution, the plasma
density and ion flux at the right border of region 1 are used as the input to the open-source magnetic
nozzle DIMAGNO code [32], which solves the plasma transport in region 2. DIMAGNO uses
a fluid formulation for partially-magnetized ions and fully-magnetized electrons. The plasma
collisions are neglected in the plume, and the supersonic plasma expansion is propagated using
the method of characteristics. Notice that the HYPHEN domain (region 1) is polygonal while
the DIMAGNO domain (region 2) follows the magnetic topology. A constant plasma density
is imposed in region 3, which is outside of the domain of the transport codes, the value of this
background density depends on the simulation case.

This approach combines the strengths of both transport codes, each specialized in one of the
regions. As expected, the denser plasma is located in the source with values in the order of 1019

m−3 and decays rapidly in the plume to values near 1014 m−3 in the outer section. Finally, a low
but nonzero constant value of n = 1014 m−3 is prescribed in region 3 in simulation Cases R, T and
S, representative of the operation inside a vacuum chamber with imperfect vacuum, while n = 0 is
used in Case V.

While HYPHEN evaluates several collisional elastic and inelastic processes in region 1, DI-
MAGNO assumes negligible collisionality in region 2 to compute the plasma transport solution.
Since an effective electron collision frequency map ν is needed in the full domain of the wave code,
HYPHEN’s collisionality map is used in region 1, whereas in region 2 (and region 3 in simulation
cases R, T, S), the map for e-i elastic collisions are used, ν = νei ∼ nRei, with

Rei =

(︄
1eV
Te

)︄3/2

× lnΛ × 2.9 · 10−12 m3 s−1 (4.15)
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Figure 4.2: (top). Plasma density for the reference Case R in the simulation domain. (bottom).
Zoom at Region 1.

where lnΛ ≈ 10 is Coulomb’s logarithm. A reference value, based on the conditions in the outer
far plume of region 2, Te = 1 eV is used in region 3. The reason to consider νei as the relevant
map in these regions is that the transport codes reveals that e-i collisions already dominate clearly
compared to the second most important process, namely, e-n elastic collisions, at the interface
between regions 1 and 2 (where the average values are νei = 7.3 · 105 Hz and νen = 3.8 · 104 Hz)
and the difference is expected to grow along the plume. Finally, as explained at length in section
4.4 and after checking that this does not perturb the essential electromagnetic field solution nor
the power deposition maps, collisionality is scaled up by a factor of 20 to improve numerical
convergence. Figure 4.3 displays the used map of ν in the wave code.

Figure 4.3: Effective collision frequency map. The numerical scaling factor has already been
applied.
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4.2.3. Numerical integration

The numerical implementation of the model follows the general outline of [20], [25]. A brief sum-
mary of the main aspects of the integration approach are summarized next for self-completeness.

The numerical solution of the electromagnetic fields in the frequency domain is obtained with
a frequency domain Finite Difference method (FDFD), in particular, a modification of the well-
known Yee’s method [20], [91]. The use of staggered grids, on which only some components
of the fields are stored, and depicted by different symbols in figure 4.4, allows for the direct
discretization of equations (4.6) to (4.11) and for the easy implementation of boundary conditions.
A major difference of a plasma with vacuum arises from the non-diagonal nature of tensor κ,
which couples each component of D with all components of E. This complicates the process of
computing D as only some components of E are known on each node.

While in [112] this is accomplished by interpolating (κi, jEi) from the surrounding nodes to the
desired position, in this work we interpolate Ei only, and then multiply by the value of κi, j at the
desired position. The approach of [112] leads to good results when κ varies slowly, however, it
was found to produce unacceptable high frequency noise at sharp transitions, and in particular at
the critical density transition present in Case V, when the mesh is not aligned with the transition.
This is attributed to the imbalance between some of the components κi, j used for the interpolation.
Although the issue does not completely disappear with the new scheme, as further discussed in
section 4.4, a numerical investigation has shown a reduction in the noise across this transition with
the new interpolation scheme.

Figure 4.4: 2D staggered grid and electromagnetic fields. Each cell comprises a central node and
four border nodes. Eθ is located in the blue X, Ez and Br in the red circle, Er and Bz in the purple
square and finally Bθ in the green triangle.

For a domain discretization with Nz cells in the axial direction and Nr cells in the radial di-
rection, the set of 6 × Nz × Nr equations (including boundary conditions) is assembled into the
a linear system form Ax = b, where A is the matrix of coefficients and b is the forcing vector
(containing the prescribed currents in the antenna). A direct solver is applied to obtain the electric
and magnetic field components contained in the solution vector x.

The results presented in the following section correspond the azimuthal mode number m = 1,
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with a grid a resolution of 1000 × 1000 cells. The total number of degrees of freedom is 6 million
and the computation time using a direct parallel linear solver was on the order of 100 min in a 32
core, 200 GB RAM computing node.

4.3. Results and discussion

In the reference simulation Case R the plasma is overdense everywhere, i.e. ωce > ω. Addition-
ally, as explained in section 4.6, the metallic obstacles in the surroundings of the source are present
in the simulation. The first row of figure 4.5 displays the magnitude and phase of E1

θ , i.e. the az-
imuthal electric field of mode m = 1. The RF field is clearly constrained by the ECR surface, as it
must be evanescent beyond it. Overall, the field is strongest inside the cylindrical source (region
1), suggesting good coupling with the dense plasma. While the fields decay in the plume (region
2) and the periphery (region 3), it is evident that they are not zero: the electromagnetic fields
propagate in these regions and are not confined to the source. Fields are small in the rear part
of the cylindrical source. There is a partially-standing wave structure inside the plasma source,
as evidenced by the localized drop in magnitude and the near 180 deg step. From the monotonic
phase along the axis in region 2, a rightward-traveling wave exists up to the ECR surface, with an
essentially-axial propagation direction. It is possible to estimate its wavelength to be around 20
cm by taking the distance for a full 360 deg phase cycle in the phase diagrams of figure 4.5. Notice
that the wavelength is larger than the source tube due to the high magnetic field. This corresponds
well with the analytical wavelength expression for H waves, λ ≈ 2πde

√
ωce/ω, where de = c/ωpe

is the local electron skin depth, for a plasma density n ≈ 5 ·1017 m−3 and a magnetic field intensity
Ba ≈ 100 G (resulting in ωpe = 4.0 · 1010rad/s and ωce = 1.8 · 109rad/s), which are characteristic
values near the axis at z ≈ 40 cm. Interestingly, the analytical wavelength varies very little as both
the density and magnetic field decrease along the plume.

Away from the axis, this axial wave develops a non-negligible k⊥ wavevector with increasing
r, i.e., its propagation takes place at an angle with the magnetic field vector. The larger fields in
the plume exist in a magnetic tube in this lateral region, indicating that Ba defines to some extent
the propagation paths of the electromagnetic fields. Propagation stops at the ECR surface, and the
field magnitude drops quickly beyond it.

The electric field in region 3 is not negligible, especially close to the antenna, and its propa-
gation is also affected by the direction of Ba. Small wavelength structures of low magnitude can
be observed in the space above the magnetic coils, where radiation is diffuse and standing wave
patterns form. This radiation seems to be confined between the ECR surface in region 3 and the
denser plasma of regions 1 and 2.

The power deposition profile, Q1
a is shown in the first panel of figure 4.6. The largest ab-

sorption is not correlated with the largest fields, and takes place inside the dense plasma in the
cylindrical source (∼ 95 %). A non-negligible part of the power is absorbed downstream in the
MN, before the ECR surface, indicating the relevance of including this region 2 in the model to
understand the power absorption.

A thin absorption layer exists at the ECR surface; however, this layer curves away from the
ECR in the top part of the domain, in region 3, partially guided by the magnetic field vector.
Less than 0.6% of the power emitted by the antenna is absorbed in the space beyond the ECR
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Figure 4.5: E1
θ field magnitude (left) and phase angle (right) for different simulation cases, for a

total antenna current of 1 A. The electron cyclotron resonance line is depicted in green and the
limit of the dense plasma in red.

surface, where the solution is evanescent. This result suggests that the ECR surface acts as an
efficient shield to prevent radiation losses when operating in free space, i.e. to stop RF power from
escaping the HPT plasma and its neighborhood, as long as the environment is overdense.

Figure 4.6: Power absorption maps Q1
a for the different simulation cases.

The removal of the metallic parts inside the domain in simulation Case T does not result
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in any major changes in the wavefields nor the power deposition profile, as can be observed in
the second row of figure 4.5 and 4.6. The only apparent difference is a slightly higher RF field
traveling toward the rear part of the device, previously blocked by a metallic obstacle, and some
additional absorption in the rear part of region 3. The small effect of these metallic boxes suggests
that obstacles of this type essentially do not affect the solution.

Changing the environment into a perfect vacuum in Case V has a far more dramatic effect on
the RF fields (and on the accuracy of the numerical solution). This case is represented in the last
row of figures 4.5 and 4.6. Firstly, the absence of plasma in region 3 also removes the possibility
of a resonance at the ECR surface in this region, which now becomes transparent to the fields.
Indeed, in the absence of plasma density, the value and direction of Ba becomes irrelevant for the
wave propagation problem. This means that the fields have access to the metallic boundary con-
ditions that represent the vacuum chamber. Note that, in free space, any power traveling outward
would give rise to radiation losses; however, in the present setup, representative of the operation
in a laboratory vacuum chamber, this power is reflected back toward the domain by the boundary
conditions, until all power is absorbed by the plasma in regions 1 and 2. The short-wavelength
structures that existed in the presence of a tenuous plasma in region 3 in Case R disappear in Case
V, and radiation is partially delimited by the conductive boxes immersed in the domain. The ECR
surface continues to be active in region 2, however. Secondly, fields in regions 1 and 2 become
essentially a standing wave as evidenced by the node lines where E1

θ = 0 in the magnitude plot of
figure 4.5, suggesting that wall reflection indeed plays a role in this case. The propagation direc-
tion develops a major perpendicular component k⊥ to Ba, and shorter wavelengths are observed,
especially in the peripheral part of the MN plume. This suggests a more relevant role of the TG
mode, which corresponds with shorter wavelengths and more perpendicular propagation than the
H mode. As in previous cases, propagation within the plasma plume ends at the ECR. Thirdly, the
importance of the fields in the plume is larger than in the previous cases, especially downstream,
and so is the power absorption.

Notwithstanding these general observations, it is noted that simulation Case V does not show
the same numerical convergence characteristics in the plume region with mesh refinement as in
the other cases. This issue, and its putative causes are discussed in section 4.4.

Figure 4.7 displays a zoomed view of the power deposition profile inside this region, and
includes the short-domain simulation of Case S. The four solutions show that the power absorption
profile is essentially independent of the simulation case. This conclusion is valuable for two
reasons. First, it supports the robustness of the modeling procedure, as changes in the details of
the surrounding of the thruster have no major influence on the computation of power deposited
inside the source, which accounts for the larger share of absorption. In fact, the power inside the
source appears almost independent of the chamber conditions and the propagation in the plume.
Second, these results show that when only the computation of the power absorbed in the source is
needed, it can be reliably obtained with a smaller simulation domain containing only this region
(simulation Case S).

Compared to the absorption map presented in [25] in which 2 to 3 stationary Helicon wave
cycles are visible inside the source, the deposition in figure 4.7 shows just one high absorption
region covering much of the source. This is consistent with the plasma conditions used in this
work (in particular, ≃ 1500 Gauss at the axis), which differ from those of [25] (≃ 150 Gauss at the
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Figure 4.7: Power absorption maps Q1
a for the different simulation cases. Zoom at Region 1.

axis), which result in an increase of the Helicon mode wavelength.

To conclude this section, the relevance of the azimuthal mode m = 1 is briefly discussed.
Previous studies [25], [99] have already established the dominance of the m = ±1 azimuthal
modes in the power coupling for different antenna types of helicon sources. Indeed, this antenna
is designed to excite predominantly the +1 mode. Accordingly, the results presented above have
considered this dominant mode only. To assess the validity of this approach, figure 4.8 compares
the power absorption associated to m = ±1,±3 in the whole domain of the simulation Case R (the
helical antenna only excites odd modes). As it can be inferred, after mode m = +1 the next mode
in importance is m = −1. The power absorption of higher m modes drops quickly.

4.4. Critical density transition and numerical convergence

The critical density transition takes place when ω = ωpe, or equivalently, when P = 0 in equation
(4.3). For an excitation frequency of 13.56 MHz, this happens when the plasma density drops
below roughly 2.3 · 1012 m−3. In our simulations, this occurs only at the plasma-vacuum interface
in Case V.

The treatment of this transition presents a twofold difficulty. First, in the cold plasma dielectric
tensor model and in the collisionless limit, the dispersion relation for an infinite uniform plasma
with the critical density becomes singular, the P = 0 condition being a cutoff or a resonance
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Figure 4.8: Fraction of total power (red) and fraction of power deposited inside the source (region
1, blue) for different azimuthal mode numbers, m.

depending on the direction of the propagation of the waves, given by the wavevector k [19].
This conditional/directional limit disappears strictly when collisions are present, but for small ν,
the dielectric tensor κ retains its wild, directional variation in the neighborhood of the transition.
Indeed, near the critical density, electrostatic electron oscillation modes exist, whose description
needs from thermal corrections. Therefore, the study of the electromagnetic fields in the vicinity
of ω = ωpe cannot be properly approached from within the cold plasma model, and electron
temperature effects need to be taken into account.

Second, but related to the first point above, the numerical discretization of the problem be-
comes ill-conditioned when the P = 0 transition is inside the domain, as in Case V. Numerical
analysis shows that this situation can give rise to spurious, highly oscillating fields near the tran-
sition, with wavelengths comparable to the numerical mesh. This problem is aggravated in the
Cartesian numerical discretization employed in Yee’s method wherever the grid directions differ
substantially from the applied magnetic field direction at the transition (“staircase conditions”).
Indeed, small wavelength structures are observed in Case V in the plume-vacuum edge in region 2
(figure 4.5) that are linked to a high localized power deposition density (figure 4.6). These struc-
tures are insidious and could not be fully resolved with the available computational resources.
They are seen to be smaller than the mesh size even in the finest simulation reported here. This
phenomenon is not present near other regime transitions such as the ECR surface downstream
(R→ ∞), where the fields are well-behaved in all simulations.

Figure 4.9 displays the error in the integrated power absorption of Case R and Case V for
different grid sizes (mesh #), relative to the finest mesh simulations that was carried out (which are
the ones reported in previous section),

|
∫︁

Q1
a(mesh #)dΩ −

∫︁
Q1

a(best mesh)dΩ|∫︁
Q1

a(best mesh)dΩ
.

(alternativa)

|P1
a(mesh #) − P1

a(best mesh)|
P1

a(best mesh)
.
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In the light of the relevance of the power deposition in the source region 1, the convergence of this
quantity is plotted too.

Figure 4.9: (top). Error to the most accurate simulation of the power deposited in the full domain
as a function of the degrees of freedom of the system (i.e. 6 times the number of Yee cells). Cases
R (blue, ◦) and V (red, △) The error with the previous interpolation scheme from [25] for Case V
is also shown for comparison (yellow, □). (bottom). Error for the power integrated only in Region
1

.

As it can be observed, the reference Case R gradually converges, with errors below 2% inside
the source for 1 million degrees of freedom, as shown in figure 4.9b. Cases T and S behave
essentially identically to Case R, regarding convergence. This behavior gives confidence on the
numerical convergence of the method, and the error trend agrees with the expected one for the
used numerical scheme. On the other hand, the vacuum Case V behaves differently. While the
error in the source decreases roughly as in Case R, indicating similar convergence characteristics
there, the error in the whole domain does not diminish as the grid is refined. Far from it, the power
deposited in the whole domain exhibits unsatisfactory values, driven by the spurious fields existing
in the plume edge.

This convergence behavior was only observed in Case V, and demonstrates the modeling and
numerical difficulties commented on above in the neighborhood of the critical plasma density
transition. In all other simulation Cases this interface is not associated to a parametric regime
transition, and the only existing transition is the ECR surface downstream.
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It is noted that smoothing out the plasma density profile near the edge does not solve the
issue, as the P = 0 transition remains sharp and the κ coefficients continue to vary rapidly across
it. Several strategies are proposed to mitigate problems associated with these abrupt transitions,
without requiring abandoning the cold plasma tensor formalism. Firstly, it is noted that increasing
the imaginary component of P through added damping moves the zero away in the complex plane,
improving the mathematical conditioning of the problem. A larger damping also helps suppress
the small-wavelength noisy fields in a shorter distance. However, while this may be desirable to
mitigate these oscillations, an excessively larger damping might hide some physical short wave-
length structures. For this reason, after some numerical experimentation, a factor of 20 was used
to scale collisionality in the problem, which improved convergence without altering essentially the
solution.

Secondly, the transition noise was seen to be highly dependent on the interpolation strategy
used in the Yee method to fix the value of D at the nodes. It was observed that the interpolation
scheme introduced in this work reduces the noise level and the error with respect to the former
approach, proposed in [20] and used in [25]. The improvement is shown by the convergence lines
of figure 4.9, specially by the faster convergence of the new scheme (red ◦) in the source with a
limited number of degrees of freedom when compared to the former interpolation strategy (yellow
□). The enhanced convergence is directly linked to a reduction of noise along the P = 0 surface.
It is hypothesized that further exploration in this direction, as well as in the addition of auxiliary
divergence equations near and at the transition, may help further improve the issue [114].

Thirdly, the fact that the mesh direction relative to Ba affects the appearance of noise suggests
that a mesh-aligned numerical discretization may also be instrumental in tackling it. Unfortu-
nately, in the general case this would require irregular and non-structured meshes, for which finite
difference methods are hard to implement. Much progress has been carried out in the field of finite
elements for electromagnetic problems in the last decades, notably since the introduction of vec-
tor elements very successful in full-wave simulations [115]. This formulation is more suitable for
non-structured and adaptable meshes. Indeed, finite elements have already been used with success
to simulate the electromagnetic fields of other electric thrusters [41].

To conclude, it is noted that, in spite of this unsolved problem, the error associated to it seems
to be local to a small region in the plume of Case V. As shown in figure 4.9, this noisy region does
not invalidate the convergence of the power deposited inside the source and near plume. While
the solution in the plume region of Case V is not acceptable and must be revisited in future work,
the conclusions pertaining the power deposition in the source exhibit good convergence with mesh
size and seem robust.

4.5. Summary

A finite-difference, frequency-domain, full-wave model has been used to investigate the propaga-
tion and absorption of electromagnetic fields in an HPT, including the far plume region and the
surrounding space, with the goal of understanding the amount of power deposited in the plume and
the influence of the environment in the electromagnetic problem. Plasma density and applied mag-
netic field coming from plasma transport simulations of a thruster similar to the HPT05 prototype
were used as inputs in the study. While most of the power absorption occurs inside the cylindrical
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source, the fraction of power taken in by the plasma plume is not negligible. The fields propa-
gate along the magnetic nozzle up to the electron-cyclotron resonance surface that always exists
downstream. The wavelength and propagation direction corresponds to a helicon wave around the
axis of the device. In the plume periphery, waves have a shorter wavelength and more important
perpendicular wave vector component, approaching the Trivelpiece-Gould mode.

