
           

ENERGY-CONSERVING, IMPLICIT PIC ALGORITHMS FOR

ELECTRIC PROPULSION AND PLASMA PLUMES

Pedro Jimenez, Mario Merino

31st Spacecraft Plasma Interaction Network in Europe (SPINE) meeting October 2024 
Toulouse



Energy-conserving, Implicit PIC Algorithms for electric propulsion and plasma plumes           

SPACECRAFT PLASMA INTERACTION MODELLING
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● Predictive Accuracy:

● Spacecraft interact with diverse plasma environments, affecting performance 
and safety. 

● Kinetic models can predict charging, erosion more accurately than 
alternatives. 

● Low density and weakly collisional plasmas. 

● Lack of thermodynamics equilibrium. 

Why are Fast and Accurate Kinetic Models needed in Spacecraft-
Plasma Interactions studies? 

Δ𝑥

● Particle-in-Cell has become the most popular method for large scale kinetic 
simulations

● An important numerical parameter is the number of macroparticles per cell.

● Should be large for statistical representation. 

● Classic models (explicit) must use fine meshes -> Many particles. 

● Long compute times. 

● Implicit methods can use much course meshes and long time steps

● Many less particles.
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ELECTRODELESS THRUSTERS (EPTS) AND MAGNETIC NOZZLES (MN)
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● Electromagnetic (EM) waves heat the plasma. Magnetic nozzles used as the 
acceleration stage.  Diverging 𝑩𝑎 created  by coils or magnets.

● Partial understanding of important mechanisms from fluid models:

● Quasineutral and ambipolar expansion.

● Different parametric regions for EM wave propagation.

● Different heating mechanisms. Resonant (Electron Cyclotron Thruster 
ECRT), geometric-inductive (Helicon Plasma Thruster HPT).

● Thermal electron energy to ion kinetic energy conversion in nozzle 
topology.

● However, lack local thermodynamic equilibrium and kinetic effects:

● Electron kinetics, subpopulations and cooling .

● Plasma wave-interaction and effects on EVDF not well understood.

● Need for accurate and fast kinetic simulations.

● Implicit PIC surpasses the performance of classical methods. 
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GOVERNING PARTICLE EQUATIONS
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𝐴𝑓𝑡(𝑧) ∝ 1/𝐵(𝑧)

● Drift-kinetic Vlasov equation (DKE). Perpendicular drifts can be 
neglected by virtue of the Paraxial approximation.

● Particle discretization of the EDFs.

● Paraxial approximation and magnetized particles.

● Evolution equations for the particles. 1D3V system.

● Magnetic mirror force term.

● 1D1V if 𝜇 is assumed constant (only electrostatic).

● ES case:  Applied  𝐵𝑧0 and  ambipolar 𝐸𝑧 only.

● EM case: Adds wave fields 𝐵𝑥 , 𝐵𝑦 and 𝐸𝑥 , 𝐸𝑦

● IW case:  EM fields from cold-plasma dielectric tensor model
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SELF-CONSISTENT FIELD EQUATIONS: THE DARWIN APPROXIMATION
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● Scalar and vector potentials (Coulomb’s gauge) and wave equation:
● Decoupled axial and transverse fields: 

● Hyperbolic Maxwell -> Elliptic Darwin

● No CFL condition for speed of light (vacuum 
light waves are removed)

● Darwin is a very good approx. in dense plasmas

In 1D, we ignore 𝐴𝑧

∇ ⋅ 𝐸𝑖 =
𝜌
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;
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IMPOSED WAVE: COLD PLASMA DIELECTRIC TENSOR MODEL
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● Alternative, cold-plasma model to find 𝐸𝑥 , 𝐸𝑦 and impose the wave to the move particles. 1D 

equation  for a right-hand circularly polarized wave

● Frequency domain and not-self consistent with particle weighted currents.

● Retains all terms in Maxwell’s equations.

● Phenomenological damping term 𝛾.

● Employed in the past for full thruster 2D simulations

d2 ƶ𝐸𝑅
d𝜁2

+ 1 +
𝜂

𝜉 − 𝑖𝛾
ƶ𝐸𝑅 = 0

𝜂 =
𝜔𝑝𝑒
2

𝜔2 ∝ 𝑛𝑒

𝜉 =
𝜔𝑐𝑒

𝜔
− 1 = 𝑓(𝐵𝑧0)

1D
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IMPLICIT PIC ALGORITHM
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● Compared to explicit PIC models:

● Δ𝑥 > 𝜆𝐷𝑒𝑏𝑦𝑒 (no finite-grid instability ⟶ enforces a minimum spatial resolution)

● 𝜔𝑝𝑒Δ𝑡 > 1 (no CFL-type instability ⟶ enforces a minimum temporal resolution)

● Basic implicit scheme based on Chen et al. 2011

● The evolution of the particles is a function of the potential; 
non-linear elimination of the particle coordinates (Particle enslavement)

𝑥𝑝
𝑛+1 = 𝑥𝑝 Φ𝑛+1 ; 𝑣𝑝

𝑛+1 = 𝑣𝑝 Φ𝑛+1

𝐺 𝑥𝑝
𝑛+1, 𝑣𝑝

𝑛+1, Φ𝑛+1 = 𝐺 𝑥 Φ𝑛+1 , 𝑣 Φ𝑛+1 , Φ𝑛+1 = ෨𝐺 Φ𝑛+1

● The residual is only a function of the potential

● Major reduction of the non-linear system unknowns

● Fully Implicit Crank Nicolson mover

● Time centered, 2nd order, non-dissipative 

● Jacobian Free Newton Krylov (JFNK)

● No need to compute the Jacobian Matrix

● Jacobian vector product for Krylov subspace method 
(GMRES) 

● Easily preconditioned -> Potential for acceleration
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SUBCYCLING AND MESH MAP
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● Hybrid push in mapped meshes:

● Particle positions are advanced in a Cartesian logical 
(computational) space and velocity advanced in 
physical space.

● Mover:

● Particles are allowed to cross several cells in a substep
-> Averaged splines.

● Conservation properties and stability:

● Global energy → limits artificial heating.

● Local charge 𝜕𝑡𝜌 = −∇ ⋅ 𝒋 → important for long term 
sims.

● Proven suppression of finite grid-instabilities under 
most conditions (Barnes 2020).

● In MN problems of interest,

● Fields vary slowly (Δ𝑡).

● Electron times are much faster (Δ𝜏 ≪ Δ𝑡).

● Use small substeps such that ∑Δ𝜏 = Δ𝑡.
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RECAP: ELECTROSTATIC STUDY
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Jiménez, P., Chacón, L., & Merino, M. (2024). An implicit, conservative electrostatic particle-in-

cell algorithm for paraxial magnetic nozzles. Journal of Computational Physics, 112826.

● 1D1V, electrostatic energy- and charge-conserving:

● Conservation of μ.

● Good agreement with previous literature.

● Advances:

● New downstream boundary conditions and 
elimination of the exit sheath.

● Introduction of the segment-based mover in 
mapped meshes..
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ELECTROMAGNETIC SIMULATION SETUP

● Simplifications in preliminary simulations:

● Reduced mass-ratio, lower ion transient time:

●
𝑚𝑖

𝑚𝑒
= 100

● Collision-less expansion.

● Future work plans using realistic values.
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● Plasma conditions close to typical EPT plume:

● Convergent-divergent nozzle

● Domain ~ 0.5 m

● Density n𝑒 = 1018 𝑚−3

● Electron temperature 𝑇𝑒 = 10 𝑒𝑉

● Wave frequency 𝑓 = 260 𝑀𝐻𝑧

● Presence of an electron cyclotron resonance surface.

● Simulation cases:

● ES: Electrostatic (i.e, no wave).

● EM: Darwin, self-consistent wave simulation. Low and high-power 
cases.

● IW: wave fields precomputed from cold-plasma dielectric tensor 
model.
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STEADY STATE RESULTS: ELECTRON TEMPERATURE
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● Electron perpendicular temperature 𝑇𝑒⊥

● ES case: Decreases with 1/B as expected from magnetic moment 𝜇 conservation.

