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● This talk is focused on recent advances on modeling Magnetic Nozzle (MN) physics

● Tomorrow 8:30AM, we will talk on kinetic simulations for Hall Thruster physics

● The MN is the external, diverging part of the magnetic field in many EPTs (e.g. HPT and ECRT)

● The 𝑩 field guides the plasma, limiting its radial expansion contactlessly

● The magnetic force on the azimuthal plasma currents creates magnetic thrust

● Thermal energy in the plasma is converted into directed kinetic energy, increasing propulsive efficiency

● In EPTs, ions are essentially demagnetized downstream and readily separate from the field lines 

INTRODUCTION
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INTRODUCTION

● Ample contributions to MN physics

● Fundamentals of 2D MNs for propulsion POP 2010

● MN with double layers POP 2011

● Mechanisms of ion detachment POP 2011, 2012, 2014

● The effects of the induced magnetic field POP 2016

● The effects of hot ions IEEE 2015

● Fully magnetized ions POP 2016, PSST 2021

● Thrust vectoring with 3D MNs PSST 2017, POP 2018

● Collisionless electron cooling (in paraxial MNs) POP 2015; PSST 2018, 2020, 2021

● Applications: MNs in HPT and ECRTs PSST 2018-2023

● Fluid, Vlasov, PIC based models are selected to analyze different aspects of  the problem & levels of detail

● In this talk, we presents recent advances: 

● An electromagnetic implicit full-PIC code to simulate a paraxial MN with RHP waves

● Fluid and hybrid simulations of a Magnetic Arch  (i.e. 2 connected MNs)
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PLASMA AND EM WAVES PROPAGATION IN MNS

● Hybrid 2D sim. for ECRT

Sanchez et al. PSST 2021
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● Hybrid 2D sim. for HPT

Jimenez et al. PSST 2023

● Vlasov sim. of paraxial MN

Zhou et al. PSST 2021
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TIME-IMPLICIT PIC ALGORITHM
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● Quasi-1D/3V code developed in collaboration with LANL (Luis Chacón)

● Energy conserving, time-implicit scheme overcomes many limitations of explicit PIC codes:

● Δ𝑥 > 𝜆𝐷𝑒𝑏𝑦𝑒 (finite-grid instability) → we can have coarser spatial resolution

● 𝜔𝑝𝑒Δ𝑡 > 1 (plasma oscillations) → Time step is not limited

● IPIC can be more efficient for long time and large-scale simulations

● “Particle enslavement” to the ES/EM potentials reduces the size of the nonlinear 
problem, as residual 𝐺 can be formulated in terms of Φ𝑛+1 only:

𝑥𝑝
𝑛+1 = 𝑥𝑝 Φ𝑛+1 ; 𝑣𝑝

𝑛+1 = 𝑣𝑝 Φ𝑛+1

𝐺 𝑥𝑝
𝑛+1, 𝑣𝑝

𝑛+1, Φ𝑛+1 = 𝐺 𝑥 Φ𝑛+1 , 𝑣 Φ𝑛+1 , Φ𝑛+1 = ෨𝐺 Φ𝑛+1

● Spacetime location of field, current, potential variables important →

● Fully Implicit Crank Nicolson mover

● Energy- and local charge- conserving

● Time centered, 2nd order, non-dissipative

● Subcycling: Keeps errors in momentum conservation small.

● Jacobian Free Newton Krylov (JFNK) + GMRES

● Preconditioners can be implemented
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GOVERNING PARTICLE EQUATIONS: MN MODEL

7

● Vlasov equation: collisionless expansion

● Particle discretization of the EVDF

● Paraxial approximation 

● Fully magnetized  ions

● Evolution equations for the particles. Q1D-3V system.

● Magnetic mirror force term.

● 1D-1V if 𝜇 is assumed constant (only electrostatic case).

● ES case:    Applied  𝐵𝑧0 and  ambipolar 𝐸𝑧 only.