A tenuous plasma of density n > 2.3 · 1012 m−3 in the neighborhood of the device and its
plume suffices to make that region overdense (ωpe > ω) for the usual excitation frequencies (13.56
MHz). This is the usual situation in laboratory vacuum chamber experiments, where pumping is
not perfect. Even in a space environment, a faint low density plasma may envelope the thruster,
keeping the effect of the ECR surface in the surrounding space active. In these conditions, the ECR
surface has been shown to concentrate some of the power absorption and to play a fundamental
role in confining the radiation away from the device, as the fields become evanescent beyond it.
This, in particular, has great relevance for the “free space” representativeness of vacuum chamber
experiments which are normally made of conductive metal, and therefore constitute a closed,
reflective cavity for the fields. If the ECR surface is located within the chamber, the effect of these
reflective walls on the fields becomes negligible, as they are in contact only with the region of
space where fields are evanescent.

In strict vacuum, the ECR surface plays no role in the surrounding space, as in this case
there are no electrons to resonate with the fields, and a path for radiation losses opens up in the
radial direction away from the thruster (but not along the plume, where the plasma continues
to be overdense and fields continue to be evanescent beyond the ECR transition). Indeed, the
propagation and absorption maps change and exhibit standing-wave structures as a consequence
of the reflective bounding box used in the simulation.

The influence of reflective boxes inside the domain (representing support equipment of the
thruster) was seen to be small. Moreover, the power absorption in the source region was seen to
be stable and essentially the same across simulations, suggesting that all aspects that affect the
plume and the environmental region are superfluous for the source power absorption. This adds
confidence to the small-domain, source-only simulations carried out in previous works, albeit they
miss the information of the power absorption in the plume.

Finally, numerical convergence studies showed good convergence characteristics for all cases
except the vacuum environment one, where the strong and ill-conditioned critical density transition
surface at the interface between the plasma plume and vacuum, plus the numerical staircase mesh
conditions there, are identified as the sources of small-scale numerical noise. The implementation
used in this work is based on a new interpolation scheme which partially mitigates this problem
and restricts noise to a small region without affecting results much elsewhere. Notwithstanding
this, future work must address the theoretical modeling and the numerical treatment of these tran-
sitions. Some additional avenues of research have been suggested in section 4.4, namely the use
of enhanced damping in this region, and aligning the mesh geometry to the transition, perhaps by
switching to other schemes such as finite elements to simplify the implementation of unstructured
meshes.

The validation against experimental data of the present wave model requires direct measure-
ment of the electromagnetic fields and their phase, notably inside the plasma source, without
perturbing the operation of the thruster. Currently, no such data is known to exist to the authors.
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However, coupled plasma transport and wave simulations (employing the same FDTD solver as
this work) compare reasonably well to experimental studies with a similar HTP setup in terms of
indirect measurements such as thrust and several efficiencies. In particular for the HPT05 proto-
type, numerical [107] and experimental [95] results show about 30% relative discrepancy in key
performance figures like thrust efficiency in similar operation regimes (although the comparison
is not perfect, as the configuration of [95] has a slightly higher antenna power). Further work in
this direction and new, more precise experimental measurements, are still necessary to close the
validation gap.
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5. Self-consistent plasma transport and wave propagation
simulations

The contents of the following chapter have been peer-reviewed and published in [49] and
are reproduced here without modifications. Please excuse any duplicity or repeated information,
especially in the introduction, that might occur as a result of its inclusion in other chapters of this
work.

Experiments and simulations are used to analyze a compact helicon plasma thruster with a
cusp in its internal magnetic field. The former rely on a compensated Langmuir probe and a Fara-
day cup, while the latter employ a hybrid PIC/fluid transport model combined with a frequency-
domain electromagnetic field model. Measurements serve to tune the anomalous transport pa-
rameters of the model and overall show the same trends as the numerical results, including a
secondary peak of electron temperature downstream in the magnetic nozzle, where electron cy-
clotron resonance conditions for the 13.56 MHz excitation frequency are met. The cusp plays a
central role in determining the plasma losses to the walls and the profile of electron temperature,
which in turn defines the excitation and ionization losses. While losses to the rear wall are re-
duced, losses to the lateral wall are increased, which, together with the low production efficiency,
limit the performance of the device.

5.1. Introduction

The helicon plasma thruster (HPT) [7]–[11] belongs to the family of electrodeless plasma thrusters
(EPTs). It consists of (1) a cylindrical discharge chamber made of dielectric walls, (2) a gas inlet,
usually at the back of the chamber, (3) an external inductor/antenna, emitting the RF power to be
absorbed by the plasma, and (4) an external magnetic circuit, generating a magnetic field, which
aims to make the plasma transparent to the RF waves, to confine partially the plasma, and to guide
an accelerate it externally through a magnetic nozzle (MN) configuration. The HPT concept avoids
the need for a supplementary hollow cathode acting as ion beam neutralizer, the erosion problems
linked to electrodes and grids, and simplifies the complex power processing and control unit with
respect to mature technologies, such as Hall Effect and Gridded Ion Thrusters. In contrast to these
advantages on lifetime and system simplicity, until now, testing on existing HPT prototypes still
reports rather low thrust efficiencies[10], [116]–[118].

The conventional magnetic topology of an HPT is quasi-axial and near-uniform inside the
chamber [98], thus confining the lateral walls but permitting large losses on the back wall [31].
The low thrust efficiency also suggests an anomalously small magnetic confinement of the lateral
walls (for a given magnetic strength). This may be due to the existence of anomalous cross-field
electron transport, similar to the one found in Hall thrusters and presumably caused by turbulence
due to azimuthal instabilities [119]. For many low-power HPTs and sources, magnetic confine-
ment issues are being addressed using permanent magnets (PMs) instead of electromagnets [74].
There are three main reasons for this choice. First, PMs can provide a higher magnetic strength,
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and thus improve confinement in the presence of anomalous transport. Second, solenoid power
consumption would drastically penalize the total efficiency of a low-power system. And third,
PMs yield further flexibility in implementing non-uniform magnetic topologies, such as those
with internal cusps, with potential benefits.

The enhancement of thrust force using a higher magnetic flux density in a PM-HPT was exper-
imentally demonstrated by Takahashi et al. [7]. The impact of different cusped topologies on the
plasma behavior and thruster performances has been addressed experimentally by several groups
testing different prototypes. Virko et al. [120] found that cusp location relative to antenna posi-
tion affects wave accessibility, plasma production, and ion acceleration. Trezzolani et al. [9] also
opted for cusped technology to optimize a small HPT system. A more systematic study is due to
Ito et al. [121], who measure the thrust performance of two pairs of magnetic field configurations,
without and with cusps, finding that the latter could lead to higher plasma density, better propel-
lant utilization, and, ultimately, better thrust efficiency. Consistent with these findings, Takahasi’s
recent experimental study [122] has provided evidence that cusped field topologies could reduce
wall energy losses, with a resulting increase in device performance.

These results encourage experimental research on PM-HPTs to be complemented with a mod-
eling/simulation counterpart to explain the physics of plasma transport and RF power coupling,
shed light on the dominant loss mechanisms, and help design optimization. This paper reports,
first, test results on a magnetically cusped PM-HPT prototype [123]. This is followed by a nu-
merical investigation on the plasma response and thruster performances with an axisymmetric
hybrid model. The focus of this study is to provide an understanding of the specific features of
this magnetic topology, without aiming for a particular optimal design. Indeed, we anticipate that
the current configuration does not lead to an optimal prototype. Still, the results are valuable for
further development of this technology.

Section 5.2 of the paper presents a set of vacuum chamber measurements of the plasma density,
temperature, and electric potential obtained in the plasma plume. The posterior sections apply an
axisymmetric simulation code to fit those measurements and then investigate the plasma discharge
properties inside the chamber and the plume, and the related performances. Special attention is
given to the current and power balances, in order to quantify the different sources of mass and
energy losses.

The simulation code used is HYPHEN-EPT, which includes different modules to model the
plasma-wave energy deposition process [W(ave)-module], and the production and quasi-steady
transport of the several plasma species [I(on)- and E(lectron)-modules]. The I-module operates
on a PIC formulation of several heavy species (ions and neutrals), and the E-module deals with
a diffusive, magnetized fluid model for electrons. These modules are common for simulations of
EPTs and Hall-effect thrusters and have been described in detail in recent publications [40], [124],
and briefly overviewed in Section 5.3.1. The W-module deals with the Maxwell equations for
the RF electromagnetic fields, assuming a quasi-steady cold plasma dielectric tensor, determined
from the I- and E-modules. Reciprocally, the W-module provides the energy-deposition map for
the E-module. All modules run sequentially to achieve a self-consistent steady-state solution.

The W-module builds on and improves previous models. Tian et al. [25] solved the Maxwell
equations in the frequency domain with a finite difference (FD) model in the source and near
plume of an HPT with quasi-parallel magnetic topology. Jiménez et al. [26] extended the FD
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model to include RF propagation in the far plume and found a significant power deposition per
particle at the downstream electron-cyclotron resonance surface, a fact corroborated recently by
the experimental measurements of Vinci et al. [125], and previously studied by Chung et al.
and Lafleur et al. [82], [126], [127]. Sánchez-Villar [41] proposed an alternative finite element
(FE) model for the W-module, although limited to the axisymmetric azimuthal mode number
m = 0. This was applied to simulate a coaxial electron cyclotron resonance thruster (ECRT).
A combined experimental-numerical analysis of the ECRT, similar to the one proposed here for
the HPT, followed in [128]. Despite the increased complexity, FE formulations are more suited
to general geometries and computationally more efficient than FD formulations. As part of the
contributions of the present work, in Section 5.3.2, the FE model is extended to any azimuthal
mode number m, as required for application to an HPT with a helical antenna (with m = 1 as the
dominant azimuthal wave numbers).

The electron formulation within the E-module makes use of some empirical parameters to
adjust the anomalous transport properties, known from experiments but still elusive to consistent
fluid modeling. Section 5.4.1 compares the experimental and numerical results for the best fit of
the above empirical parameters. Section 5.4.2 presents a sensitivity analysis of the numerical re-
sults to those parameters. Sections 5.5.1 to 5.5.3 discuss the EM wave fields, the power deposition,
the maps of plasma magnitudes, and the thruster performances, identifying the main causes of low
efficiency. Section 5.6 summarizes the conclusions.

5.2. Device and experimental results

The device under study is the thruster unit breadboard model developed jointly by Sener Aeroepa-
cial and Universidad Carlos III de Madrid [123]. The device is a compact 400W-class HPT with
a 12.5 mm source radius and a 60mm source length, made of boron nitride. Xenon is injected
through a multi-hole injector plate, which is embedded at the back side of the discharge tube. RF
power is fed to a half-helical antenna wrapped around the source. RF power is generated using an
industrial power supply, an RF Seren 2001 amplifier, and is coupled to the antenna through a cus-
tomized matching network in order to match the system impedance for all operating conditions,
with less than 2% of reflected power. The device under vacuum chamber operation is shown in
figure 5.1, and its design and operational parameters are shown in the first part of table 5.1.

The magnetic field is generated by a set of radially-polarized neodymium magnets, which are
assembled in an annular aluminum support. The width of the magnet assembly is 40 mm and the
inner radius is 50 mm. This magnet arrangement generates a cusp with a separatrix plane inside
the source, 35 mm upstream of the outlet. The azimuthally-averaged magnetic field is shown in
Figure 5.2. The forward peak of the on-axis magnetic field occurs at the magnetic nozzle (MN)
throat, coinciding with the source outlet section, and is about 750 G. The rear peak of the on-axis
magnetic field lies behind the backplate injector. The rationale for this setup was to avoid the use
of bulky and power-consuming solenoids, which were used in previous developments [10].
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Figure 5.1: HPT prototype lateral view, operating with Xe in the UC3M lab vacuum chamber.

Figure 5.2: Applied Magnetic Field (azimuthally-averaged). Zoom in to the source region (left)
and full wave domain (right). The antenna is depicted in red and the boundary of the transport
domain is represented by a white dashed line. The green line is the Electron Cyclotron Resonance
(ECR) surface.

5.2.1. Setup description

The experimental results presented next are part of the first coupling test campaign of the propul-
sion system assembly, which, in addition to the thruster unit, includes a dedicated power process-
ing unit and a gas valve optimized for this thruster. The thruster prototype has been tested in a 1.5
m diameter, 3.5 m length stainless steel vacuum chamber. The ultimate dry vacuum is 10−7 mbar,
while the background pressure stands at 5.9 ·10−6 to 4.6 ·10−5 mbar for a flow rate of Xe between 5
and 50 sccm. Additional results of interest for this work are the Laser induced fluorescence (LIF)
measurements of the plasma plume, recently presented in [129].

Two operating points have been tested. RF power has been kept constant at 450 W, while
the Xe flow rate has been set at 12.5 sccm (low flow rate case) and 20 sccm (high flow rate
case). A set of electrostatic probes was mounted on a radial-polar robotic arm, which allows us
to inspect intrusively the plasma properties within a semicircular horizontal plane, ρ ∈ (0, 400)
mm, θ ∈ (−π/2, π/2), centered at the thruster outlet. The set of probes includes a radio-frequency
compensated Langmuir probe [130] to infer plasma density, electron temperature, and plasma
potential along the axis line, 100-400 mm downstream from the thruster outlet. The second probe
is a Faraday cup that has been used to characterize the ion current density along a semi-arch of
radius ρ = 350 mm [10].
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Figure 5.3: Experimental (hollow symbols) and numerical profiles (solid lines, filled symbols) for
electron density ne (a), electrostatic potential ϕ (b), electron temperature Te (c), and ion current
density ji (d). Results are for two different mass flows ṁ = 12.5 sccm (black squares) and ṁ = 20
sccm (blue circles), at constant RF power 450 W. Error bars consider only the propagation of
instrument uncertainty, except for the density where 20% minimum uncertainty is assumed.

5.2.2. Experimental results

The main results are shown in Figure 5.3, together with the anticipated numerical results. We
discuss here the experimental profiles and leave for Section 5.4.1 the comparison with the sim-
ulation results. For all experimental profiles, error bars were estimated by propagating the error
of the instrument uncertainties and the parameters involved in the measurement of each physical
property. Importantly, for LP measurements, the error bars do not include the uncertainty of the
theoretical model as in [131], which is potentially large (e.g., it could be about a factor of 2 in the
electron temperature). For the specific case of the ion density, strongly affected by the uncertainty
in the effective collection area, a minimum uncertainty of 20 % is assumed. For the rest of the
properties, no additional uncertainty has been added.

The electron density profile on the axis is shown in Figure 5.3(a). The electron density drops
almost 2 orders of magnitude in the explored range. It is seen to decrease at a slightly lower rate
in the high mass flow case. Plasma potential and electron temperature are shown in panels (b) and
(c) of Figure 5.3, respectively. The trend of potential is monotonically decreasing, as expected in
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Parameter Symbol Value

Thruster length L 6 cm
Thruster radius R 1.25 cm
Injector radius Rin j 0.625 cm
Mass flow rate ṁ 12.5–20 sccm

Antenna frequency f = ω/(2π) 13.56 MHz
Antenna Power Pa 450 W

Antenna loop radius ra 1.85 cm
Antenna length la 4.5 cm

Antenna central position za -2.5 cm
Antenna thickness dt 0.5 cm

Plume length Lp 40 cm
Maximum plume radius Rp 18 cm

I-mesh size - 4961 cells
E-mesh size - 3671 cells

I-module time step ∆tI 2.5 · 10−8s
E-module time step ∆tE 5 · 10−9s

W-module update time-step ∆tW 1.25 · 10−6s
Total simulation time tsim 3.75 ms

Rectangular wave mesh - z ∈ [−13.5, 43]cm, r ∈ [0, 25] cm
W-mesh size - 106 cells

Maximum Applied Magnetic Field Ba 103 G
Gyro-frequency ωce 107-1010 s−1

Density ne 1015-1020 1/m3

Debye Length λD 10−6-10−3 m
Temperature Te 2-6 eV

Effective Collision Frequency νe 104-108 s−1

Table 5.1: Cusped HPT parameters (upper part of the table), numerical parameters used in the
simulation (mid part of the table) and characteristic plasma conditions in the simulation domain
(bottom part of the table).

a MN [132]. The electron temperature is larger in the low-mass flow rate case, and consistently,
the potential drop is also larger in that case. The electron temperature profile shows a mild peak
at 200–250 mm of the source, contrasting with the typically monotonically decreasing profiles
reported in the literature [102], [133].

Finally, the normalized profiles of the ion current density are shown in panel (d). The current
density is measured with the Faraday probe in a semi-arch of radius ρ = 350 mm. The ion beam
features a single symmetric peak with lateral wings. The first indicates the formation of a well-
collimated ion beam, while the second could be the consequence of the interaction of the plasma
with the background pressure, or the presence of secondary beams linked to heating/ionization in
the periphery of the main plasma column.
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5.3. Simulation model

The HYPHEN-EPT simulation model is composed of different modules to solve the plasma pro-
files and electromagnetic fields in the meridian plane. First, there is the E-module that solves for
the slow dynamics of electrons; a magnetized, drift-diffusive, quasineutral fluid model [40], [134],
with finite difference and finite volume techniques. Second, there is the I-module that solves for
the dynamics of ions and neutrals, using a PIC formulation and a Monte Carlo collision scheme
[37]. The I-module determines the quasinuetral electron density used in the E-module. The E-
and I-modules are completed by a S(heath)-module for the nonneutral Debye sheaths around all
the walls of the integration domain. Together, the E-, I- and S-modules constitute the slow plasma
transport part of HYPHEN-EPT. In the present study, we consider the quasineutral, low-β limit
of the plasma transport problem. Quasineutrality is a key element of the transport model to keep
the computational cost affordable in a workstation. The lowβ assumption allows neglecting the
stationary plasma-induced magnetic field with respect to the applied one.

Third, the W-module solves Maxwell’s equations, with finite element discretization in the
frequency domain, for the high-frequency electron-wave interaction and the subsequent deposition
of wave energy into the electrons. Figure 5.4 shows a sketch of main model blocks and the plasma
magnitudes (defined later in this Section) acting as inputs/outputs between them.

Figure 5.4: Simulation model structure, modules and interfaces.

The second part of table 5.1 summarizes the simulation parameters. Two simulations, cor-
responding to the cases with mass flow rates 12.5 and 20 sccm are run. An overview of the
computational domain is shown in figure 5.5. The I-module uses a nonuniform Cartesian-type
mesh, adapted to the expected plasma gradients and to keep a statistically acceptable number of
macroparticles per cell. The E-module integrates the fluid equations in a magnetic field aligned
mesh (MFAM) to minimize numerical diffusion in the anisotropic slow dynamics of the mag-
netized electrons [40]. Finally, the W-module uses a much finer unstructured mesh, tailored to
resolve the small wavelengths present in the problem. Linear interpolation between the meshes is
used to communicate the various modules.

As in [26], the simulation domain includes the electron-cyclotron resonance (ECR) surface
present in the MN (the green line in Figure 5.2), located where the cyclotron frequency of the
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Figure 5.5: Simulation domain and boundary conditions (not to scale). The transport domain
corresponds to the green area. The W-module domain is the union of the green and blue areas.

applied magnetic field is 13.56 MHz.

The numerical model is run sequentially until steady state is reached, both in thrust and other
performance figures; this takes place after 3.75 ms of physical time. As in [40], the simulation is
pre-initialized by calling the I-module alone, with a Boltzmann relation-like model for the elec-
trostatic potential. This allows the simulation domain to be quickly filled with macroparticles that
come from the injector before calling the E- and W-modules. The main timestep ∆tI is the one
advancing the I-module. The E-module generally requires 5-10 subiterations, each with timestep
∆tE . In contrast, the W-module, which solves the fields in the frequency domain, is called after
a fixed number of transport timesteps, about each 50-250 depending on the problem, in order to
update the cycle-averaged power deposition. Customary to PIC simulations, the results presented
here are time-averaged over 200 I-module steps to filter noise and short period oscillations.

In the following, additional details of the transport and wave parts of HYPHEN-EPT are pro-
vided. The cylindrical vector basis {1z, 1r, 1θ} and the magnetic vector basis {1∥, 1⊥, 1θ}, with
1∥ = B/B and 1⊥ = 1θ × 1∥, are used.

5.3.1. Plasma transport model

The reader is referred to [40] for a full description of the hybrid transport model used in this work;
in the following, only an overview of the key characteristics for this work is given.

The E-module integrates the following fluid equations for electrons:

ne =
∑︂
s≠e

Zsns, (5.1)

∇ · je = −∇ · ji, (5.2)

0 = −∇ (neTe) + ene∇ϕ + je × B + Fres + Fano, (5.3)
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∂

∂t

(︄
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2

neTe

)︄
+ ∇ ·

(︄
5
2

Teneue + qe

)︄
= −∇ϕ · je − Qinel + Qa, (5.4)

0 = −
5neTe

2e
∇Te − qe × B + Yres + Yano , (5.5)

where the unknowns are ne, ϕ, je, Te and qe. The I-module provides the right hand side of
Eqs.(5.1,5.2). In the energy equation, Qinel is the power density lost by electrons during inelastic
collisions (i.e. excitation and ionization) and Qa is the volumetric power density deposited by the
electromagnetic fields, which is furnished by the W-module.

In the momentum and heat flux equations, the resistive terms are

Fres = −mene
(︂
νeue −

∑︂
s≠e

νesus
)︂
, Yres = −

meνe
e

qe (5.6)

where νes(Te) is the collision frequency with heavy species s, and νe =
∑︁

s≠e νes is the total col-
lision frequency of electrons. The terms representing anomalous transport are modeled here as
[40]

Fano = αanoB jθe1θ, Yano = −αano Bqθe1θ −
(︂
meνq/e

)︂
q∥e1∥, (5.7)

where both αano and νq are phenomenological (constant) parameters that will be fitted later with
the experimental results. The terms with αano represent the effect of high-frequency turbulence
on quasi-steady electron transport, while the term with νq empirically reduces heat fluxes in the
parallel direction, to capture the collisionless cooling observed in magnetically expanded plasma
plumes [135]–[137]. Observe that the drift-diffusive equations (5.3) and (5.5) provide general-
ized Ohm and Fourier laws for je and qe. The numerical integration of the electron model in
the MFAM is based on a semi-implicit scheme for time discretization and finite volume/gradient
reconstruction methods for spatial discretization [40].

The S-module allows matching the boundaries of the quasi-neutral domain to either the thruster
walls (using a sheath model) or the downstream plasma plume (using matching conditions with
infinity) [138]. Provided the electron temperature Te and the current densities of the ion species at
the edge of the sheath, the S-module fixes the necessary electron current and heat fluxes and the
local potential fall ϕWQ between a quasineutral boundary point Q and a wall point W (or infinity).
The S-module accounts for material type, recombination, and secondary electron emission by pro-
viding different plasma-wall interaction models and fitting parameters. For the ceramic walls of
the thruster, we implement locally je + ji = 0. For downstream free loss (FL) surfaces, we deter-
mine a potential at infinity ϕ∞ such that the plume is current-free globally, i.e.

!
FL j · ndS = 0,

with the integration domain extended to the whole free-loss (FL) surface [138].

In this work, Xe, Xe+, and Xe++ are included in the I module. Xenon is introduced through the
injector surface on the back wall of the thruster, shown in figure 5.5. The position and geometry of
the injector is known to influence neutral depletion and overall performance [139]. For simplicity,
the multi-hole injector is modeled as a uniform injection surface centered at the source axis. Based
on the number and size of the holes, this is only a minor compromise for the model accuracy. The
number of particles injected per time step is selected and population control strategies [37] are
enforced to achieve a statistically sufficient number of particles per cell in the periphery of the
plume. Not less than 100 particles are observed in each PIC cell in steady state. The number of
total particles of all ion and neutral species in steady state approaches 4 · 106.
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Finally, the collisional mechanisms considered in this work are: single and double ionization;
elastic electron-neutral and electron-ion collisions; and neutral excitation collisions. An effective
excitation rate from ground state to the most important electronic excited states listed in [140] is
implemented. Excited states are assumed to decay instantaneously to the ground state. This as-
sumption is reasonable for radiative states, which spontaneously decay, the excitation energy being
immediately lost. But not for metastable states, which could lead to additional ion production via
stepwise ionization, or deposition of that energy back to the plasma via superelastic deexcitation
processes [141]. Therefore, this simplification is conservative in terms of ionization and energy
losses.

5.3.2. Electromagnetic wave model

The full-wave, frequency domain, cold-plasma model presented in [26] is used here for the W-
module. Rather than a finite difference discretization as in that reference, we adopt a discretization
of mixed Lagrange / vector finite elements similar to that in [41]. A major feature of the new
implementation is that the present code can simulate arbitrary azimuthal modes m, while that of
[41] only handles m = 0. This is central for HPT simulation, where the m = 1 mode is prevalent.

The wave equation for the fast electric field E,

ε0µ0
∂2E

∂t
+ ∇ × (∇ × E) = −µ0(Jp +Ja), (5.8)

is solved for harmonic solutions of the form

E(z, r, θ, t) = ℜ
[︁
E(z, r) exp(−iωt + imθ)

]︁
. (5.9)

Similar expansions are used in Jp and Ja, the plasma and antenna current densities. Ignoring
the slow ion response to the wave fields, the complex magnitude of the plasma current, Jp, is
expressed using the cold plasma dielectric tensor formalism [19] as:

Jp = −iωε0(κ − 1) · E, (5.10)

where 1 is the identity tensor and the κ the dielectric tensor, which takes the following form in the
{1∥, 1⊥, 1θ} vector basis:

κ(z, r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
P 0 0
0 (R + L)/2 −i(R − L)/2
0 i(R − L)/2 (R + L)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (5.11)

with

R = 1 −
ω2

pe

ω(ω + iνe − ωce)
, L = 1 −

ω2
pe

ω(ω + iνe + ωce)
, P = 1 −

ω2
pe

ω(ω + iνe)
.

The electron cyclotron and plasma frequencies, ωce = eBa/me and ωpe =
√︁

ne2/(meε0), are the
main plasma parameters in the electromagnetic model, while the electron collisionality νe is an
input from the slow plasma transport code.
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The weak form of equation (5.8) after expanding in ω and m is:"
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Ω

T(m) · J (m)
a ds

(5.12)

where Ω and δΩ are the simulation domain and its enclosing boundary, and T(m) is a test function.
As in [41], a mixed element discretization is used with a Nédélec basis for (Ez, Er) and a Lagrange
basis for Eθ. This conforming mixed element approach has proven to be successful in preventing
artificial accumulation of spurious current [115], [142].

The time-averaged power density deposited into the plasma, which is the main input to the
transport code from the W-module, is

Q(m)
a =

1
2
R

(︂
(J (m)

p )∗ · E(m)
)︂
. (5.13)

for each azimuthal mode m. Due to orthogonality, each mode can be solved separately. Previous
studies on HPTs using helical antennas have shown the prevalence of m = 1 in total plasma
resistivity [112], [143]. This prevalence is also confirmed for the current cusped configuration
later in this work, and therefore only the m = 1 mode will be considered in the results.

Finally, to close the problem, the antenna current density, Ja, and the boundary conditions
must be given as input to the W-module. A half-helical antenna, identical to the one reported in
[108], is used. The W-module domain, shown in figure 5.5 is larger than the transport domain,
adding a vacuum region around it, and terminated at perfect electric conductor (PEC) walls (which
would mimic a small vacuum chamber). On the axis of symmetry, regularity/smoothness boundary
conditions are used [26].

The selection of the call frequency of the W-module (i.e., the number of PIC steps per wave
call) is a compromise between very frequent EM calls and numerical stability. The local mesh
size for the W-module is selected so that there are at least 20 nodes per wavelength in average.
This allows one to resolve the fine wave structures [26]. Additionally, to avoid noise at sharp
transitions in plasma density [108], the effective electron collisionality has been smoothly reduced
from its computed value to 0 in the last 0.05R by the lateral and back walls of the thruster. The
deposited power profile has been checked to be insensitive to small variations in the thickness of
the numerical transition region around this value.

5.4. Comparison of experimental and numerical results

In Section 5.4.1, the experimental measurements are used to determine the value of the empirical
parameters αano and νq in the transport code, while a sensitivity analysis for these two parameters
is presented in section 5.4.2.
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5.4.1. Model fitting

The experimental data has been used to fit αano = 0.0165 and νq = 3.5 · 107 s−1 in the simulations.
The agreement on plasma electron density ne can be discussed in view of figure 5.3(a). The
expansion rate agrees well in the first part of the expansion ṁ = 12.5 sscm, while it is marginally
slower than the experiments for ṁ = 20 sccm.

Once adjusted to a common reference, the electrostatic potential ϕ in Figure 5.3(b) shows
fairly good agreement between the experiments and simulations.

In both ne and ϕ, a slight slope change is observed downstream in the simulated results for
ṁ = 12.5 sscm that is not recorded in the experimental measurements. This could be related to a
minor decrease in the divergence rate of the ion streamlines observed in the last part of the domain
(not shown).

The electron temperature Te is shown in Figure 5.3(c). Overall trends are similar in both
experiments and simulation results. The local maximum coincides well with the location of the
ECR (see Figure 5.2), which is a secondary location for the absorption of RF power by electrons
[126], [127]. The cooling rate after the maximum is well captured by the model. Nevertheless,
simulation results exhibit a negative bias with respect to experiments, especially for ṁ = 20 sccm,
and partially miss the behavior of the experimental data in the vicinity of the source exit. Note,
however, that the difference falls within a factor of 2 from the measurements, which is within the
expected uncertainty for the experimental determination of Te with probes, as explained in Section
5.2.2.

Finally, the normalized ion current density, including singly and doubly charged contributions,
in Figure5.3 (d) shows good agreement between experimental and numerical results at low angles
from the centerline, up to ±25 deg. The lateral wings at high angles, which are present in the
experiments, are not captured by the simulations. The ion current and plasma density in these
regions is expected to depend on the background pressure of the vacuum chamber [144]. The
ion current profile in the simulation is also known to be highly sensitive to anomalous cross-field
diffusion, controlled here by αano, and to conditions upstream at the source [40].

5.4.2. Sensitivity analysis

To assess the sensitivity of the simulations to changes in phenomenological parameters αano and
νq, a parametric study is performed for the case ṁ = 12.5 sscm. According to [40], the anomalous
transport parameter αano affects the cross-field transport, especially in near-collisionless regions
such as the plume. Increasing αano increases plume divergence and plasma losses to the walls
inside the thruster. Increasing the anomalous collisionality νq in the heat flux equation reduces the
parallel conductivity, making magnetic lines less isothermal. A higher νq increases the electron
cooling rate in the plume and also enables a higher Te inside the thruster.

Figure 5.6(a) shows the plasma density along the symmetry axis for different values of αano.
The increase in anomalous transport results in a lower, faster-decreasing electron density in the
plume. When comparing αano = 0.015 to αano = 0.018, a density difference is observed approach-
ing a factor 2 in the plume. The effects of νq on the plasma density are less noticeable.
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Figure 5.6(b) displays the effect of νq on Te along the axis. As νq increases, the electron
cooling rate in the parallel direction increases, and the peak of Te near the ECR surface in the
MN becomes more pronounced. Electron cooling in a MN without downstream power deposition
is well known and has been studied using kinetic models [45], [102], [145]; in this case, power
deposition near the ECR surface is noticeable and affects the results of the simulations, as indicated
above. The qualitative effect of increasing αano on the electron temperature is a nearly uniform
upward displacement of the curve driven by changes in the plasma density, and hence the EM
power deposition per electron.

Figure 5.6: Sensitivity analysis on the plasma density and electron temperature with varying αano

and νq.

In summary, it is found that the simple phenomenological models used here, which rely on
uniform values of αano and νq in the full simulation domain, perform reasonably well in the quest
to reproduce the trends of experimental results. However, the absolute values do not match the
measurements exactly (although they generally fall within the measurement error). It is worth
mentioning that more complex turbulent models (e.g. with nonuniform maps) could be used,
but at the probable cost of overfitting and loss of generality across similar devices and different
operating points.

5.5. Detailed analysis of the HPT discharge

Once the simulation parameters have been fitted to agree reasonably well with the limited exper-
imental results, we analyze in detail the plasma discharge for the case ṁ = 12.5 Xe sscm ≡ 1.23
mg/s. The characteristic values / ranges of the plasma conditions found in the simulation domain
are shown in Table 5.1.

5.5.1. Wave-Plasma Interaction and Electromagnetic Power Deposition

The magnitude and phase of the m = 1 azimuthal electric field of the W-module solution, which
is the predominant component excited by helical antennas [16], are shown in Figure 5.7. The field
is strongest inside the source, decaying in the plume and thruster surroundings. Despite the lower
magnitude, propagation takes place in the MN up to the ECR surface. Beyond it, since the plasma
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is overdense for the applied frequency, the fields become evanescent [19], [26].

Figure 5.7: E1
θ field magnitude (left) and phase angle (right). The dashed black line corresponds

to the ECR surface.

Along the axis, a low k∥ helicon mode is seen to propagate in the source and near-plume.
The plume periphery presents shorter wavelengths, consistent with the Trivelpiece-Gould waves
expected at the plasma edge [110]. These structures exhibit a high perpendicular wave number
k⊥. Both kinds of wave (helicon and Trivelpiece-Gould) correspond to the right-hand polarized
whistler wave at different propagation angles with respect to B, and both vanish upon arriving at
the ECR surface. At this location, electromagnetic power is mainly absorbed and cannot propagate
beyond. On a side note, we mention that there is another ECR surface in this simulation setup in
the neighborhood of the singular point inside the plasma vessel. However, its effects are minor
due to the limited spatial extent of that transition.

The power absorption profile is shown in the top row of Figure 5.8. Due to the linearity of the
wave problem, these maps can also be interpreted as the local plasma resistivity (save for a factor).
Most of the power is absorbed within the source. This agrees well with plasma-wave theory,
predicting an absorption approximately proportional to the plasma density for similar magnitude
propagating fields and suggests a good coupling between the RF antenna and the plasma inside
the source. In the zoomed-in view of the source, we see that the maximum deposition is located
near the axis, peaking at the vicinity of the magnetic separatrix.

The bottom row of Figure 5.8 shows the power absorbed per electron. According to the elec-
tron energy equation, this quantity determines the local heating of electrons, and thus affects to a
large extent the profile of Te. Per-particle absorption peaks inside the source but spreads into the
plume, with local maxima at the vicinity of the ECR surface near the symmetry axis, revealing the
importance of the particle-specific power deposition in that region of the MN. There is no energy
deposition downstream of the ECR surface. Although earlier work has relied on computing ab-
sorption only within the thruster plasma source[146], these results suggest that local heating may
affect the structure of the plume and drive the electron temperature profile outside the source.

So far, we have exclusively focused on the fields carried by EM waves in azimuthal mode
m = 1. This was done on the basis of extensive past evidence on the predominant power cou-
pling of helical antennas in helicon sources [18]. However, wave behavior is known to be highly
dependent on the applied magnetic field [19], and the question arises as to the extent to which
the previous mechanisms of propagation and absorption would still be valid in our cusped-field
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Figure 5.8: Electromagnetic Power Deposition (top row), power per electron (bottom). Zoom
on the source region (left column) and full transport domain (right column). The magnetic field
separatrix is shown as a white dashed line in the zoom view plots. The ECR resonance is shown
as a black dashed line in the full view plots.

topology. Figure 5.9 shows the fraction of the total power deposition contributed by each of the
four modes considered in the steady state discharge. Although the power deposited by m = −1
is higher than in a classical topology [26], it can be seen that m = 1 is still the main contributor.
As suggested by the results for m = ±3, the power of the higher modes decreases rapidly with m.
Additionally, the majority of the power is deposited in the dense plasma of the source regardless
of the mode. Therefore, we conclude that our approximation, that is, considering only m = 1 in
coupled simulations, is justified, with a loss of accuracy comparable to other problem uncertainties
such as wave and transport coupling or antenna modeling.

5.5.2. 2D Plasma Discharge Profiles

Figure 5.10 shows 2D maps of the main magnitudes of the plasma response. Some of the principal
features are qualitatively similar to those reported in [40] for an EPT with a quasi-axial magnetic
field and localized power deposition inside the thruster. Here, the cusped magnetic topology and
the more spread power deposition give rise to some peculiarities.

The electron temperature Te inside the source in Figure 5.10 responds mainly to the power
deposition map, which, as shown in Figure 5.8, is centered at the antenna location and mainly
downstream of the magnetic cusp. The radial magnetic lines near the cusp separate hot and cool
very efficiently, resulting in a stark difference in Te left and right of the cusp: while Te after the
cusp is around 5 eV, it is below 2 eV left of it. Naturally, Te is also affected by wall losses,
inelastic collisions, and convection/heat fluxes. As parallel transport is very efficient, we observe
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Figure 5.9: Fraction of the total electromagnetic power deposition in the source (blue) and plume
(orange) regions for each azimuthal wave number.

a near-isothermal behavior along magnetic lines on this scale.

The low Te inwards of the magnetic cusp means low plasma production and neutral depletion
there, as the plot of nn in Figure 5.10 suggests. Ionization of neutrals becomes efficient as Te

increases when crossing the cusp and neutrals are depleted. Additionally, the neutral density rises
locally near the walls, driven by ion surface recombination. The plasma density peaks around the
magnetic cusp section, but unfortunately, this plasma is not transported exclusively downstream,
but upstream as well, which is found to be a major loss mechanism of this HPT field configuration.

In Figure 5.10, the map of the electrostatic potential ϕ inside the thruster roughly follows that
of ln ne. However, the peak of ϕ occurs downstream from the peak of ne. The large plasma pro-
duction near the peak of ϕ flows both downstream and upstream, facilitated by the axial magnetic
lines guiding electron motion and the unmagnetized character of the ions. Downstream the cusp,
the decrease of ne is due to plasma acceleration. Except in the proximity of the lateral wall, the
electric field −∇ϕ becomes essentially axial where the magnetic lines are axial. The low radial
electric field is a consequence of the existence of an azimuthal electron current that produces a
radial magnetic force, shown in Figure 5.12 that compensates for pressure gradients [31], [40].

The map of Te in the plume region, shown in the top left of Figure 5.10, also merits discussion.
The electron temperature remains around its maximum value in the near-plume due to the mild
cooling rate. Although the gradient of Te is also mainly in the perpendicular direction in the plume,
certain parallel variations can be observed at this scale. The local maximum near the ECR location
on the axis, reported in Section 5.4.1, is consistent with the peak in power deposition per electron
there, which helps raise the local Te. Another local maximum of Te occurs in the periphery of the
plume, on magnetic lines that do not connect to the plasma source. This behavior, which has not
yet been validated experimentally, is driven by low ne, low energy losses, and low perpendicular
transport in this region, combined with moderate RF power deposition per particle. Finally, the
electrostatic potential map in the plume of Figure 5.10 also features a prominently axial gradient,
as inside the source. This behavior suggests a low plume divergence, as discussed in the next
section.

Figure 5.11 shows the in-plane ion flux (top, dominated by singly charged ions) and the total
electron flux (middle), ȷ̃i = jzi1z+ jri1r and ȷ̃e = jze1z+ jre1r. There is a significant flux of particles
into the back and lateral walls of the source. Moreover, very few ions generated upstream of the
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Figure 5.10: Electron temperature (1st row), plasma density (2nd row), neutral density (3rd row),
and plasma potential (4th row). Zoom in on the source region (left column) and full transport
domain view (right column). The solid white lines are magnetic field streamlines.
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Figure 5.11: Total ion (top) and electron (middle) current density and particle flux vectors; and
azimuthal electron current (bottom). The magnetic field separatrix is shown as a white dashed
line.

magnetic cusp separatrix are capable of crossing it. As a consequence, ion production to the
left of the cusp is almost completely lost to the dielectric walls. Considering that ions are only
weakly magnetized, the ion dynamics is driven solely by the potential map. Downstream of the
separatrix, ions accelerate and expand, with a non-negligible fraction of them impacting the lateral
wall. Electrons, on the other hand, feature a large axial current near the axis and a compensating
return current at larger radii to keep the plasma emission globally current-free.

The azimuthal current densities are such that jθe ≫ jθi by about a factor 200, and the electron
contribution constitutes the bulk of the plasma azimuthal current, essential in magnetic confine-
ment and thrust generation. The map of jθe at the source is shown in Fig. 5.11 (bottom). From the
momentum equation (5.3), the perpendicular pressure gradient, the perpendicular electric field,
and to a minor extent, classical resistivity contribute to determining this current. As can be ob-
served, jθe peaks near the lateral wall around the location of the cusp, switching signs on each
side.

The radial and axial magnetic force densities generated by the interaction of this azimuthal
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current with the applied magnetic field, respectively jθeBz and − jθeBr, are shown in Figure 5.12.
The radial magnetic force is negative in the source and confines the electrons away from the
lateral wall, whereas the axial magnetic force is positive and negative left and right of the cusp,
respectively. Combined, the two forces push the electrons to the singular point of the field, where
the highest plasma density ne occurs.

From the point of view of magnetic thrust generation (that is, the volume integral of − jθeBr), it
is evident that the electron currents to the left of the cusp contribute positively to thrust, while those
to the right of the cusp exert a comparable negative (drag) contribution, driven by the geometry
of the field and the direction of the electron pressure and electrostatic potential gradients. The
axial magnetic force in each of these two regions amounts to approximately 4.7 and −2.9 mN,
respectively. The positive thrust generation is resumed downstream in the MN, where 3.2 mN are
generated up to the end of the simulation domain. This is roughly 45% of the total thrust of the
device, a fraction comparable to that of other MNs [101]. In addition to the magnetic thrust, the
pressure thrust (on the wall of the plasma source) yields about 2.2 mN extra.

Figure 5.12: Radial (top) and axial (bottom) magnetic force in the plasma. The force direction is
indicated by ± signs.

Figure 5.13 shows the electron and total ion fluxes to the boundaries of the domain. While
these fluxes differ at the top and right plume boundaries, their integral satisfies the global current-
free condition. Figure 5.13 (right) shows that the maximum current is reached just at z = −3.5 cm,
demonstrating not only the poor confinement in the source, but also that the cusped magnetic field
drives the particles directly onto the walls at that location.

The energy fluxes in the bottom row of Figure 5.13 follow similar trends. In most of the inner
wall of the plasma source, the energy carried by the electrons (advective and heat flux terms)
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is larger than the ion energy. Poor confinement in the neighborhood of the magnetic separatrix
drives a strong convective energy flux to the lateral wall. This important energy sink and the need
to reionize the particles that recombine at the walls lead to the low plasma temperature shown in
Figure 5.10. Secondary electron emission is small, with a yield less than 20 % in all source walls,
due to the moderate electron temperature and ion impact energies.

Figure 5.13: Electron and total ion current densities (top row) and energy fluxes (bottom row) to
source dielectric walls (left column) and all domain boundaries (right column). The arc length
coordinate s moves clockwise along the boundary from (z, r) = (−6, 0). Refer to Figure 5.5 to
identify each boundary wall W. The dashed line in the left plots indicates the location of cusp.

5.5.3. Balances of plasma production and energy

The efficiency of the thruster is analyzed here through different balances. The first variable of
interest is the total ion mass production rate, ṁi,prod/ṁ. In steady state, this ion production is
distributed as

ṁi,prod = ṁi∞ + ṁi,lat + ṁi,back (5.14)

with ṁi∞ the flow of ions through the free-flow boundaries and ṁi,lat and ṁi,back the ion flows that
recombine at the lateral and back wall, respectively. For the case simulated here, the utilization of
the propellant mass is ηu = ṁi∞/ṁ ≃ 89% and the production efficiency is ηprod = ṁi∞/ṁi,prod ≃

9%; both values are consistent with the high densities and the large chamber length. This means
that plasma ionization is very efficient, but plasma confinement is very poor. Indeed, on average,
every neutral is ionized 10 times after 9 recombinations in the walls. A balance equivalent to (5.14)
can be done in terms of total ion electric currents, that is, Ii,prod = Ii∞ + Ii,lat + Ii,back, which results
from integrals of the current in Fig. 5.13. Ratios for mass flows and currents are very similar since
the amount of doubly-charged ions is small; for instance, the downstream ion mass flow consists
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of 91.5% of singly-charged ions and 8.5% of doubly-charged ions.

The power balance can be expressed as

Pa = P∞ + Plat + Pback + Pion + Pexc (5.15)

with the terms on the right hand side being, respectively, the mechanical power in the beam leaving
the plume domain, the mechanical power lost in the lateral walls and the back walls of the source,
and the power spent in ionization and excitation collisions. The first three are integrals along
sections of the curves of Figure 5.13. The ratios to the absorbed power Pa are the following:

P∞
Pa
≃ 12%,

Plat

Pa
≃ 33%,

Pback

Pa
≃ 1.6%,

Pion

Pa
≃ 22%,

Pexc

Pa
≃ 31%, (5.16)

i.e. a 35% of Pa is lost in the walls and a 53% is lost in ionization and excitation. These large
losses are due to the combination of poor plasma confinement and a very long chamber. Compara-
ble high wall losses have been observed in other numerical [147] and experimental studies [148],
showing about a 40 % loss of the total power budget in both low- and high-power devices. Despite
the relatively low Te (approximately 5 eV), there is multiple ion recombination and neutral reion-
ization, as illustrated by the production efficiency of only 9%. The low fraction of useful energy
explains the low Te, which leads to excitation energy losses being higher than the ionization losses.

It is of interest to compare these performances with those of Ref. [40] for an HPT of similar
geometry and power, but with a quasi-axial magnetic topology. The ratio of the back to the lateral
wall areas is about 10% in the two cases. The ratio of back to lateral wall energy losses is about
4.5% here and it was about 50% in Ref. [40]. Thus, the magnetic cusp has improved the con-
finement of the back wall by moving plasma production downstream of the ring cusp. However,
the overall confinement is worse, as illustrated by ηprod, which is 16% (almost double) in [40].
In that case, 44% of Pa is lost in the walls and a 36% is lost in ionization and excitation. The
higher percentage of wall losses in [40] is due to the higher Te (about 11 eV) that also comes with
a considerable reduction in excitation losses. This is again an indication of the complex energy
balance in these thrusters and the delicate optimization of design and operation conditions.

The thrust calculated here is F ≃ 7.5 mN, which yields a thrust efficiency ηF = F2/(2ṁPa) ≃
5.1%, (compared to 11.5% in [40]). To understand the different sources of thrust inefficiency, ηF

is factorized as [40]:

ηF = ηdispηdivηene, ηdisp =
F2

2ṁP(z)
∞

, ηdiv =
P(z)
∞

P∞
, ηene =

P∞
Pa
, (5.17)

where: P(z)
∞ is the flow of axial energy in the beam, the only one that may be used to generate

thrust; ηdisp takes into account that the plasma beam is not monoenergetic, and constituted of
particles of different electric charges; ηdiv assesses the plume divergence; and ηene is the energy
efficiency. For our simulation we have: ηene ≃ 12%, as mentioned above, which is the main cause
of the poor efficiency of the device; ηdiv ≃ 59%, which corresponds to a divergence half angle of
arccos

√
ηdiv ≃ 40 deg; and ηdisp ≃ 72%, value that comes out mainly from the non-monoenergetic

downstream plasma flow, with an 11% constituted of slow neutrals and a 7% of doubly-charged
ions, with double energy than the 82% of singly-charged ions.
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Finally, to assess the effect of vacuum chamber background pressure on the thruster perfor-
mance figures (and in the plasma profiles), and to validate our modeling approach, an additional
simulation was carried out including the injection of cold neutrals (300 K) through the free-loss
boundaries at the plume of figure 5.5, corresponding to a typical pressure of 10−5 mbar in our
vacuum chamber. This preliminary study of background pressure effects indicates that (1) the
discharge in the ionization chamber is essentially unaffected; (2) the plume region maintains its
overall characteristics and the effect is mild, consisting of a slight decrease in electron temperature
(≃ 0.5 eV), a decrease in potential fall (≃ 4 V), and a slight increase in plume divergence (≃ 3
deg); (3) the ionization and entrainment of background gas into the plume increases the resulting
ion current by 5% (this artificially pumps the utilization efficiency to 93%); (4) the combined ef-
fects result in a decrease in thrust by 5%. This is consistent with the findings of Wachs et al. [149],
where the loss in ion beam energy (due to the lower potential fall) appears to weigh more than the
additional “free” neutral mass flow on the overall efficiency of the device. These observations
could be relevant when extrapolating vacuum chamber measurements to estimate the propulsive
performance of a device under free-space conditions.

5.6. Summary

An experimental and numerical analysis of the discharge of a cusped Helicon Plasma Thruster has
been conducted. After the anomalous collisionality parameters of the model were adjusted, sim-
ulations successfully captured the trends of the experimental plasma profiles, providing a partial
validation of the model. The numerical results reproduce the presence of a secondary maximum
of electron temperature Te near the downstream ECR surface, although differences of up to 50%
in absolute value are observed in the high mass flow rate case. The azimuthal profile of the ion
current density ji is also well described by the code up to moderate angles, beyond which the
experimental data present lateral wings.

The results suggest that anomalous transport exists in this device, augmenting cross-field trans-
port and reducing parallel heat fluxes, and highlight the importance of accurately modeling these
effects. While a rather simple two-parameter model has been used, additional experimental mea-
surements could help define more advanced ones. The sensitivity analysis on these two parame-
ters shows a strong dependence of the plasma response in the plume, and—without a predictive
anomalous transport theory,—stresses the need of a tuning process in general.

The magnetic ring cusp greatly determines the plasma response inside the source. In this
HPT configuration, the deposition of energy is located close to the center of the antenna, which is
downstream of the cusp. This causes the region inward to the cusp to be of low temperature and
displaces to the cusp the main ionization region. The cusp also divides the regions of back and
forward ion currents, and of positive (inward) and negative (outward) magnetic thrust inside the
source; the external magnetic thrust is positive again in the MN. The net magnetic thrust amounts
to 70% of the total generated thrust.

The different causes of performance loss have been described. As in other helicon plasma
thruster designs, plasma currents to walls are very large, implying high ion recombination, and
multiple re-ionization, which in turn increase the losses due to ionization and excitation. This
results in low energy efficiency and, consequently, low thrust efficiency. Compared to thrusters
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with a quasi-axial magnetic field, the presence of a ring-cusp seems to reduce the losses to the
lateral wall. This could be a major advantage of this configuration. Nevertheless, the overall
lower electron temperature reached in the current design leads to enhanced excitation losses, and
this offsets the improvement mentioned above. Further work should identify whether design or
operating point modifications can exploit the lower wall losses of the cusped case while increasing
the electron temperature to increase thrust efficiency, as suggested by some experimental studies
[121], [122].

Finally, a numerical contribution has been the improvement of the W-module of HYPHEN-
EPT with new Finite Element algorithms capable of reproducing any azimuthal wavenumber m.
These are shown to be more accurate than the previous Finite Difference ones. For the half-helical
antenna of the HPT, m = +1 is the dominant mode (with ∼70% of the deposited power), and
the modes m = −1 and +3 are subdominant. The computed wavefields indicate that most of
the RF power is absorbed inside the source and downstream of the magnetic cusp. Furthermore,
the power absorbed per electron is seen to have a local maximum on the axis near the downstream
ECR surface, which correlates with the peak in Te observed in experiments and simulations. Being
relatively far from the plasma source, the role of ECR in plasma heating, despite being studied in
some early work [127], has been ignored in some HPT numerical investigations (e.g. [40], [146]).
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6. An implicit, conservative electrostatic particle-in-cell
algorithm for magnetic nozzles

The contents of the following chapter have been published in [71] and are reproduced here
without modifications.

An electrostatic, implicit particle-in-cell (PIC) model for collisionless, fully magnetized, parax-
ial plasma expansions in a magnetic nozzle is introduced with exact charge, energy, and magnetic
moment conservation properties. The approach is adaptive in configuration space by the use of
mapped meshes, and exploits the strict conservation of the magnetic moment to reduce the di-
mensionality of velocity space. A new particle integrator is implemented, which allows particle
substepping without the need to stop particle motion at every cell face for charge conservation.
Particle substeps are determined from accuracy considerations, and are allowed to span multiple
cells. Novel particle injection and expansion-to-infinity boundary conditions are developed, in-
cluding a control loop to prevent the formation of spurious sheaths at the edges of the domain. The
algorithm is verified in a periodic magnetic mirror configuration, a uniform plasma test case (to
test particle injection), and a propulsive magnetic nozzle. The algorithm’s computational complex-
ity is shown to scale favorably with timestep, and linearly with the number of particles and grid
cells for resolutions well beyond typical simulation needs. Numerical experiments demonstrate
that the proposed algorithm is more than an order of magnitude faster than a semi-Lagrangian
Vlasov code running on a similar machine, and we estimate speedups of that order compared to
explicit PIC algorithms.

6.1. Introduction

A guiding divergent magnetic field can be used to expand a plasma in a controlled and directed
manner to generate thrust. This is the principle behind the magnetic nozzle (MN) [32], [150],
a device used to convert plasma thermal energy into macroscopic kinetic energy contactlessly,
which constitutes an essential component of several plasma propulsion technologies such as the
helicon plasma thruster [10], [29], [92], the electron cyclotron resonance thruster [41], [151],
[152], the applied-field magnetoplasmadynamic thruster [153], [154], and the variable specific
impulse magnetoplasma rocket [6]. In contrast to a classical (material) de Laval nozzle, where
the pressure force on the device walls is the mechanism limiting the radial expansion of the gas
and leading to the generation of mechanical thrust, in a MN it is the Lorentz force on the charged
particles that confines their radial expansion and generates magnetic thrust.

The expansion in the MN is quasi-collisionless, which limits the applicability of closed-fluid
models. For this reason, kinetic models have been used to understand, in particular, the elec-
tron response, which is intimately linked to the development of the ambipolar electrostatic po-
tential responsible for the acceleration of the ions. Martínez-Sánchez et al. [102] established a
steady-state, semi-analytical paraxial model of the expansion of an initially Maxwellian plasma
in a converging-diverging magnetic field. They showed the presence of different electron subpop-
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ulations (free-streaming, reflected, and doubly-trapped electrons) depending on the connectivity
of their trajectories with the upstream plasma source and infinity downstream, as determined by
barriers of an effective potential that results from the electrostatic field and the magnetic mirror
force. That study revealed the existence of electron cooling and electron anisotropization on the
divergent side, different for each electron subpopulation. The overall electron species exhibits
a behavior that corresponds to the weighted average of the three subpopulations. Although that
model solves for the distribution function of ions and electrons whose trajectories connect with
the boundary conditions of the problem, it is unable to resolve the distribution of doubly trapped
electrons, which was hypothesized to coincide with the distribution upstream. The model was later
used to explore approximate closure relations [136], and was extended to two-dimensional MNs
[145].

Sánchez et al. [45] explored the problem of electron kinetics in a MN with a time-dependent
Vlasov code, and the same team later added weak resistivity to the electron dynamics [46]. These
two mechanisms enabled the self-consistent study of doubly trapped electrons, as these regions are
populated during the transient plume formation and by collisional diffusion. However, in addition
to the high computational cost of this kinetic code, numerical difficulties were identified in the
definition of the upstream and downstream boundary conditions (BCs). The choice of BCs in those
studies led to the formation of undesired Debye sheaths in simulations that do not correspond with
the expansion of a MN plasma into free space. This forced the truncation of the analysis domain
to about half of the simulation domain. In other studies, the open-boundary BCs used prevented
simulation of steady-state plasma expansion, as the time evolution of the plume had to be stopped
before the particles reached the end of the domain [155], [156].

Advances in the proper treatment of BCs in kinetic simulations were presented by Li et al.
[157]. That study showed that, when Dirichlet conditions for the potential at the entrance and
homogeneous Neumann conditions at the exit are used, if all electrons reaching the downstream
boundary are removed from the simulation, a numerical instability develops in the whole domain.
Rather, a more consistent approach is to acknowledge that most of these electrons do not have
the mechanical energy to reach infinity downstream and must be reflected based on the value
of the total potential fall ϕ∞ − ϕ0, a magnitude that must be determined self-consistently during
the simulation to enforce global current ambipolarity in the plasma jet. However, the reference
employed an explicit particle-in-cell (PIC) approach, which was limited to very small domains due
to computational constraints. Andrews et al. proposed yet another strategy based on a multipole
expansion that yields non-stationary Robin-type boundary conditions on Poisson’s equation [158].

Recently, a class of implicit electrostatic PIC algorithms have been proposed [65] that are ex-
actly charge- and energy-conserving and able to leverage adaptive meshing without loss of those
conservation properties [159]. These algorithms have been extended to deal efficiently with low-
frequency electromagnetic regimes [160], [161] and strongly magnetized regimes [162]. The abil-
ity of these schemes to use time steps much larger than plasma and cyclotron frequencies, along
with the preservation of strict conservation properties, makes them particularly attractive for the
simulation of MNs in multiple dimensions and arbitrary magnetization regimes.

In this study, we take the first step in this direction by exploring the use of implicit electro-
static PIC algorithms for paraxial magnetic nozzles in the strongly magnetized regime. We built
on previous studies and adapt a novel particle mover (particularly suitable for strongly magne-
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tized regimes [162]) to mapped adaptive meshes. Such grids are convenient to simulate plasma
expansions with PIC codes, since having a local cell size scaling roughly with the inverse of the
expected plasma density allows for a comparable number of macroparticles per cell and therefore
a comparable resolution in velocity space. Also, the spatial gradient length increases downstream,
so a lower spatial resolution is sufficient there. Moreover, a dynamic outflow field boundary con-
dition in one spatial dimension is rigorously derived that captures the plasma expansion towards
infinity without introducing numerical artifacts (such as artificial sheaths) or forcing arbitrary con-
ditions on the electric field. We demonstrate the new implicit 1D PIC solver on several examples,
including a magnetic mirror, a uniform plasma, and a paraxial magnetic nozzle. For the latter, we
compare our results with published data [45], finding a good agreement. We show that our model
avoids domain-termination sheaths and outperforms [45] in accuracy and computational time. Fi-
nally we study the performance of the new algorithm in the MN problem, including the scaling of
CPU wall time with different numerical parameters and the speedup with respect to other methods.

The rest of the paper is structured as follows: Section 6.2 introduces the quasi 1D paraxial
model, field equations and the particle discretization of phase space. Section 6.3 addresses the
numerical discretization and solution of the model via an implicit particle in cell algorithm, in-
cluding the generalization of the new segment-averaged mover [163] to mapped geometries. It
also proves the global energy and local charge conservation properties of the method. Section 6.4
introduces the newly developed injection algorithm and dynamic downstream boundary condition
for MNs. Section 6.5 discusses the verification of the code with three numerical examples. The
first (6.5.1) demonstrates conservation properties and the effect of the magnetic mirror force in
a simplified periodic geometry; the second (6.5.2) demonstrates the ability of the code to handle
particle injection in an implicit PIC context with a uniform plasma verification example; and the
third (6.5.3) compares the full MN model against literature results. Finally, Section 6.6 presents a
summary of this work.

6.2. Model

The kinetic model describes the collisionless, quasineutral expansion of a plasma from an up-
stream source into vacuum along the axis of an axisymmetric, convergent-divergent magnetic
field B, known as magnetic nozzle (MN). The maximum B is located at z = 0 and is referred to as
magnetic throat. The plasma is composed of strongly-magnetized electrons e and singly-charged
ions i that satisfy

msv⊥s

qsB
≪ L⊥ ≪ L∥,

ms

qsB
≪ τ, (6.1)

for s = i, e with mass ms, charge qs and perpendicular (to B) velocity v⊥s; where L∥, L⊥ are the
characteristic gradient lengths in the parallel and perpendicular directions and τ the characteristic
time of change of the fields.

6.2.1. Paraxial drift-kinetic equation

Under the assumptions above, the magnetic moment of each charged particle µs = msv2
⊥/(2B) is

a conserved adiabatic invariant, and the gyroaveraged distributions fs(x, v∥, µ̃, t) (s = i, e) (with
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µ̃ = µs/ms the mass-scaled magnetic moment) along the axis respond to the drift-kinetic Vlasov
equation (DKE) in conservative form [164]:

∂ fs

∂t
+

1
B(x)

[︄
∇ ·

(︁
v∥B fs

)︁
+
∂

∂v∥

(︄(︄
qs

ms
E∥ − µ̃b · ∇B

)︄
B fs

)︄]︄
= 0, (6.2)

where E∥ = −b · ∇ϕ is the parallel electrostatic field, with ϕ(x, t) the electrostatic potential. Per-
pendicular drifts are negligible in the regime described by the orderings in Eq. (6.1), and are
strictly zero on the axis of symmetry (see below). The factor B(x) in this equation is the Jacobian
determinant of the transformation from (x, v∥, v2

⊥/2) to (x, v∥, µ̃) coordinates:

Jµ =

⃓⃓⃓⃓⃓
⃓∂(x, v∥, v2

⊥/2)
∂(x, v∥, µ̃)

⃓⃓⃓⃓⃓
⃓ = B(x). (6.3)

Noting that the phase-space flow
(︂
v∥B, B( qs

ms
E∥ − µ̃b · ∇B)

)︂
is incompressible (as required for the

conservation of phase-space volume),

∇ ·
(︁
v∥B

)︁
+
∂

∂v∥

(︄
B

(︄
qs

ms
E∥ − µ̃b · ∇B

)︄)︄
= 0, (6.4)

the DKE can be rewritten in characteristic form as:

∂t fs + v∥b · ∇ fs +

(︄
qs

ms
E∥ − µ̃b · ∇B

)︄
∂ fs

∂v∥
= 0. (6.5)

In general, in an axially symmetric configuration, B = B(z, r). If the magnetic field variation in
the r-direction is slow enough (which implies ∂B/∂r|Rb(z) ≪ B/Rb, where Rb(z) is the characteristic
radius of a fully magnetized plasma beam), one can neglect the r-coodinate and only consider the
coordinate along the symmetry axis z, and have:

v∥ ≈ vz ; E∥ ≈ Ez ; B ≈ B(z)z.

To recover the solenoidal property of the magnetic field (and phase-space incompressibility), we
require the paraxial Jacobian factor JB = 1/B(z) in the definition of the divergence, such that:

∇ · B =
1
JB∂z(JBB) = 0.

This Jacobian is proportional to the flux-tube area by flux conservation, i.e., Aft(z) ∝ 1/B(z) = JB.
The characteristic form of the paraxial DKE equation reads (from Eq. 6.5):

∂t fs + vz∂z fs +

(︄
qs

ms
Ez − µ̃∂zB

)︄
∂ fs

∂vz
= 0, (6.6)

with the corresponding conservative form (noting that JµJB = 1):

∂t fs +
∂

∂z
(vz fs) +

∂

∂vz

(︄(︄
qs

ms
Ez − µ̃∂zB

)︄
fs

)︄
= 0. (6.7)
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The corresponding particle representation of fs is given by:

fs(z, vz, µ̃, t) =
∑︂
p∈s

wpδ(z − zp(t))δ(vz − vz,p(t))δ(µ̃ − µ̃p(t)), (6.8)

where δ(z) denotes the Dirac delta function, wp is the weight of the p-th particle of species s.
Introducing the particle ansatz (6.8) into the Vlasov equation (6.6) yields the axial particle motion
governing equations:

dwp

dt
= 0, (6.9)

dµ̃p

dt
= 0, (6.10)

dzp

dt
= vz,p, (6.11)

dvz,p

dt
=

qp

mp
Ez(zp) − µ̃p

dB
dz

⃓⃓⃓⃓⃓
zp

. (6.12)

Zeroth and first moments of fs give charge and current densities affected by the paraxial Ja-
cobian (as required [66] since particles carry charges and currents, not densities), and are given
by:

JBρ(z, t) = JB
∑︂

s

qs

∫︂
dvzdµ̃Jµ fs(z, vz, µ, t) =

∑︂
p

qpwpδ(z − zp(t)), (6.13)

JB jz(z, t) = JB
∑︂

s

qs

∫︂
dvzdµ̃Jµ vz fs(z, vz, µ, t) =

∑︂
p

qpwpvz,p(t)δ(z − zp(t)). (6.14)

6.2.2. Electrostatic field equation

The particle system is closed with an evolution equation for the electrostatic field. Instead of
using Poisson’s equation directly, as is customary in classical PIC algorithms, and with the goal
of achieving strict numerical energy conservation in mind, we begin by considering Ampere’s law
[65],

ϵ0
∂E
∂t
+ j =

1
µ0
∇ × B. (6.15)

Taking the divergence of this equation gives:

ϵ0
∂

∂t
∇ · E + ∇ · j = 0. (6.16)

Introducing the scalar electric potential E = −∇ϕ, one arrives at the final field equation used in
this study:

ϵ0
∂

∂t
∇2ϕ = ∇ · j. (6.17)
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Note that this equation recovers the charge conservation equation if one replaces the Poisson equa-
tion or, equivalently, the same equation can also be derived by temporally differentiating Poisson’s
equation and using conservation of charge. Equations (6.6) and (6.17) for fs and ϕmust be comple-
mented with the necessary initial and boundary conditions. In particular, at the upstream plasma
source, it is assumed that the one-sided part of fs (s = i, e) with vz > 0 is known. Boundary
conditions for the field are presented in Section 6.4.

It is worth observing that the equation of axial momentum (6.12) can be expressed in terms of
the effective potential Ueff,s, defined in [102] as

Ueff,s(z, t; µ̃) =
qs

ms
ϕ(z, t) + µ̃B(z), (6.18)

for s = i, e, so dvz,p/dt = −dUeff,s/dz|zp . At every instant of time, while ϕ is monotonically
decreasing along the MN in the cases of interest, Ueff,s is generally nonmonotonic, at least for some
µ̃. This creates potential barriers that cause the distributions of ions and electrons to subdivide
into free-streaming, reflected, and trapped subpopulations, depending on the connectivity of their
trajectories with the upstream plasma source and infinity downstream [102], [136], [145]. These
subpopulations are cleanly delimited in steady state, where ϕ depends only on z. Naturally, in
a time-dependent context, Ueff,s varies in time, and the boundaries between these subpopulations
become dynamic. Therefore, initially free particles may become trapped during the transient setup
of the plasma beam [45], and vice versa, as ϕ evolves and their mechanical energy changes.

6.2.3. Transformation of the spatial coordinate

At this point, and for the purpose of spatial adaptivity, it is useful to consider analytically deformed
grids using a mesh map z(ξ). In 1D, the Jacobian of the transformation is simply Jξ = dz/dξ. To
ensure strict numerical energy conservation, we employ a hybrid push [66], [165], [166] that
evolves the position of the particle in the logical space ξ, while the particle velocity is evolved in
the Cartesian coordinate vz. Following equation (6.10) µ̃p is exactly conserved and there is no need
to evolve it. Additionally, this approach recovers the advantage of fast particle grid localization
and grid-particle interpolations in a structured grid computational space, while avoiding trouble-
some inertial forces in the particle equation of motion due to the presence of the map [167]. The
evolution of the particle position in logical space ξp is found by dividing equation 6.11 by Jξ to
find:

dξp

dt
=

vz,p

Jξ
. (6.19)

Regarding the momentum equation (6.12), we similarly write the Cartesian electric field as Ez =

−∂ϕ/∂z = Eξ/Jξ, with Eξ = −∂ϕ/∂ξ (which is directly computable on the logical grid), to find:

dvpz

dt
= −

qp

mp

(︄
Eξ
Jξ

)︄
ξp

−
µp

mp

dB
dz

⃓⃓⃓⃓⃓
ξp

. (6.20)

The logical representation of the field equation Eq. (6.17) in 1D reads:

ϵ0∂t∂ξ
(︂
Jgξξ∂ξϕ

)︂
= ∂ξ

(︂
J jξ

)︂
, (6.21)
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where ∂ξ = ∂/∂ξ. The Jacobian J = JξJB includes both the mesh map contribution Jξ and the
paraxial Jacobian JB = 1/B(z). In 1D, the contravariant metric tensor has just one component
given by gξξ = (Jξ)−2, and the contravariant current density vector reduces to just one component,
jξ = j ·∇ξ = jz/Jξ. Equation (6.21), in 1D logical coordinates ξ and in the paraxial approximation,
finally reads:

ϵ0∂t∂ξ

(︄
JB

Jξ
∂ξϕ

)︄
= ∂ξ(J jξ), (6.22)

where the contravariant current component is found from the Cartesian particle velocity compo-
nent vz,p as in [66]:

J jξ =
∑︂

p

qp
vz,p

Jξ
δ(ξ − ξp(t)) =

∑︂
p

qp
dξp

dt
δ(ξ − ξp(t)). (6.23)

6.3. Numerical Implementation

6.3.1. Particle enslavement and subcycling

After a suitable discretization, one may use Eqs. (6.19) and (6.20) with the new particle coor-
dinates X2 =

{︂
ξn+1, vn+1

z

}︂
p

and Eq. (6.21) for the new potential at the cell centers X1 =
{︂
ϕn+1

i

}︂
to obtain a nonlinear residual vector F(X1,X2) = 0, which can be solved iteratively. However,
such a formulation renders the number of unknowns too large for practical deployment in current
massively parallel computers.

A practical implementation can be realized by noticing that the new particle coordinates are
themselves functions of the potential, from which it follows that a new residual can be written
F1 (X1, f2 (X1)) = G (X1) = 0 [65]. Finding f2 (X1) requires an orbit integral, that is, for each
particle, and given the electric potential on the cell faces X1 = ϕ

n+1
i , the equations of motion need

to be integrated to accumulate the moments to form the residual vector G(ϕn+1
i ). This procedure,

known as particle enslavement [65], allows a global nonlinear solver, in our case a Jacobian Free
Newton Krylov (JFNK) method, to handle a much reduced system of equations with no compro-
mise on the accuracy of the solution.

Particle enslavement in an implicit PIC context provides great versatility for the integration of
particle orbits. In particular, particle sub-stepping or subcycling will be employed [65]. Instead of
using the overall time step ∆t to integrate the particle orbits numerically, different ∆τνp per substep
ν (suitably determined, as discussed below) are used such that

∑︁
∆τνp = ∆t. This approach can

leverage the difference of scales between the slow field dynamics, characterized by ∆t, and the
fast particle dynamics, represented by ∆τp

ν , to allow for accurate orbit integrals while avoiding
expensive calls to memory because the particle coordinates are stored in local registers during the
computation of subsequent substeps.

In earlier implicit PIC implementations [65], the simultaneous enforcement of local charge
and energy conservation is achieved by adjusting intermediate ∆τνp to make particles stop at cell
faces. Consequently, the number of cell crossings, and thus of substeps, grows proportionally to
∆t and scales with the grid resolution (proportionally to the number of nodes in 1D [168]). In
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practice, this hinders efficiency gains from the use of large ∆t. Recently, a new particle mover
has been proposed [162] that allows particles to cross several cells in a single substep while still
conserving global energy and local charge exactly. The present work generalizes the new mover
to nonuniform mapped meshes.

6.3.2. Particle orbit integration

We describe next the discretization of the particle equations of motion, the timestep estimator,
and the orbit integration algorithm in mapped geometries. A key innovation of our approach is
the ability of particles to traverse multiple cells in a single substep without spoiling conservation
properties.

Crank-Nicolson discretization

A fully implicit, time centered, second-order and non-dissipative Crank-Nicolson discretization
[65] is used,

ξν+1
p − ξνp

∆τνp
=

(︄
vz

Jξ

)︄ν+1/2

p
, (6.24)

vν+1
z,p − vνz,p
∆τνp

= av+1/2 =
qp

mp

(︄
Eξ
Jξ

)︄ν+1/2

p
− µ̃p

Bν+1
p − Bνp

vν+1/2
z,p ∆τνp

, (6.25)

where vν+1/2
z,p = (vν+1

z,p + vνz,p)/2, and aν+1/2 is the particle acceleration computed at (∆τ/2, (ξν+1
p +

ξνp)/2) from the electric and magnetic mirror forces. The definition of the Jacobian average over
the substep, Jν+1/2

ξ , will account for multiple cell-crossings per particle substep, and is reported
later in this section (Sec. 6.3.2). The discretization proposed for the mirror force term, µ̃p(dB/dz)
in the right hand side of Eq. (6.25), uses Eq. 6.24 to substitute ∆zν = vn+1/2

z,p ∆τνp in the denominator
and will be shown to conserve energy exactly.

The coupling between ξν+1
p and vν+1/2

z,p via the mid-orbit electric field Eν+1/2
ξ,p implies that an

additional non-linear solve per particle is needed inside the mover. The system of equations is
well posed for large time-steps, and simple Picard iterations achieve convergence to a very tight
tolerance in a few steps [169].

Figure 6.1 shows an example of a particle’s trajectory during and integration time step and the
position of the most important field and particle variables in the computational space-time grid.
The spatial 1D grid extends from i = 1/2 to i = nz + 1/2. Integer indices denote cell centers, and
half-integer indices denote cell faces or boundaries; nz is the total number of cells in the domain.
The particles are allowed to cross several cells in each substep ν instead of stopping at cell faces.
This new strategy [162] has several advantages. The criteria for the selection of the substep τνp
is only based on physical considerations. Free-streaming particles, not subject to strong-field
gradients, can be advanced with fewer substeps while a time estimator for ∆τνp (discussed below)
keeps numerical error of the Crank-Nicolson scheme under control.

The electric field (which determines the acceleration) must be scattered to the particles, ac-
counting for all cell crossings during a substep ∆τν. In practice, this is done using a segment-
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averaging approach [162]:

Eν+1/2
ξ,p =

∑︂
i

En+1/2
ξ,i+1/2

⟨︂
S 1

(︂
ξi+1/2 − ξ

s+1/2
p

)︂⟩︂ν
p
, (6.26)

where En+1/2
ξ,i+1/2 = (En+1

ξ,i+1/2 + En
ξ,i+1/2)/2 and the orbit average of the first-order spline function S 1

is defined by weighting the distance traveled through each crossed segment (∆ξs) over the total
length of the substep (∆ξν) [162]:

⟨︂
S 1

(︂
ξi+1/2 − ξ

s+1/2
p

)︂⟩︂ν
p
=

1
∆ξνp

∑︂
s∈ν

S 1
(︂
ξi+1/2 − ξ

s+1/2
p

)︂
∆ξs

p. (6.27)

Here, the sum is over the collection of segments that make up the substep ν.

The segment averaging procedure, described above for the electric field in the particle push,
results in significant efficiency gains compared to the previous particle subcycling approach [65]
as shown and explained in Section 6.5.3.

Substep timestep estimator

A suitable substep timestep estimator is important to minimize the possibility of particle tunneling
across a potential barrier [65] (which could happen, for instance, if the timestep is too large for the
particle to resolve the scale of variation of the potential barrier). In our implementation, we esti-
mate the timestep to ensure that the truncation error per Crank-Nicolson step is within a specified
tolerance. The truncation error E∆τ of the Crank-Nicolson discretization in Eqs. (6.24),(6.25) for
the position update is given by [162]:

E∆τ =
1

12

(︄
da
dτ

)︄v

∆τ3 + O(∆τ4). (6.28)

The substep time step can be determined from the desired maximum truncation error in a given
substep as [162]:

∆τvp =

(︄
12E∆τ
|da/dτ|v

)︄ 1
3

, (6.29)

where |da/dτ|v is to be estimated along the substep as described below. In previous studies, the
time derivative of the acceleration was computed by pushing the particle using Euler’s scheme
(constant field) and with a small time step δt = 10−8,

(︂
da
dτ

)︂v
≃

(︂
aν+δt − aν

)︂
/δt. This estimate is

then used as an initial guess for ∆τνp. However, this approach provides a suitable error estimate
only if the particle remains within a cell (where the numerical field is assumed to vary linearly). In
this study, a given substep may cross several cells, and the estimate of |da/dτ|v should be adjusted
accordingly. Here, we compute it by taking an L1-norm (other norms are possible as well) of the
change of acceleration across all cells crossed by the particle as:⃓⃓⃓⃓⃓

da
dτ

⃓⃓⃓⃓⃓v
=

∑︂
s∈ν

⃓⃓⃓⃓⃓
da
dτ

⃓⃓⃓⃓⃓
s
. (6.30)
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Figure 6.1: Space-time diagram showing the location of the computed grid quantities and an
example particle trajectory (red line), which comprises three substeps, and the central suborbit
(solid red line) that crosses two different cells, comprising two segments. While the velocity
vν+1/2

p is unique for both segments within this suborbit, their slope in computational space may be
different because the map Jacobian Jξ in general varies from cell to cell.

The terms |da/dτ|s are computed internally in the particle mover taking the field difference between
the initial and final points in the segment. If the prescribed tolerance E∆τ is not met, the substep
in Eq. (6.29) is reduced by a factor η < 1, ∆τνp → η∆τ

ν
p. We find that η = 0.5 works well. This

procedure is described in Algorithm 1.

Orbit integration algorithm

The numerical update of the computational coordinate and physical velocity follows from Eqs.6.24,(6.25):

ξν+1
p = ξνp + ∆τ

ν
p(vz/Jξ)

ν+1/2
p , (6.31)

vν+1/2
z,p = vνz,p + 0.5∆τνp

⎛⎜⎜⎜⎜⎜⎝ qp

mp

(︄
Eξ
Jξ

)︄ν+1/2

p
− µ̃p

Bν+1
p − Bνp

vν+1/2
z,p ∆τνp

⎞⎟⎟⎟⎟⎟⎠ . (6.32)

After the iteration, the new-time velocity is found as:

vv+1
z,p = 2vv+1/2

z,p − vv
z,p. (6.33)

The equations are updated until convergence to a very tight relative tolerance, O(10−13), in
vν+1/2

z,p and ξν+1
p . To scatter the field to the position of the particle at mid orbit according to Eq.

6.26, cell crossings are detected and the distance along cell segments travelled by the particle,
∆ξs

p, is computed. Although B(z) is in principle known everywhere in the domain, it is generally
faster to interpolate its value at the particle position from stored discrete values at cell faces with a
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negligible compromise in accuracy as long as the field is smooth:

Bνp =
∑︂

i

Bi+1/2S 1
(︂
ξi+1/2 − ξ

ν
p

)︂
. (6.34)

In previous studies [66], the conversion of the physical velocity for the computation of the
new logical position ξν+1

p in Eq. 6.31 was performed with (Jξ)
ν+1/2
p calculated at the midpoint of

the cell in which the particle is located. The new mover takes into account the mesh map across
all cells that the particle crosses during a substep. A straight line in the physical space t − z
translates into a curved trajectory in the computational space ξ − t. However, there still exists a
linear relationship between the velocity and the total computational length traveled by the particle,
i.e., ∆ξνp ∝ (1/(Jξ)

ν+1/2
p )vν+1/2

z,p that can be used as the new definition of the mid-orbit Jacobian. In
order to find (Jξ)

ν+1/2
p , we require that the total substep time is equal to the sum of the time the

particle spends in each cell,

∆τνp =
∑︂
s∈ν

∆τs
p. (6.35)

Using Eq. (6.24), this relationship can be written as:

∆ξνp/(v
ν+1/2
z,p /(Jξ)

ν+1/2
p ) =

∑︂
s∈ν

∆ξs
p/(v

ν+1/2
z,p /(Jξ)

s+1/2
p ). (6.36)

Canceling out the velocity on both sides (since it is constant per substep ν), we find a suitable
interpolation formula for the Jacobian over a given particle substep:

(Jξ)
ν+1/2
p =

1
∆ξνp

∑︂
s∈ν

(Jξ)
s+1/2
p ∆ξs. (6.37)

Note that the ∆ξs factors were already computed for the scattering of the electric field and are
therefore readily available. The Jacobian at the particle position (Jξ)

s+1/2
p is linearly interpolated

from the values at the cell faces Jξ,i+1/2 as:

(Jξ)
s+1/2
p =

∑︂
i

S 1
(︂
ξi+1/2 − ξ

s+1/2
p

)︂
Jξ,i+1/2, (6.38)

giving:

(Jξ)
ν+1/2
p =

1
∆ξνp

∑︂
s∈ν

∑︂
i

S 1
(︂
ξi+1/2 − ξ

s+1/2
p

)︂
Jξ,i+1/2∆ξ

s, (6.39)

which is very similar to Eq. (6.27), and can therefore be computed along very efficiently. The
segment-averaged Jacobian factor in Eq. (6.39) is then used in the particle equations of motion,
Eqs. (6.24) and (6.25). A full description of the new particle mover algorithm is provided in
Algorithm 1.
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Algorithm 1 Particle mover. The mover takes in the particle states and electrostatic potential at
t = tn and the electrostatic potential estimate at t = tn+1, and returns the new particle states and the
electric current density.

1: for each particle do
2: Initialize remaining integration time dt to the desired orbit time step: dt = ∆t
3: while dt > 0 do ▷ Full orbit loop
4: Estimate substep timestep ∆τνp ▷ Equations (6.29), (6.30)
5: ∆τνp =min(dt,∆τνp)
6: while residual > tol do ▷ Substep loop
7: Compute substep length ∆ξνp = (vz/Jξ)

ν+1/2
p ∆τνp

8: Determine particle direction and number of crossed cells
9: for each segment do ▷ Segment loop

10: Compute segment length ∆ξs
p

11: Interpolate electric field at segment midpoint ▷ Equations (6.26),(6.27)
12: Interpolate Jacobian (Jξ)

s+1/2
p and add to segment-averaged Jacobian ▷

Equations (6.38), (6.39)
13: Accumulate acceleration rate-of-change per segment, (da/dτ)s ▷ Equation

(6.30)
14: end for
15: Compute the effective electric field Ev+1/2

ξ,p ▷ Equation (6.26)

16: Update velocity vν+1/2
p ▷ Equation (6.32)

17: Compute the new mid-orbit Jacobian (Jξ)
ν+1/2
p ▷ Equation (6.39)

18: Compute the residual in position and velocity ▷ Equations (6.24), (6.25)
19: if

∑︁
s∈ν |da/dτ|s > 12E∆τ/(∆τνp)3 then ▷ Section 6.3.2

20: ∆τνp → η∆τ
ν
p

21: Go to 7
22: end if
23: end while
24: Add particle contribution to current (J jξ)n+1/2

i+1/2 (per-segment operation) ▷ Equation
(6.45)

25: Compute remaining integration time: dt → dt − ∆τνp
26: end while
27: end for

6.3.3. Field solver

We now consider the spatial discretization of Eq. 6.21. For convenience and without loss of
generality, regular unit cell computational grids will be used (i.e. ∆ξ = 1). With this choice,
J = ∆Vi is the effective physical cell volume and the standard second-order finite-difference
derivative discretization simplifies to

∂ξ(J jξ)i ≈ (J jξ)i+1/2 − (J jξ)i−1/2. (6.40)

The Laplacian of the scalar potential is discretized using a second-order conservative scheme,

(∇2
ξϕ)i = ∂ξ

(︄
JB

Jξ
∂ξϕ

)︄
i
≈

(︄
JB

Jξ

)︄
i+1/2

(ϕi+1 − ϕi) −
(︄

JB

Jξ

)︄
i−1/2

(ϕi − ϕi−1). (6.41)



96 6. An implicit, conservative electrostatic particle-in-cell algorithm for magnetic nozzles

The discrete form of Eq. (6.21) reads,

(∇2
ξϕ)

n+1
i = (∇2

ξϕ)
n
i + ∆t

[︂
(J jξ)i+1/2 − (J jξ)i−1/2

]︂n+1/2
. (6.42)

The solution for the new potential ϕn+1 requires the inversion of the Laplacian operator under
suitable boundary conditions. This can be done either in the nonlinear residual itself, or as a pre-
conditioner; in either case, a simple tridiagonal solve or an iterative solve using a Krylov method
[170] can be used for this purpose, and both are optimal in one dimension improving the condition
of the system for a faster non-linear solver convergence. The nonlinear residual vector for the
JFNK solver is simply the difference between ϕn+1 and the previous guess. From the potential, the
covariant component of the electric field is found as:

En
ξ,i+1/2 = −(∂ξϕ)n

i+1/2 ≈ ϕ
n
i − ϕ

n
i+1. (6.43)

The modified current density at the mid timestep is computed as the orbit average along the
particle substeps,

(J jξ)n+1/2
i+1/2 =

1
∆t

∑︂
p

∑︂
ν∈n

(J jξ)
ν+1/2
i+1/2,p∆τ

ν
p, (6.44)

where the sum in ν is over all substeps that make up the full timestep n, and:

(J jξ)v+1/2
i+1/2,p = qp

(︄
vz

Jξ

)︄ν+1/2

p

⟨︂
S 1

(︂
ξi+1/2 − ξ

s+1/2
p

)︂⟩︂ν
p
. (6.45)

Here, the same segment-averaged shape function is used as in the scattering of the electric field to
the particle positions, Eq. (6.26). This finally gives:

(J jξ)n+1/2
i+1/2 =

1
∆t

∑︂
p

∑︂
ν∈n

qp∆ξ
v
p

⟨︂
S 1

(︂
ξi+1/2 − ξ

s+1/2
p

)︂⟩︂ν
p
. (6.46)

6.3.4. Conservation properties

We demonstrate next exact global energy and local charge conservation theorems for the proposed
discrete particle representation of the paraxial model.

Global energy conservation

From the Crank-Nicolson discretization in Eq. (6.25),

vν+1
z,p − vνz,p
∆τνp

+ µ̃p
Bν+1 − Bν

vν+1/2
z,p ∆τνp

=
qp

mp

(︄
Eξ
Jξ

)︄ν+1/2

p
, (6.47)

and multiplying by mpvν+1/2
z,p and recalling that µpB = mpv2

⊥,p/2, we find:

mp

2

[︂
(vν+1

z,p )2 − (vνz,p)2 + (vν+1
⊥,p)2 − (vν⊥,p)2

]︂
= qp

(︄
Eξ
Jξ

)︄ν+1/2

p
vν+1/2

z,p ∆τνp. (6.48)



6.3. Numerical Implementation 97

The left-hand side can easily be identified as the variation of the total kinetic energy per particle
in a substep ∆Kνp. Summing over all particles and substeps per particle results in:
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(6.49)

from which total conservation of energy follows. Above, the second line substitutes the scattering
formula for the covariant field, Eq. (6.26), the third line commutes the sums and introduces the
weighted sum for the current density per each particle and substep ν, Eq. (6.44). The fifth equality
holds after integration by parts with periodic boundaries (which is the simplest case as it trivially
eliminates boundary terms, although the proof can also be extended to reflective boundaries [162]
and collisional plasmas with more advanced boundaries [68]), and the discrete field equation, Eq.
(6.42), is introduced in the sixth equality. The seventh equality follows from the self-adjointness
of the discrete Laplacian operator. The eighth equation follows from discrete integration by parts,
allowed by the conservative discretization of the Laplacian operator Eq. (6.41) and the periodic
boundary conditions [66]:
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ϕi(∇2
ξϕ)i =

∑︂
i

ϕi

⎡⎢⎢⎢⎢⎣(︄ JB

Jξ

)︄
i+1/2

(ϕi+1 − ϕi) −
(︄

JB

Jξ

)︄
i−1/2

(ϕi − ϕi−1)
⎤⎥⎥⎥⎥⎦

= −
∑︂

i

(︄
JB

Jξ

)︄
i+1/2

(ϕi+1 − ϕi)(ϕi+1 − ϕi)

= −
∑︂

i

(︄
JB

Jξ

)︄
i+1/2

E2
ξ,i+1/2 = −

∑︂
i

(︄
JB

Jξ

)︄
i+1/2

(JξEz)2
i+1/2

= −
∑︂

i

(JBJξ)i+1/2(Ez)2
i+1/2. (6.50)

The ninth equality follows when noting that J = JBJξ is the cell volume (since ∆ξ = 1), resulting
in the final equality for the change in the total electrostatic energy. Therefore, the total energy is
conserved:
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Hn = Kn +Wn
E = Kn+1 +Wn+1

E = Hn+1. (6.51)

Local charge conservation

Next, we show charge conservation per particle per substep ν, from which local charge conserva-
tion follows. In the continuum, we have the following continuity condition,

∂ρ

∂t
+ ∇ · j = 0, (6.52)

which in discrete form and in mapped geometry reads:(︂
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= 0. (6.53)

Pulling the orbit-average sum out, we can write the continuity condition as:
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At this point, it is sufficient to require charge conservation per substep ν. The charge density term
can be decomposed into segment contributions s, yielding:
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where s and s+ 1 are the start and end points of the segment, respectively. Substituting Eq. (6.45)
for the current density and Eq. (6.27) for the segment-averaged spline, we arrive at:
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where we have used that ∆τνp(vz/Jξ)
ν+1/2
p = ∆ξνp per Eq. (6.24), which we require to be satisfied per

segment. We now introduce the accumulation of the charge density using a second-order B-spline
S 2 (instead of the first-order spline S 1 used for the current) [65],

(Jρs)i,p = qpS 2
(︂
ξi − ξ

s
p

)︂
, (6.57)

and the final charge-conservation condition reads:
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= 0, (6.58)

which is exactly satisfied by the properties of the B-splines involved [65], proving local charge
conservation to machine accuracy.
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6.4. Magnetic nozzle boundary conditions

At the upstream boundary of a magnetic nozzle, we must prescribe the distributions of forward
particles (i.e., with vz > 0), and only these. Particles are subsequently allowed to leave the domain
through the upstream boundary (reflected particles) or reach infinity downstream (free-streaming
particles). In the smooth paraxial expansion, no strong non-neutralities are expected to form.

Numerical simulations with finite domains must also correctly model the expansion to infinity
beyond the end of the domain, in particular for the electrons. Since the electrostatic potential ϕ
continues to decrease beyond the domain boundary to a value at infinity ϕ∞, a fraction of the elec-
trons reaching the boundary of the finite domain will not reach infinity, and are actually reflected
electrons. The solution must satisfy a global condition on the electric current leaving the plasma
source (e.g., zero current for space plasma thruster applications). Likewise, BCs must compen-
sate for the different amounts of reflected ions and electrons present at the upstream boundary
and resize their input distributions to avoid introducing any spurious non-neutral sheaths into the
solution. Finally, injection must be performed smoothly to avoid introducing artificial oscillations
in the simulation.

6.4.1. Upstream boundary condition and particle injection

Particles are injected through the left boundary with known forward ion and electron distribution
functions:

f +s = n∗s f̂
+

s , (6.59)

for s = i, e, where f̂
+

s is a normalized distribution function and n∗s is twice the density of injected
particles. For the verification cases of Section 6.5, the following two-temperature (parallel semi-
Maxwellian and perpendicular Maxwellian) distribution is employed:

f +s (z = z0, vz > 0, µ̃, t) = n∗s
(︃ms

2π

)︃3/2
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−1/2(T ∗⊥)−1 exp
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2T ∗
∥s

⎞⎟⎟⎟⎟⎟⎠ exp
(︄
−

msµ̃B0

T ∗⊥s

)︄
, s = i, e

(6.60)
where T ∗

∥s, T ∗⊥s are the parallel and perpendicular temperatures of species s and B0 = B(z0).

As in other PIC codes [171], to model the injection particle flux as accurately as possible, we
sample the component of the velocity normal to the boundary from the flux distribution g+s ∝ vz f̂

+

s

instead of f +s . The cumulative distribution function for the Maxwellian flux can be readily inverted
in closed form resulting in a simple sampling procedure. Injected particles must be distributed not
only in velocity space, but also in time, to avoid particle lumping and flux discontinuities caused
by a finite integration ∆t. An implicit PIC implementation offers a natural procedure for particle
injection, even if ∆t can be up to two orders of magnitude larger than in classic explicit PIC
methods. A uniformly distributed random integration time step ∆te ∈ [0,∆t] is assigned to each
injected particle. The injected particles are then pushed as described in Sec. 6.3 in that time step,
including the subcycling procedure and their contribution to the moments weighted as for any
other particle. This injection procedure is remarkably simple and inexpensive compared to other
techniques proposed for second order-accurate injection in explicit algorithms [171].
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In a MN, some of the injected particles are reflected back in the domain toward the upstream
boundary. As the amount of reflected ions and electrons differs in general, fixing both n∗i and n∗e a
priori can lead to the formation of artificial non-neutral layers at injection, because the integrated
density of ions and electrons (traveling forward and backward) may not match. Instead, n∗e and/or
n∗i need to be computed as part of the solution to ensure quasineutrality there. In the present imple-
mentation, the injection density of forward ions n∗i is fixed to produce a prescribed ion current Ii,
but the injection density of forward electrons n∗e, which adapt faster to changes in the electrostatic
potential due to their larger mobility, is dynamically varied in time according to a simple heuris-
tic proportional control law with gain G1, i.e. ∆n∗e = G1ρi=0, where the charge density ρi=0 is
weighted at the center of the first cell and accounts for both newly injected and reflected particles.
Other control strategies have been used successfully in previous MN studies [45], [145], [157].

To determine the electric field at the first cell face, Eξ,1/2, the potential ϕ0 on a ghost cell i = 0
to the left of the domain is needed. A homogeneous Dirichlet condition is imposed for the poten-
tial for ϕ0. Additionally, to update the electrostatic potential at ϕ1, we need to calculate the electric
current density (J jξ)1/2. This can be found by weighing as in any other cell face and then mul-
tiplying by two to estimate the contribution of particles outside of the domain. Alternatively, we
may set (J jξ)1/2 = 0, to match the value of a current-free plasma expansion in steady state. Both
approaches work and yield the same result, but the latter was seen to provide superior numerical
performance and is used in this work.

6.4.2. Dynamic downstream open boundary

For practical finite domain sizes, part of the potential drop to infinity occurs beyond the down-
stream boundary of the domain. This means that a fraction of electrons traversing this boundary
are reflected back outside of the domain and eventually return to it. Observe that this does not
occur for ions because the decreasing potential further accelerates them to infinity.

Following a similar approach to that in [157], we sort the electrons that reach the end of the
domain (i = nz) according to their kinetic energies. Those with a kinetic energy over charge lower
than the remaining potential fall to infinity, ∆ϕ∞ = ϕi=nz − ϕ∞, are reflected back, while the rest
are removed from the simulation. However, rather than determining ϕ∞ from the current-free
condition jz = 0 as in [157], we introduce a second control law aimed at offsetting the lack of
neutrality in the last cell of the domain ∆ϕ∞ = G2ρi=nz , where ρi=nz is the charge density in the
last cell of the domain. The condition jz = 0 (or any other given value of the current density in the
MN) is instead implemented through the BC for the electric field. We begin by integrating (6.22)
in ξ to find:

JB(z)
(︄
ϵ0
∂Ez

∂t
+ jz

)︄
= C(t), (6.61)

where we recall that Ez = Eξ/Jξ and jz = Jξ jξ. The constant C(t) might depend on time but does
not depend on position. However, assuming downstream ambipolarity, i.e. jz = 0 gives C(t) = 0
for all t. Taking time-centered finite differences,

En+1
z,nz+1/2 = En

z,nz+1/2 − (∆t/ϵ0) jn+1/2
z,nz+1/2. (6.62)
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The new electric field provides an inhomogeneous Neumann boundary condition for the elec-
trostatic potential solver, consistent with the global-current free condition in steady state. The
proposed approach eliminates the need to prescribe a downstream potential and the subsequent
formation of a non-neutral layer as in [45], and allows computing the electric field at the last node
self-consistently rather than imposing Ez,nz+1/2 = 0 as in [157].

Care is needed for the evaluation of the current density in the last cell face (J jξ)nz+1/2. Like
on the upstream boundary, regular weighing followed by multiplication times two can be used to
estimate the contribution of particles beyond the domain. Alternatively, the charge-conservation
equation, Eq. (6.53), can be used to determine (J jξ)nz+1/2 from the already-available internal
current density (J jξ)nz−1/2, and the charge densities (Jρn)nz and (Jρn+1)nz accumulated with a
zeroth-order spline (i.e., adding the charge of all particles in the cell and dividing by its volume).
Both approaches were tested and found to be equivalent; however, the latter offered slightly better
numerical performance and is used in this work.

6.5. Algorithm verification

In this section, we present three different verification cases. First, the conservation properties
of the implicit PIC algorithm (6.3.4) after the addition of the new segment mover, the paraxial
geometry and the magnetic mirror force are demonstrated in an academic periodic magnetic mirror
study case. Afterward, we test the fractional injection scheme (6.4.1) with a finite (non-periodic)
uniform plasma configuration in which the injection plays the role of replenishing the natural
outflow of particles through the boundaries. Finally, we put together all pieces and add the new
dynamic downstream boundary condition (Sec. 6.4) to study a magnetic nozzle and compare it
with the results in the literature.

6.5.1. Periodic magnetic mirror

To demonstrate strict conservation properties, we consider a periodic magnetic mirror, where the
background magnetic field has a throat (maximum B) located at the boundaries of the domain,

B = B0

(︄
1 +

R − 1
R + 1

cos
(︄
2πz
L

)︄)︄
, (6.63)

where R = Bmax/Bmin = 3 is the mirror ratio, L = 2π and z ∈ [0, L].

We consider singly charged ions and electrons with mi/me = 1 and equal temperatures, and
a non-uniform mesh map with nz = 64 and cell size proportional to B(z) (i.e., Jξ = B(z)), and
Np = 1000 particles per cell per species. For the validation case, the plasma is homogeneous, with
uniform density (equal to unity in normalized units) and isotropic Maxwellian distributions, i.e.,
Eq. (6.60) with T ∗s,∥ = T ∗s,⊥ = T ∗s , and a flat electrostatic potential ϕ. The initial condition is an
exact analytical stable equilibrium.

Since this initial condition is a stable equilibrium, any difference with respect to the analytical
solution can be attributed to ordinary statistical PIC noise. After running the simulation for 200
(ω∗pe)−1, we do not observe any secular trend in the simulation, nor instability. The average density
in the nominal simulation matches the expected analytical value of unity, and its standard deviation
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Figure 6.2: Self-consistent periodic magnetic mirror solution for different parallel-to-
perpendicular temperature ratios: T ∗⊥ = T ∗

∥
(green), T ∗⊥ = 2T ∗

∥
(orange), and T ∗⊥ = T ∗

∥
/2 (blue).

From left to right: conservation of global energy, total momentum, and root mean square of the
local charge residual.

σ[ne] scales as 1/
√︁

Np, as expected from the standard Monte Carlo error scaling: for instance, we
find σ = 2.7% for Np = 1000, and σ = 1.9% for Np = 2000, i.e., a decrease of 1/

√
2. For this

example, we do not observe any noticeable dependence of the noise level with ∆t when varied
from 1 to 10 (ω∗pe)−1.

Figure 6.2 shows the evolution of the relative error in the conservation of global energy, total
axial momentum, and spatial root mean square of the residual in the charge conservation equation.
The instantaneous total energy of the system is the sum of the kinetic energy of each particle and
the electric field energy as defined in Eq. (6.49), while the total axial momentum of the plasma is
given by:

pz =
∑︂

s

ms

∑︂
p

wpvz,p,s. (6.64)

The relative error in energy conservation remains below 10−9, which is considerably lower than
the upper bound imposed by the relative tolerance of the non-linear solver (10−6). In the presence
of an externally applied magnetic field, the momentum of individual particles is not generally
conserved (indeed, this is the contactless thrust generation mechanism in a MN). Nevertheless, the
symmetry of this periodic configuration results in cancelation of the particle contributions to axial
momentum, so that pz(t) = 0 ∀t. The error in total axial momentum conservation, normalized with
p∗z =

∑︁
s
√︁

T ∗s ms
∑︁

wp, is kept acceptably low and does not present secular trends. To that end, we
must mention the role of the substep time step estimator (Sec. 6.3.2) in keeping the truncation error
of the Crank Nicolson mover within the defined tolerance (E∆τ = 10−3). Finally, the root mean
square (RMS) of the residual of the local charge conservation equation (computed as indicated in
Sec. 6.3.4) computed over all cells shows errors at machine accuracy (∼ 10−16).

Adding temperature anisotropy to fs modifies the steady-state density profiles in the mirror.
Figure 6.3 depicts sample results, with T ∗⊥/T

∗
∥
> 1 resulting in a density profile that peaks at

the minimum of the magnetic field B (as more particles are trapped by the magnetic mirror), and
T ∗⊥/T

∗
∥
< 1 leading to the the opposite behavior. In all cases, conservation properties behave

similarly to the isotropic temperature case, as evidenced by Figure 6.2.
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Figure 6.3: Steady-state plasma density over initial plasma density for different parallel-to-
perpendicular temperature ratios: T ∗⊥ = T ∗

∥
( ), T ∗⊥ = 2T ∗

∥
( ), and T ∗⊥ = T ∗

∥
/2 ( ). The

analytical solution for T ∗⊥ = T ∗
∥

is indicated by a black dashed line.

6.5.2. Particle injection in a uniform plasma

We next verify the particle injection BC without the generation of artificial electrostatic oscillations
or particle lumping. We consider a uniform Maxwellian plasma at rest in a uniform B field. To
compensate for particles leaving the domain, the injection BC is applied at the two ends of the
domain, where a semi-Maxwellian distribution with the same parameters as the initial distribution
is prescribed for both ions i and electrons e. The quasineutrality controls at both ends are not
active in this test case (G1 = G2 = 0). As before, we set isotropic and equal temperatures for both
species and select a mass ratio mi = me = 1. The same non-uniform grid as in the mirror case is
used (nz = 64), with the same number of particles per cell and species, Np = 1000. Periodic BCs
are applied to the electrostatic potential. The initial condition is again a stable exact equilibrium.
Our simulations demonstrate that plasma uniformity is maintained in time within expected particle
noise levels. No boundary layers are observed, demonstrating the effectiveness of the boundary
injection treatment.

This setup is in fact ideally suited to study the impact of timestep on particle noise. The
standard deviation σ(ne) of the plasma density with respect to the uniform value n∗e across all time
steps and cells as a function of timestep is shown in Figure 6.4. The noise level is again consistent
with Monte Carlo estimates (1/

√︁
Np ∼ 3%), and shown to decrease slightly with increasing ∆t

in the range 1 - 5 (ω∗e)−1. We hypothesize that this behavior is due to the sampling multiplication
effect of the orbit averaging of the current density moment weighting in the implicit time-marching
scheme, but at any rate its impact is small.

6.5.3. Magnetic nozzle modeling

We simulate next the plasma expansion in a propulsive magnetic nozzle. We aim to verify the in-
teroperation of all elements of the algorithm, and in particular, the dynamic downstream boundary
condition. We compare our simulation results with the nominal MN simulation of [45]. That study
presents a solution of the fully magnetized plasma flow in a paraxial convergent-divergent mag-
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Figure 6.4: Standard deviation of the electron density across all cells and timesteps with respect
to the analytical solution (ni(z) = ne(z) = n∗e ∀ z) as a function of the implicit timestep size ∆t.

netic field, using a time-explicit semi-Lagrangian scheme. Consequently, it provides a suitable
benchmark for the comparison and verification of our algorithm.

Simulation setup

Physical and numerical parameters are chosen to mimic the study in Ref. [45], and are as follows.
The magnetic topology is generated by a current loop of radius rL placed at z = 0,

B(z) = B0
r3

L(︂
r2

L + z2
)︂3/2 1z. (6.65)

The domain extends from z = −0.5rL to z = 16rL, where it is terminated by a dielectric wall.
Distribution functions for forward electrons and ions are prescribed at the domain entrance as in
equation (6.60), with T ∗

∥e = T ∗⊥e = T ∗
∥i = T ∗

⊥i ≡ T ∗. To force charge neutrality at injection, the
study in the reference adjusted n∗i depending on the number of reflected electrons, while keeping
n∗e fixed. In our study, we instead vary n∗e and fix the ion injection current, which we consider to
be more physical; see Section 6.4.1. A reduced mass ratio mi/me = 100 is used in the reference,
which we also employ for the purposes of comparison. The normalized Debye length based on n∗e
and T ∗ is λ∗D/rL = 0.02, which is quite large in relation to devices of practical interest. In [45] a
non-uniform phase-space grid with 1501 nodes in z, 77 in v∥ and 101 in µ; and a time step of 0.03
(ωpe)−1, is used. In our simulations, we use coarser non-uniform spatial grids. The nominal grid
is shown in Figure 6.5.

In [45], both boundaries are free-loss surfaces for outgoing particles. Dirichlet BCs are applied
on the electrostatic potential at the upstream and downstream boundaries, with the downstream
potential value adjusted iteratively after convergence to steady state to achieve a current-free ex-
pansion, in particular they find Ii = −Ie ≈ 0.074en∗e

√︁
T ∗e /me. Instead, our BCs are those described

in section 6.4. To favor the comparison of the reference, we consider to two nominal simulation
cases:

A Dielectric downstream wall: This simulation reproduces the physical setup of the simula-
tion in [45], described above. To model the absorbing dielectric wall, the dynamic down-
stream electron reflection control is turned off, and all electrons reaching the end of the
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domain are removed, while the current-free condition on the electric field of section 6.4.2
is maintained. As a consequence, a non-neutral layer forms downstream as in [45]. The
comparison with [45] and [145] allows us to verify all elements of the implicit algorithm,
except for the electron reflection control.

B Expansion to infinity: By activating the dynamic downstream electron reflection control,
we simulate the expansion of the plasma to infinity while avoiding the formation of any
non-neutral layers.

Cases A and B use the nominal grid of figure 6.5. We will also consider refined versions of cases
A and B (i.e., with smaller time step, finer grid, larger number of particles, and tighter tolerances),
which are identified as cases AF, BF, to provide an appropriate baseline for error estimation and
test the convergence of our results. The specific numerical parameters used in all simulations
are reported in Table 6.1. The only setup difference between A and B is the activation of the
downstream electron reflection control (G2,B ≠ 0), allowing the simulation of an expansion to
infinity. Lastly, we will also present two variants of simulation case B, identical in all aspects to
it except that they use a hydrogen plasma (case BH) and a xenon plasma (case BXe), to illustrate
the use of realistic ion-to-electron mass ratios mi/me.

Figure 6.5: Simulation domain for the MN verification case: Magnetic field strength, grid and cell
spacing for the nominal case.

Transient plume expansion

Figure 6.6 shows four snapshots of the evolution of the electrostatic potential eϕ/T ∗e and the charge
imbalance (ni − ne)/(ni + ne) in the domain for simulations A and B. In the initial stages [t =
500 (ω∗pe)−1], the lighter electrons rush downstream ahead of the heavier ions, creating a expansion
front with negative charge followed by positive charge. During the transient plume expansion,
electrons bouncing off the moving expansion front, with its sharp potential drop, lose mechanical
energy to the time-varying field. This promotes the formation of a trapped population of electrons
[45], [102], [145], discussed later in this study.

Both simulations follow a similar response until the electron/ion expansion front reaches the
end of the domain. Around t = 2000 (ω∗pe)−1, the electron front has left the domain, while
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Table 6.1: Nominal Simulation Parameters. The minimum of Np occurs at the entrance (we ob-
serve about a four-fold increase in Np at the exit for our non-uniform grid, Figure 6.5).

Numerical Parameter Nominal (A and B) Fine (AF and BF)

Number of cells nz 128 256
Cell length at entrance 1.5 λ∗D 0.75 λ∗D

Cell length at exit 12.5 λ∗D 6.25 λ∗D
Integration time-step ∆t 5.0 (ω∗pe)−1 2.5 (ω∗pe)−1

Simulation time 12500 (ω∗pe)−1 12500 (ω∗pe)−1

Minimum particles/cell steady state Npe ≈ Npi ∼ 1000 ∼ 2000
Total particles at steady state ∼ 6 · 105 ∼ 2.4 · 106

JFNK solver tolerance 10−4 10−6

Maximum substep estimator truncation error E∆τ 10−3 10−5

Injection quasineutrality control gain G1 0.5 0.125
Downstream electron reflection control gain G2 0.0 (A) 0.025 (B) 0.0 (AF) 0.0125 (BF)

the ion front is still traveling downstream, resulting in significant charge separation downstream.
Thereafter, the two simulations diverge. Around t = 3500 (ω∗pe)−1, a non-neutral thick sheath has
begun to form in simulation A, whereas non-neutrality has started to vanish in simulation B owing
to the downstream dynamic electron control, which gradually adjusts the value of the electrostatic
potential downstream to promote quasineutrality in the last cell. Finally, a steady-state sheath
forms in simulation A, and a smooth, quasineutral steady-state solution develops in simulation B,
as illustrated for t = 10000 (ω∗pe)−1.

For simulation B, the duration of the transition to quasineutrality is governed by the reflection
control parameters (downstream control gain G2). Figure 6.7 shows the evolution of the potential
at the last node of the grid, ϕi=nz , and at infinity, ϕ∞, for different control gains G2. As can be
observed, once particles start to reach the downstream boundary, ϕ∞ quickly stabilizes around its
asymptotic value, which is independent of the gain G2 chosen. This independence is expected,
as ϕ∞ controls the net electron current in the MN, and therefore the global current-free condition
determines ϕ∞ as a function of ion current and the thermal electron speed at injection [145].
The potential at the last node, ϕi=nz , also tends to an asymptotic value that is independent of G2,
but its time evolution is sensitive to this parameter, with lower values of G2 corresponding to
longer transients. For this simulation case, gains around G2 ≃ 0.1 enable reaching the steady-
state value of ϕi=nz roughly at the same time as the steady-state value ϕ∞, and therefore allow for
fast convergence to the final solution. The maximum value of G2 is limited by the appearance
of instabilities in the solution, which occur when the characteristic control frequency becomes
comparable to the other frequencies of the problem.

Varying the normalized Debye length λ∗D/rL while keeping all other parameters unchanged
(not shown) proves that λ∗D/rL influences the size of the non-neutral layer downstream in simula-
tion A, but plays a negligible role in simulation B, because the full expansion is quasineutral in the
latter.
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Figure 6.6: Evolution of the potential for simulation cases A (left column) and B (right column).
Dashed line (left axis) is the potential ϕ, solid line (right axis) is a measure of quasineutrality.

Steady-state solution

Figure 6.8 (a) shows the steady state results of simulations A and B. Results are averaged over
time using a moving mean with a window ∼ 500 (ω∗pe)−1 for smoother results. The decreasing
electrostatic potential ϕ reflects electrons upstream and accelerates ions downstream, helping to
convert the thermal energy of electrons into the directed kinetic energy of ions. The first part of
the expansion is essentially identical for simulations A and B: most of the potential drop occurs
here, and between the throat z = 0 (where e(ϕ0 − ϕt)/T ∗e ≈ 0.4) and z = 2rL we find the region
of maximum acceleration, with an almost constant electric field. After this point, the potential
transitions to an essentially flat profile around z = 3rL, with e(ϕ0 − ϕ)/T ∗e ≈ 2.1. Differences
between simulations A and B arise in the last part of the expansion, where simulation A displays
the wide sheath before the dielectric wall, whereas simulation B continues its slow decrease to
infinity. It should be noted that the wall potential in simulation A and the potential at infinity for
simulation B are virtually identical (≈ 2.9 T ∗e /e).

The ion density ni is shown in Fig. 6.8(b) from the throat to the end of the domain. After
a region of rapid acceleration, driven by the strong electric field near the throat, the ion velocity
approaches an asymptotic value and the ion density becomes nearly proportional to B, in agree-
ment with the one-dimensional steady-state continuity equation niui/B = const. The ion density
exhibits the same trend in the two simulations A and B, with negligible differences. The electron
density ne, not shown here, closely follows the ion density everywhere except in the downstream
sheath in simulation A.

Figures 6.8(c) and (d) show Te∥ and Ti∥, while panels (e) and (f) present the ratios Te⊥/B and
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Figure 6.7: Potential drop at infinity e(ϕ∞ − ϕ0)/T ∗e (dashed) and at the last cell of the domain
e(ϕi=nz − ϕ0)/T ∗e (solid) for different electron reflection control gains.

Ti⊥/B. This presentation choice makes manifest that in an expansion to infinity, the parallel tem-
peratures become asymptotically constant, while the perpendicular temperatures vanish as O(B)
[172]. Indeed, as can be observed, the plotted quantities are quite uniform in most of the domain,
except in the initial part of the expansion, where rapid changes occur. Once again, simulations A
and B display a near-identical behavior except in the last part of the domain, where simulation A
is affected by the formation of the thick sheath downstream.

Figure 6.9 shows the steady-state densities of free, reflected, and trapped electrons as defined
in [102] and in Section 6.2, for simulations A and B. As the population of trapped electrons is
disconnected from the plasma source, its distribution depends on the transient plume expansion,
wherein some electrons bouncing off the expansion front lose enough mechanical energy to be-
come trapped. Our investigations shows that the fraction of trapped electrons is essentially inde-
pendent of the control gain G2 in simulation B, which determines the rate at which the quasineutral
steady-state solution is reached. In the initial part of the expansion, reflected electrons account for
roughly 90% of the total, while the number of trapped electrons is zero. The fractions then sta-
bilize around 60% and 25%, respectively. Free electrons constitute roughly 10–15% of the total
throughout the expansion. Simulations A and B show a nearly identical response in terms of
electron population fractions, except —once again— downstream, where the thick sheath in sim-
ulation A reduces the fraction of reflected and trapped electrons to zero at the end of the domain,
and all electrons become free. Arguably, this same transition to free electrons must also occur in
simulation B in the expansion to infinity, albeit the scale at which this takes place is too large for
practical interest.

Finally, figure 6.10 displays the steady state plasma expansion to infinity for H+ and Xe+

plasmas (simulation cases BH, BXe). It is seen that increasing mi/me results in a larger potential
fall to infinity and a slightly higher electron temperature, consistent with the findings of Ref. [44].
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Figure 6.8: Steady-state potential (a) ion density (b), electron (c) and ion (d) parallel temperatures,
and electron (e) and ion (f) perpendicular temperatures for nominal simulations A ( ), B ( )
and refined simulations AF ( ) and BF ( ). The black dashed lines correspond to the results of
Sanchez et al. [45].

Verification

We verify our MN solution in two ways. Firstly, we compare the steady state A and B simulation
results against the refined simulations AF and BF (Table 6.1) in figure 6.8. It is visually apparent
that the differences are small, with T∥e showing the largest differences, below 3% in the central
part of the expansion for A and the downstream boundary for B, where electrons are reflected. We
therefore conclude that the A and B simulation results are converged.

Secondly, we compare our simulation A results against the recent results documented in Ref.
[45]. This comparison is also shown in figure 6.8. The normalized electrostatic potential eϕ/T ∗e
in figure 6.8(a) demonstrates excellent agreement upstream. However, a difference of ≈ 0.25 T ∗e /e
soon develops that continues all the way to the wall. This difference is noteworthy, because the
final value of the potential governs the current of free electrons, which must coincide with the ion
current as dictated by the current-free condition in the MN, as discussed above. This condition is
well satisfied in our conservative simulations.
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(a) Simulation A (b) Simulation B

Figure 6.9: Fraction of free ne f /ne ( ), reflected ner/ne ( ) and trapped net/ne ( ) in simula-
tions A (left) and B (right). The dashed lines correspond to the results of Sanchez et al. [45].

Figure 6.10: Steady-state potential (left) and total temperature Te = (2T⊥e+T∥e)/3 (right) for case
B (mi/me = 100), H+ (mi/me = 1836), and Xe+ (mi/me ∼ 240000).

Relatedly, as shown in figure 6.9, the fractions of free, reflected, and trapped electrons, while
showing overall good agreement with those in Ref. [45], display small but significant differences
in the fraction of free electrons, which is consistently larger in the data from [45]. This larger
fraction is consistent with a smaller total potential drop in that study.

These discrepancies in ϕ and the mismatch in the fraction of free electrons explain the the rest
of plasma variables shown in figure 6.8: While the ion density coincides well with the verification
data upstream, the latter is consistently about 5% higher downstream. The comparison of electron
and ion temperatures shows that, although the qualitative trends and behaviors remain similar,
there are apparent differences in the electron perpendicular and parallel temperatures and in the ion
parallel temperature. Plasma density, but especially electron and ion temperatures, are particularly
sensitive to the composition of the electron population [145].

Further comparison against the work of Merino et al. [44], [145] shows that the total potential
drop in our simulations is within 0.05 T ∗e /e of those steady-state results, even if they do not simu-
late the region before the magnetic throat. The smaller discrepancy in this key quantity, together
with the conservation properties of the algorithm and the good convergence of our simulations
upon numerical parameter variation, supports the verification of our simulations.
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Algorithm performance

Several numerical parameters (timestep size, number of particle per cell, and number of cells) have
been varied in the nozzle simulation to study their impact on the total CPU wall-clock time. The
results are shown in Figure 6.11. Wall-clock times were obtained with our Julia code, using 20
threads on an Intel Xeon (R) 4316 computer. No MPI parallelization was used in this 1D version
of the implicit algorithm.

In terms of the implicit timestep size (figure 6.11-left), performance is affected by competing
effects. On the one hand, there is an inverse proportional relationship between ∆t and the total
number of steps. On the other hand, an increase in ∆t may result in an increase in the number of
substeps per particle; it may also result in an increase of the number of function evaluations NFE

(each requiring a full particle push) as the number of JFNK iterations increases for convergence.
As the electrons are the more mobile species, it is mainly the cost associated to the electrons that
increases with ∆t. The balance between these effects determines the wall-clock time speedup as a
function of ∆t. As in earlier implicit PIC studies [168], we observe computational advantage for
moderate implicit timesteps, but eventual saturation when ∆t is increased beyond ∆t > 10(ωpe)−1

This is expected, as for sufficiently large ∆t, the cost is completely dominated by the particle
orbit integration, which scales linearly with the timestep owing to the need to resolve the orbit’s
physical features. Therefore, in an electrostatic context, employing much larger timesteps is not
advantageous from a performance standpoint (see performance discussion below).

Incidentally, this implies that, for sufficiently large mass ratios (such as in the simulations BH
and BXe of figure 6.10), the wall time to steady state of the proposed algorithm scales similarly
as other PIC algorithms with the square root of the ion-to-electron mass ratio,

√
mi/me, since the

∆t must be selected according to the characteristic time of electrons, rather than the residence
time of ions. Consistently, the BH and BXe simulation cases, using the same ∆t = 5(ωpe)−1

as in simulation B, take 4 and 48 times more wall time, respectively, to reach steady state. To
accelerate the more expensive BXe simulation, we pushed ∆t = 10(ωpe)−1 and halved the number
of particles, still achieving results with acceptable noise levels in just 24 times the wall time of
simulation B.

In terms of the total number of particles (or the number of particles per cell Np when the num-
ber of cells is kept constant; figure 6.11-center), the CPU wall-clock time scales sublinearly with
the number of particles for moderate number of particles, but eventually recovers linear scaling,
as expected. The transient sublinear scaling is attributed to the cost contribution of grid-related
operations, which are independent of the number of particles.

The most remarkable result is the scaling of the wall-clock time with the number of cells, nz

(figure 6.11-right). In earlier implicit PIC studies employing particle push subcycling [168], it was
predicted and observed that the computational complexity scaled as n2

z . At the root of this behavior
is the particle subcycling, and in particular the need for particles to stop at cell faces for charge
conservation. The particle mover proposed in this study removes this requirement, decoupling the
cost of particle motion from the choice of underlying grid.

The efficiency gain in our approach stems from the fact that a single Picard solve for the CN
system (this is the nonlinear iteration on vν+1/2

z,p and ξν+1
p ) per full substep (potentially comprising

multiple segments and cell crossings) is performed, instead of a Picard solve per segment. To
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quantify these gains, we conducted code profiling to determine the cost of all operations within
the per-segment loop (lines 10–13 in Algorithm 1), denoted as Cseg, and the total cost of a substep
for a particle that executes only one segment Csub (lines 3–25, including current accumulation).
Profiling revealed that segment operations, accounting for 18% of the Csub (including field scat-
tering), are comparable to other costly parts such as the computation of the residual of the CN
system (lines 15–17) and the initial substep timestep estimator (line 3), both located outside the
per-segment loop and taking 17% and 14% of Csub, respectively (the current accumulation step,
line 23, lies outside the Picard loop, and has negligible cost, < 5%). In previous movers [65],
segment crossings directly led to new substeps, making the orbit cost proportional to the number
of segments s, Cold = s Csub. However, in our new implementation, there is a fixed cost for oper-
ations outside the per-segment loop, and only those within the loop scale with the number of cell
crossings:

Cnew = Csub + (s − 1)Cseg = Csub

(︄
1 + (s − 1)

Cseg

Csub

)︄
≈ Csub

(︄
1 +

(s − 1)
5.5

)︄
.

There results an acceleration potential of:

Cnew

Cold
=

1
s
+

(s − 1)
5.5s

s≫1
−→

1
5.5
,

which is appreciable. Additionally, for s < Csub/Cseg ∼ 5.5, the cost of the mover is only weakly
dependent on the number of crossings.

As a result, figure 6.11-right demonstrates an almost perfect linear scaling of the wall-clock
time with nz while keeping the number of particles per cell and ∆t constant. This scaling seems
quite robust to the natural increase of cell crossings per particle and timestep as nz increases: for
nz = 128, less than 20% of the electrons undergo 1 cell crossing or more in one ∆t, whereas
for nz = 512, this fraction goes up to 73%. Eventually, for sufficiently large nz such that the
number of substeps s ∝ nz, we expect to recover the quadratic scaling ttot ∼ n2

z observed in earlier
studies [168]. Meanwhile, the number of substeps per ∆t, in average 1.72, remains essentially
independent of nz and the number of cell crossings. Also important for this scaling is the fact that
JFNK performance is largely independent of nz, a consequence of the efficient inversion of the
Laplacian operator in 1D.

Figure 6.11: Total CPU wall time as a function of ∆t (left), the number of particles per cell at
steady state Np (center) and number of cells in the domain with a constant number of particles per
cell nz(right). Reference scaling laws are shown with dashed lines in each plot.

We estimate next the wall-clock speedup of the implicit PIC algorithm vs. explicit PIC using
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the back-of-the envelope estimate derived and verified in Ref. [65]:

CPUe

CPUi
∼

1
(5λD/l)d+1

1
NFE

(6.66)

where l is a characteristic length for the macroscopic fields variation, λD is the Debye length, d
is the spatial dimension and NFE is the number of non-linear function evaluations, i.e., the sum
of the number of Krylov iterations for each of the Newton iterations in a given time step. Typical
values of the implicit substep and cell sizes vs. the explicit ones have been taken into account in
the speedup estimate above [65]. It is also assumed that a substep in the implicit algorithm has a
computational complexity similar to that of an explicit push. As a result, the speedup estimate is
independent of the timestep. If we estimate the characteristic length as the distance between the
nozzle entrance and its throat, l ∼ 50λD, and taking NFE ∼ 14 from the nominal simulation case
B, there results a speedup estimate of ∼ 7, which is significant. Larger speedups are expected in
higher dimensions and in the electromagnetic case [173]. Note that no correction to this estimate
has been made to account for the improved efficiency of the segment-based mover. Consequently,
this can be understood as a lower bound for the potential gains of the algorithm. The use of more
advanced preconditioners [168] may unlock further performance improvements by decreasing the
number of nonlinear iterations, NFE , but this exploration is beyond the scope of this study.

Another useful performance datapoint is the wall-clock-time comparison with the semi- Lan-
grangian Vlasov code in Ref. [45]. That study employed 1501 cells in z and took approximately
2.5 days on a comparable machine with multithreading [174]. This gives a speedup of O(30) per
simulation for comparable or superior accuracy. Roughly, this allows us to perform simulations
with the realistic Xenon mass ratio mi/me = 240000 at the same cost as that for the former method
with mi/me = 100.

6.6. Summary

A novel implicit particle-in-cell paraxial model has been proposed, targeting the simulation of
magnetic nozzles in electric propulsion systems. The new model has demonstrated exact con-
servation properties in closed systems, and the ability to employ, stably, much longer timesteps
than inverse plasma frequencies and cell sizes much larger than the Debye length. As a result,
the model can employ fewer grid cells than an explicit code, which in turn leads to a significant
reduction in the total number of macroparticles required for the simulation. The conservation of
global energy and local charge is important for the long-term accuracy of the simulation and the
taming of temporal [65] and finite-grid [175] instabilities prevalent in explicit PIC models when
such resolutions are employed.

Compared to previous implicit PIC studies, our model builds on developments presented in
[65] and the generalization to mapped meshes presented in [66], essential to simulate plasma ex-
pansions efficiently. The novel and efficient segment-based mover [162], which allows particles to
travel several cells in a single substep, was also generalized for the first time to mapped meshes.
Other new features that are particularly advantageous for the study of magnetic nozzles are the
introduction of the 1D paraxial geometry, the magnetic mirror force term, a new particle injec-
tion algorithm, and the dynamic downstream electric field boundary condition that overcomes the
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issues in capturing infinite plasma expansions in finite domains found in earlier studies.

The complete model has been verified, first in a periodic magnetic mirror that showcases
the action of the mirror force and the conservation properties of the algorithm, and later in a
relevant magnetic nozzle study. The MN example was analyzed thoroughly, observing only minor
differences with previous literature results and demonstrating convergence and low sensitivity to
ad hoc control parameters to preserve quasineutrality asymptotically. The algorithm is shown to
scale favorably with the implicit timestep (i.e., larger timesteps lead to faster simulation times),
and linearly (i.e., optimally) with both the number of particles and the number of grid cells in a
broad range of resolution parameters.
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7. Conclusions

7.1. Main takeaways and significance

On the basis of the linearized, cold-plasma, frequency-domain theory, a two-dimensional axisym-
metric full-wave model has been developed for the electromagnetic wave propagation and power
absorption in electrodeless plasma thruster (EPT) discharges. The new simulation tool, named
PWHISTLER, eases the modeling process of electromagnetic phenomena in magnetized plasmas
by increasing the simulation speed —from setup to solution and postprocessing— and accuracy.
The solver is implemented leveraging the FEniCSx library [85]. It uses the finite element (FE)
method to solve the inhomogeneous wave equation in magnetized plasmas in the frequency do-
main. This method is also advantageous because of its use of unstructured meshes, which allows
complex geometries and local refinement strategies. This refinement is crucial for mitigating high-
frequency spurious noise near critical resonant and cutoff surfaces. Verification of the code was
conducted, performing tests based on the method of manufactured solutions (MMS) and analyz-
ing the effect of mesh refinement on numerical error. Compared to previous solvers, the new
tool introduces several noteworthy advances, such as Fourier azimuthal modes for the spectral
decomposition and solution of 3D problems in a 2D spatial discretization and waveport boundary
conditions.

A previously developed finite difference (FD) code was used to study the propagation and ab-
sorption of EM waves in a realistic Helicon Plasma Thruster (HPT) prototype. Although most of
the power absorption takes place inside the cylindrical source, the fraction of power taken in by
the plasma plume is not negligible. The magnetic nozzle allows the fields to propagate towards
the electron-cyclotron resonance (ECR) surface, which is always present downstream. The wave-
length and direction of propagation correspond to a helicon wave around the axis of the device.
In the outer regions of the plume, the waves have a shorter wavelength and a larger perpendicu-
lar component, resembling the Trivelpiece-Gould mode. The ECR surface was demonstrated to
concentrate some of the power absorption and is critical in confining the radiation away from the
device, as the fields become evanescent beyond it.

The thesis has presented experimental and numerical studies of a cusped HPT. These are en-
abled by the new capabilities of the PWHISTLER code, which is coupled to the hybrid plasma
transport solver HYPHEN. The numerical results successfully align with experimental plasma
trends, particularly after adjusting the anomalous collisionality parameters. The model effectively
captures a secondary maximum in electron temperature near the downstream Electron Cyclotron
Resonance (ECR) surface. Additionally, the code accurately predicts the azimuthal profile of the
ion current density up to moderate angles. The study underscores the influence of the magnetic
ring cusp within the HPT. This feature shapes the plasma response and divides regions of plasma
currents and magnetic thrust inside the source. It is observed that the net magnetic thrust con-
stitutes a substantial portion of the total generated thrust. The study also highlights performance
losses, as in other HPTs, primarily as a result of high plasma currents to the walls, leading to
significant ion recombination. The ring-cusp design, while reducing losses to the lateral wall, is



116 7. Conclusions

countered by a lower electron temperature, which increases excitation losses. This results in lower
energy and thrust efficiency. These findings point to potential future modifications in design or op-
eration to optimize the balance between reduced wall losses and increased electron temperature,
thereby enhancing thrust efficiency.

Finally, the thesis presented a novel implicit particle-in-cell (PIC) paraxial model designed
for magnetic nozzles. The implicit PIC method allows for longer time steps and larger mesh
spacing than traditional methods, significantly reducing computational time and resource require-
ments. Major efficiency gains come from the need for fewer mesh cells and the reduced number
of macroparticles. The model ensures long-term accuracy by conserving global energy and local
charge, addressing instabilities common in explicit PIC models. The new model builds on previ-
ous implicit PIC studies by incorporating features specifically tailored for magnetic nozzle studies.
These include the introduction of 1D paraxial geometry, a magnetic mirror force term, an inno-
vative particle injection algorithm, and a dynamic downstream electric field boundary condition.
Additionally, it generalizes an efficient segment-based mover [162] to mapped meshes, allowing
particles to traverse several cells in a single suborbit. Verification of the model was performed
against published data, demonstrating its accuracy and effectiveness in a periodic magnetic mir-
ror and a magnetic nozzle study, showing minor differences from the previous literature and low
sensitivity to control parameters. Its favorable scaling with the implicit timestep and with the
number of particles and mesh points mark a notable improvement over earlier implementations.
This development of this novel code could pave the way for the optimization of new devices and
the improvement of understanding of complex physical phenomena in EPT devices, which are
currently prohibitively expensive to study with high-dimensional kinetic models.

In summary, this thesis significantly advances the physical understanding and numerical mod-
eling of low-temperature plasma physics for electric propulsion, and in particular for electrodeless
plasma thrusters. Together, the aforementioned developments present a comprehensive toolkit for
the modeling of EPTs. PWHISTLER’s speed and practicality make it ideal for design applications,
while the accuracy of the PIC algorithm is valuable for fundamental research. This dual approach
enriches the field and addresses diverse modeling needs.

7.2. Future work

With regard to cold-plasma full-wave simulations, there are ongoing efforts to demonstrate the
application of PWHISTLER, coupled with the HYPHEN transport solver, to Electron Cyclotron
Resonance Thrusters (ECRTs), using the new waveport boundary condition. The numerical ca-
pabilities will also be enhanced with the introduction of Perfectly Matched Layer (PML) domain
truncation [81] and a possible extension to 3D simulations enabled by the use of iterative solvers
and/or advanced computer architectures, e.g. distributed computing. HPT studies shall continue
with parametric investigations and optimization of the novel cusped-field magnetic topology.

The main challenge in plasma modeling for electric propulsion, and in particular EPT mod-
eling, is arguably to bridge the gap between the two approaches discussed earlier: mid-fidelity,
high-dimensional models that can be executed within a few hours or days on moderately sized
computers, and high-fidelity kinetic solvers that, while requiring significantly more computational
resources, are needed for capturing various physical phenomena critical to the overall behavior of
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the device, in a predicted and validated way. The essence of implicit PIC algorithms is to combine
these attributes. They aim to provide affordable, self-consistent, and highly accurate simulations,
a capability not offered by current methodologies.

To study essential electromagnetic phenomena coupled to non-linear and kinetic effects in
EPTs, the electrostatic algorithm presented in this thesis shall be extended with an electromag-
netic solver. To this end, the Darwin approximation [63] for electromagnetic fields will be used.
Electromagnetic implicit methods effectively circumvent the limitations set by the CFL (Courant-
Friedrichs-Lewy) condition and the local Debye length and provide multiorder-of-magnitude sav-
ings compared to explicit EM PIC algorithms [160]. Nevertheless, such methods have not yet
been implemented in electric propulsion studies, and there are multiple open research challenges
including the development of appropriate boundary conditions and particle collisions.

Realistic thruster simulations also require an increase in the dimensionality of simulation do-
mains. In fact, implicit PIC savings (compared to traditional methods) have been shown to grow
significantly with spatial dimensions [173]. This makes them exceptionally suitable for long-
term, two- or three-dimensional realistic thruster simulations. The compute speed provided by
implicit methods can be further enhanced by employing modern high-performance computing
(HPC) techniques, including graphics processing unit (GPU) parallelization and distributed com-
puting. In summary, the generalization of implicit methods, combined with the advent of faster
computing technologies, is expected to enable routine kinetic electromagnetic thruster simulations
in the midterm.

Even more advanced methods are the implicit asymptotic preserving (AP) PIC algorithms
that are currently being developed by several research groups [162], [176]. This scheme is a
key breakthrough, allowing for timesteps that substantially exceed the particle gyroperiods. In
scenarios where large timesteps are utilized, the algorithm ensures that averaged particle drifts
are accurately preserved while also maintaining the capacity to recover detailed particle orbits in
cases of shorter timesteps (or longer gyroperiods). A particularly notable aspect of this scheme
is its ability to efficiently and seamlessly handle particles transitioning between magnetized and
unmagnetized regimes. This dual capability is advantageous for the comprehensive simulation of
diverse plasma environments encountered in EPTs.

Model validation is crucial for the electric propulsion community, and further validation cam-
paigns will be conducted incorporating additional experimental data. These efforts aim to demon-
strate the effectiveness of the diverse approaches for the study of different types of thrusters and
new prototypes.
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