● EM and IW: There is a broad heating region prior the resonance, higher 𝑇𝑒⊥ continues downstream. 

● Despite imposing the same approximate wave power, more heating is observed in EM.high than in IW.

● Electron parallel temperature 𝑇𝑒||

● Almost constant in ES. Mirror force converts perpendicular energy to axial directed velocity.

● Drop and recovery around resonance in EM and IW cases. Not well understood.

● Possible particle synchronization, different subpopulation characteristics … 
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STEADY STATE RESULTS: POTENTIAL AND ION ACCELERATION
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● Electrostatic potential

● Larger fall in EM and IW thanks to the larger 𝑇𝑒⊥. 

● Ion velocity:

● Greater acceleration in electromagnetic cases 𝑢𝑖 ∝ −𝜙

● Power transfer mediated by mirror force   ↑ 𝑇𝑒⊥ → ↑ 𝑣𝑒,∥ → ↓ 𝜙 → ↑ 𝑢𝑖

● Fastest expansion:

● Ion continuity 𝑛𝑖𝐴𝑓𝑡𝑢𝑖 = 𝑛𝑖𝑢𝑖/𝐵

Power deposition due to wave 
ultimatlely drives a higher 

thrust 𝐹 ∼ 𝑚𝑖𝑛𝑖𝑢𝑖
2/𝐵. 
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EM FIELDS AND POWER ABSORPTION
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Weighted from particles (not the one in 
cold-plasma model).

● Wavefields propagate up to the resonance, where large absorption takes place

● Kinetic results were used to tune damping ratio 𝛾 of cold-plasma model 

● 𝛾 controls mainly the width of the absorption region. 

● In this case with kinetic damping only: 𝛾 ≃ 0.5𝜔 offers a good fit

● Minor differences in phase and magnitude between EM and IW cases.

● Simple fits could be derived over a range of problems of interest
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ELECTRON VELOCITY DISTRIBUTION FUNCTION (EVDF)
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The magnetic moment 𝜇 is not conserved in 
the heating region. Downstream the 
resonance the typical trend resumes.

Near-vertical lines in the gyro-phase suggest 
particle synchronization with wave fields in EM 
and IW cases.

A structure in 𝑣𝑧 appear that coincides with a 
displaced resonance line due the Doppler 
effect on hot particles:

𝜔𝑒𝑓𝑓 = 𝜔𝑐𝑒; 𝜔𝑒𝑓𝑓 = 𝜔 − 𝑣𝑡𝑘
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ALGORITHM PERFORMANCE ELECTROSTATIC
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● Realistic mass ratio simulations ~ 1 day 20 
core workstation.

● Linear time scaling with particles/cell and 
number of cells.

● 𝑡𝑡𝑜𝑡 ∝ 𝑛𝑧 ➝ New mover allows particles 
to travel across several. 

● Speed up of 𝑂(10) with respect to explicit 
PIC: For typical mesh and timesteps.
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CONCLUSIONS AND FUTURE WORK

● Time-implicit → breaks 𝜆𝐷𝑒 and 𝜔𝑝𝑒 constraints. Darwin model to avoid solving fast light speed modes.

● Exact global-energy and local-charge conservation.

● Good agreement between Darwin and cold-plasma model:

● Fitting of phenomenological parameters with self-consistent simulations.

● Important performance gain compared to state-of-the-art:

● Greater than in electrostatic studies.

● Challenges: Convergence (preconditioning), population control …

● Future work:

● Implement preconditioner

● Adding MC collisions

● 2D dimensional code

● GPU parallelization 
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● Possible IPIC Applications in Electric Propulsion:

● Nozzles and expansions.

● Plasma sources.

● Need for collisions, plasma chemistry and wall interaction.

● Electrodeless Thrusters (EM version).

● Back-of-the envelope 
estimate (Chen 14) with EPT 
plasma:

1D -> O(100)

2D -> O(2500)

3D -> O(60000)
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