● EM case:   Adds wave fields 𝐵𝑥 , 𝐵𝑦 and 𝐸𝑥 , 𝐸𝑦
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FIELD EQUATIONS: THE DARWIN APPROXIMATION
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● Scalar and vector potentials (Coulomb’s 
gauge  ∇ ⋅ 𝑨 = 0) on Maxwell’s equations:

● Terms neglected in Darwin approximation

● Hyperbolic eqs (Maxwell) → Elliptic eqs (Darwin)

● No CFL condition for speed of light (vacuum light 
waves are removed)

● Darwin is a very good approx. in dense plasmas

Darwin, quasi 1D. →. 𝐴𝑧= 0

● Decoupled axial and transverse fields: 

(𝐽𝐵 =
1

𝐵
)
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ELECTROMAGNETIC SIMULATION SETUP

● Reduced mass-ratio, Τ𝑚𝑖 𝑚𝑒 = 100

● to lower ion transient time

● 𝐿𝜔𝑝𝑒/𝑐 artificially increased 

● to observe several wave cycles 
upwards the resonance 
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● Plasma conditions close to ECRT or HPT plumes

● Convergent-divergent nozzle

● Domain ~ 0.2 m

● Density n𝑒 = 1018 𝑚−3

● Electron temperature 𝑇𝑒 = 10 𝑒𝑉

● ECR surface at 𝑧 ∼ 2.2 cm.

● Simulation cases:

● ES: Electrostatic (i.e, no wave).

● EM: Darwin, self-consistent wave simulation. Low 
and high-power cases.

● IW: wave fields precomputed from cold-plasma 
dielectric tensor model.

ECR
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EM FIELDS AND POWER ABSORPTION
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● Wavefields propagate up to the resonance, where large absorption takes place

● Kinetic results were used to tune damping ratio 𝛾 of cold-plasma model 

● 𝛾 controls mainly the width of the absorption region. 

● In this case with kinetic damping only: 𝛾 ≃ 0.5𝜔 offers a good fit

● Minor differences in phase and magnitude between EM and IW cases.

● Simple fits could be derived over a range of problems of interest

re
so

n
an

ce

● ES: Electrostatic 

● EM: Darwin, self-consistent 
wave simulation. 

● IW: Cold-plasma dielectric 
tensor model.
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STEADY STATE RESULTS: POTENTIAL AND ION ACCELERATION
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● Larger 𝑇⊥𝑒 under the presence of RHP wave; increases in the neighborhood of
the resonance

● Greater electrostatic potential fall along the MN, consequently greater Ion

velocity (𝑢𝑖 ∝ −𝜙) and larger expansion ( Τ𝑛𝑖𝑢𝑖 𝐵 = const)
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ADVANTAGES OF THE IMPLICIT PIC APPROACH

● Time-implicit PIC code → breaks 𝜆𝐷𝑒 and 𝜔𝑝𝑒 constraints. Exact global-energy and local-charge conservation.

● Darwin model avoids solving fast light speed modes.

● Important numerical performance gain compared to state-of-the-art 
explicit PIC codes: 

● Wall time in ES case is x30 less than time-explicit Vlasov code 
[Sánchez et al 2018] for same problem and same or greater accuracy

● New electron push algorithm based on segments offers x5.5 times savings wrt implicit code at LANL

● Wall time scaling:
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● Back-of-the envelope 
speedup estimate (a la Chen 
14) with EPT plasma:

1D -> O(10-100)

2D -> O(2500)

3D -> O(60000)

Linear 𝑡𝑡𝑜𝑡 on 𝑛𝑧
(number of cells); 
previous codes at 
LANL were 
quadratic on 𝑛𝑧

Increasing need for 
subcycling for 
increasing Δ𝑡
means that there is 
optimal Δ𝑡

Linear scaling 
with number of 
particles 𝑁𝑝
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MAGNETIC ARCH PLASMA EXPANSION

● A Magnetic Arch (MA) forms when two  MNs of opposing polarities are placed next to each other

● Interesting for clustering MN-EPTs in pairs

● The magnetic moment of each MN cancels out (beneficial for S/C ADCS)

● Enables differential thrust vectoring

● MA can be designed to feature a lower divergence angle than MNs (lower impact of plume on S/C)

● Plasma expansion is now fully 3D and quite distinct from that in a MN. Interesting aspects:

● Interaction of the two “beamlets” in the central part of the arch

● Role of the plasma-induced magnetic field likely different from that in a MN

13

MA (C. Boyé)
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MAGNETIC ARCH - DGFEM

● Two-fluid model in planar approximation

● Time dependent. quasineutral, 

● collisionless plasma 𝜒 (Hall parameter) = ∞

● Cold, singly-charged ions

● Massless, polytropic (𝛾 = 1.2) magnetized electrons:

● Electron momentum equation is algebraic

● Thermalized potential Φ and out-of-plane velocity

𝑢𝑦𝑒 are constant along 𝑩 lines and fully

determined by inlet BCs.

● Discontinuous Galerkin spacial discretization (weak

form, Local Lax-Friedrich fluxes).

● Strong stability preserving Runge-Kutta time stepping.
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● Gaussian density profile.

● Radius 𝑅𝑝 = 1

● Supersonic inlet velocity.

● Supersonic outlet boundary conditions.

● Symmetry plane between the two sources
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MAGNETIC ARCH – DGFEM

● Initial expansion is similar to standard MNs.

● Oblique shock forms near the symmetry plane, at 
the beamlet interaction region

● Ions are unmagnetized and expand across the
closed field lines. 
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In-plane ion Mach number

Plasma density

Electrostatic potential
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MAGNETIC ARCH – DGFEM

● Magnetic thrust originates from the reaction to the magnetic 
force density 𝑓𝑧 = 𝑒𝑛𝑢𝑦𝑒𝐵𝑥

● Ions being essentially unmagnetized (𝑢𝑦𝑖 ≃ 0) do not 

contribute to the magnetic force

● A deceleration region appears in regions where 𝑓𝑧 < 0, 

due to the electric potential rise

● Differential thrust force 𝐹 𝑧 increases up to a maximum; drag 
in the downstream region makes it decrease

16

‘radial’ force density

axial force density

(small drag 
contribution)
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MAGNETIC ARCH – DGFEM

● Incremental thrust force increases up to a 
maximum; drag in the downstream region 
makes it decrease

● Effect of the self-induced B-field (𝛽 ≠ 0):

● Diamagnetic electron current tends to
“open” the B-lines.

● Downstream drag force is reduced

17

B-field lines for varying 𝛽
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MAGNETIC ARCH – HYBRID CODE

● Same problem, more detailed model.

● EP2PLUS code (used successfully in 3D plume simulation) is used in 2D planar mode. Composed of a 

● Heavy species Module (ions and neutrals):   PIC formulation

● Electron module:     Drift-diffusion, magnetized fluid model

● Improvements wrt to previous fluidmodel:

● Access to multibeam ion VDF

● Effects of collisionality on electrons 

(ionization, elastic,…)   

→ 𝜒 (Hall parameter) is finite  

→Mathematically different from case 𝜒 = ∞

● Effects of background pressure

● Effects of the external boundary conditions

18
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MAGNETIC ARCH – HYBRID CODE

● Symmetric and 2D planar simulation domain,
identical to the two-fluid study

● 𝛽 = 0 in all cases studied (no induced 𝑩 field)

● Plasma composed of:

● Singly charged Xenon ions

● Electrons 

● Simplified neutral background and collisionality: 

● Boundary Conditions:

● Injection:

● Gaussian density profile, sonic ions

● Uniform electric potential: 𝜙 = 0

● Symmetry:

● Reflect all particles

● Null electron current
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● Dielectric:

● Absorb all particles

● Impose 𝑗𝑒𝑛 = −𝑗𝑖𝑛

● Chamber walls:

● Absorb all particles

● Impose 𝐼𝑒𝑊 = −𝐼𝑖𝑊

Parameter Value

𝑛0 1018 𝑚−3

𝑇𝑒0 5 𝑒𝑉

𝛾 1.2
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MAGNETIC ARCH – HYBRID CODE – PLASMA RESPONSE

● Thermalized potential is   ~constant 
along magnetic lines

● No clean shock structure is present 
(although 𝑛 and 𝜙 do rise in the 
interaction region, and ෤𝑢𝑖 does feature 
a sharp change)

● PIC algorithm enables access to IVDF:  
at the interaction region results from 
the combination of two ion 
populations

20

𝜒 = 30
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MAGNETIC ARCH – HYBRID CODE – EFFECTS OF MAGNETIZATION

● Comparison of χ = 3 and χ ≥ 10. (with B0 ∝ χ)

● Simulations with 𝜒 ≥ 10 showed very similar 
results, except for in-plane electron currents

● At 𝜒 = 3 ,the MN effects starts to fade

● Little magnetic guiding

● Little magnetic thrust

21

A case with background pressure. Ionization in 
the plume increases the flow of ions and hence 
thrust
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MAGNETIC ARCH – HYBRID CODE – BOUNDARY CONDITIONS

● In-plane electron currents are very 
sensitive to Hall parameter and to 
conditions in the external 
boundaries.

● Last point is a serious issue when a 
finite numerical domain wants to 
represent the expansion in free-space 
or on a very large chamber.

● The 3 simulations for 𝜒 = 150 are a 
good example.

● Fortunately, in-plane electron 
currents are almost decoupled from 
the rest of plasma variables
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SUMMARY

● Time-implicit, energy- and charge-conserving PIC codes + Darwin model offer a complete yet fast scheme for low-
temperature, magnetized plasma simulations, relevant for electric propulsion

● Overcomes 𝜆𝐷𝑒 and 𝜔𝑝𝑒 scaling of grid and timestep to tackle larger problems faster

● Q1D3V Magnetic Nozzle with a RHP wave shows that waves from the source may propagate and be absorbed in the 
plume, affecting the kinetic response of electrons and hence the plasma expansion

● x30 time saving wrt same problem solved with explicit Vlasov. Greater savings expected in higher dimensions

● A simple cold-plasma wave model can be tuned using the EM-kinetic MN simulation to yield accurate results: there 
is value in simpler models, augmented with fit laws for certain parameters

● Magnetic Arch simulation (two MNs with opposing polarities) shows that a plasma jet can be extracted from the 
closed-line configuration, generating magnetic thrust

● The plasma-induced magnetic field plays a central role in the MA, more so than in a MN

● Collisions affect negatively the performance, but effective Hall parameter of 𝜒~10 suffice to observe the MN/MA 
effect

● The comparison of fluid and hybrid models in the same Magnetic Arch case affords a  valuable comparative study 

● Multi-tiered simulation approach to plasma thrusters and plumes is likely the best approach to combine accuracy 
(complex, kinetic-electromagnetic codes) and speed (simple, tuned fluid and wave codes). 
We find this is the way forward toward a versatile, predictive simulation facility 
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MAGNETIC ARCH – HYBRID CODE

● Same problem, different model: access to IEDF, effects of collisionality / incomplete electron magnetization

● EP2PLUS code (used successfully in 3D plume simulation) is used in 2D planar mode

● Composed of a Heavy Species Module (ions and neutrals) and a Fluid Module (electrons).
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Heavy Species Module

o Ion and neutral 
macroparticles

o Standard PIC-MC 
algorithms

o Momentum conserving

Fluid Module
o Quasi-neutral plasma
o Electrons are quasi-stationary and inertialess, with an isotropic, diagonal 

temperature tensor
o We solve the continuity and momentum equations, closed with a polytropic 

law

with:


