
University Degree in Aerospace Engineering
Academic Year 2024-2025

Bachelor Thesis

Integration of plasma flows for electric
propulsion with Trixi.jl

Oscar Mora Hernandez

Mario Merino
Leganes, 06/16/2025

SUMMARY

This final degree project evaluates whether Julia and the open-source framework Trixi.jl
can be effectively used to simulate plasma flows in magnetic arch thrusters. To begin
with, the study uses well-known test cases, like the 1D Sod shock tube and the 2D
Prandtl–Meyer expansion, to validate the numerical setup. Different configurations are
tested by varying the polynomial order, mesh resolution, numerical flux, and time march-
ing methods to analyze accuracy and performance.

After this initial validation, the plasma model described in the reference article is
implemented in Julia using Trixi.jl. The results obtained are compared with those from
the original model to assess their consistency. Finally, a parametric study is carried out
to understand how changes in the adiabatic coefficient γ affect the plasma’s behavior,
particularly in terms of flow expansion, ion dispersion, and the position of the shock
wave.

The results show that Julia and Trixi.jl offer a reliable and efficient environment for
simulating plasma in electric propulsion systems. Although some limitations were found,
such as challenges with visualization and sensitivity to boundary conditions, the approach
proves to be a good and accessible alternative for future research in this field.

Keywords: Electric propulsion, Plasma simulation, Julia, Trixi.jl, Magnetic Arc.

iii

DEDICATION

This work has been carried out in the framework of the ZARATHUSTRA project,
which received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 950466)

v

CONTENTS

1. INTRODUCTION. 1

1.1. Motivation . 1

1.2. State of the art . 2

1.3. Objectives. 3

1.4. Regulatory framework . 3

1.5. Socio-economic environment . 4

1.6. Methodology . 5

2. PRELIMINARY VALIDATION OF TRIXI.JL . 7

2.1. Fundamentals of Trixi.jl . 7

2.2. 1D Sod shock tube case . 10

2.3. 2D Prandtl-Meyer expansion case . 18

2.4. Conclusions associated with the convergence studies. 21

3. STUDY OF PLASMA IN A MAGNETIC ARC 23

3.1. Advection of the He and Uye variables . 25

3.2. Comparison with the reference model . 30

3.3. Parametric analysis. 34

4. CONCLUSIONS . 38

5. FUTURE WORK . 40

BIBLIOGRAPHY. 41

APPENDIX A: SIMULATION PARAMETERS SELECTION

APPENDIX B: DECLARATION OF AI USE .

vii

LIST OF FIGURES

2.1 Initial conditions example. 8

2.2 Source terms example. 9

2.3 Influence of polynomial order for Sod shock tube case. 11

2.4 Explicit time marching methods. 12

2.5 Implicit time marching methods. 13

2.6 Influence of numerical flux for Sod shock tube case. 14

2.7 Influence of number of elements for Sod shock tube case. 16

2.8 Influence of shock capturing for Sod shock tube case. 17

3.1 Interpolated solution for He and Uye. 26

3.2 Influence of number of elements for He. 27

3.3 Influence of number of elements for Uye. 28

3.4 Influence of polynomial order for He. 29

3.5 Influence of polynomial order for Uye. 29

3.6 Plasma properties at z = 0. 31

3.7 Plasma properties at x = 5. 33

3.8 Plasma properties at z = 0. 35

3.9 Plasma properties at x = 5. 36

3.10 Streamlines and in-plane ion velocity. 37

Appendix A. Impact of the number of elements compared with reference solution.

Appendix A. Impact of the numerical flux compared with reference solution. . .

ix

LIST OF TABLES

1.1 Project budget . 5

2.1 Influence of polynomial order for Sod shock tube case. 11

2.2 Influence of time marching method for Sod shock tube case. 13

2.3 Influence of numerical flux for Sod shock tube case. 15

2.4 Influence of number of elements for Sod shock tube case. 16

2.5 Influence of shock capturing for Sod shock tube case. 17

2.6 Influence of polynomial order for Prandtl-Meyer expansion case 19

2.7 Influence of number of elements for Prandtl-Meyer expansion case 20

2.8 Influence of numerical fluxes for Prandtl-Meyer expansion case 20

2.9 Influence of AMR techniques for Prandtl-Meyer expansion case 21

3.1 Influence of number of elements for He. 27

3.2 Influence of number of elements for Uye. 28

3.3 Influence of polynomial order for He. 29

3.4 Influence of polynomial order for Uye. 29

3.5 RMSE for z = 0 . 31

3.6 RMSE for x = 5 . 33

Appendix A. Errors and simulation time for z = 0.

Appendix A. Errors and simulation times for x = 5.

Appendix A Errors and simulation times for z = 0.

Appendix A. Errors and simulation times for x = 5.

xi

1. INTRODUCTION

1.1. Motivation

The configuration known as the Magnetic Arch (MA), which appears when operating two
plasma sources with opposite polarities, is presented as an alternative to traditional mag-
netic nozzles used in space propulsion. In these conventional systems, such as Helicon
or ECR thrusters, two main problems arise. On one hand, the plasma undergoes signifi-
cant radial expansion, leading to high divergence, and on the other hand, strong magnetic
dipole moments appear. This makes integration into satellites difficult, since high diver-
gence reduces thrust, and the magnetic dipole interacts with the Earth’s magnetic field,
causing unwanted torques on the spacecraft [1].

The MA geometry aims to solve both problems. By connecting the field lines of two
magnetic nozzles with opposite polarities, forming a closed arc, the magnetic moment is
canceled and a narrower plasma jet is achieved. This reduces lateral momentum losses
and the negative effects on the satellite’s attitude. These improvements make it easier to
incorporate such systems into spacecraft [1].

Additionally, the MA allows combining several EPTs into a single system. This not
only increases the total available thrust but also adds advantages such as modularity and
redundancy. Each source can operate at lower power, better distributing the thermal load,
and if one fails, the system can continue to operate. Another advantage of the MA is that
directional control can be achieved without moving parts, simply by adjusting the power
of each source [1].

These characteristics make the MA a good option for future space missions that re-
quire compact, flexible, and efficient electric propulsion systems.

In this work, it was decided to use the Julia programming language together with the
Trixi.jl framework, instead of the internal code developed by the research group. This
open-source tool focuses on performing numerical simulations of systems of hyperbolic
partial differential equations [2].

The main objective of the project is to evaluate the viability of implementing the
plasma model developed by Merino et al. [3] in Julia using Trixi.jl, comparing the results
obtained with those of the original model. The goal is to determine whether a solution
based on open-source tools with an active community can faithfully reproduce previous
results and represent an accessible and scalable alternative for future research. In addition,
a parametric study is carried out by varying the adiabatic coefficient, γ, in order to analyze
its influence on the plasma dynamics.

1

1.2. State of the art

In recent years, research on plasma acceleration using magnetic nozzles has made signif-
icant progress. One of the key works was by Ahedo and Merino (2010), see [4], where
a two-dimensional model was developed to describe the expansion of a plasma inside a
magnetic nozzle. In this model, the plasma is nearly neutral, collisionless, and with low
pressure compared to the magnetic field. Their study showed that as plasma expands,
radial non-uniformities appear, causing a separation between ions and electrons, which
generates internal electric currents. They also explained that the thrust generated is not
only due to the thermal expansion of the plasma, but also to the electromagnetic forces
associated with the Hall currents induced in the system. Additionally, they calculated the
energy lost due to radial expansion, which is important for understanding the system’s
efficiency. Although it was an important step, this model did not address aspects such as
plasma detachment from the magnetic field or how the flow becomes supersonic at the
nozzle exit.

Based on these results, Merino et al. (2023) [3], presented the concept of the Magnetic
Arch (MA), a configuration consisting of two parallel magnetic nozzles with opposite
polarities, whose magnetic field lines connect to form a closed magnetic arc. Using a
stationary, two-dimensional, collisionless, bi-fluid model, they simulated how the plasma
expands in this configuration. They found that the ion beams from each nozzle meet
at the center of the domain and merge into a single jet that can propagate downstream,
despite the presence of closed field lines. This result confirmed the theoretical feasibility
of generating useful thrust in an MA.

They also observed that the thrust was slightly lower than that of a traditional noz-
zle, partly because the jet expands less laterally and because certain currents appear that
slightly slow down the plasma. However, when including the magnetic field induced by
the plasma itself, an axial stretching of the arc occurs, which smooths the curvature in
the apex region, reducing the contribution of magnetic drag and improving the overall
efficiency of the system.

On the other hand, Boyé et al. (2025) [1] carried out the first experimental valida-
tion of the MA using two ECR plasma sources with opposite polarities. They compared
different configurations: one source, two with the same polarity, and two with opposite
polarities, measuring ion current and energy. Their results matched the predictions of
Merino et al. [3], the MA configuration produces a narrower jet with higher ion current
than the others, although with slightly lower ion energy. Despite this, the net thrust was
effective, confirming the practical feasibility of the concept.

Taken together, the works of Ahedo and Merino laid the theoretical foundation for
plasma behavior in magnetic nozzles; Merino et al. extended this framework toward a
new configuration with closed topology and characterized its main physical mechanisms;
and Boyé et al. provided experimental evidence supporting its usefulness in real environ-

2

ments.

This project follows that line of research by reproducing the model of Merino et al.
using the Julia programming language and the Trixi.jl framework, and by studying the
effect of the adiabatic coefficient on plasma dynamics. The goal is to evaluate the potential
of open-source tools as an accessible and reproducible alternative for simulations in the
field of electric propulsion.

1.3. Objectives

The overall purpose of this final degree project is to evaluate the feasibility of using Julia
and Trixi.jl as an open-source platform for plasma simulation in magnetic arch thrusters,
taking as reference the results from the previously mentioned article [3].

To achieve this, the following objectives are proposed:

Obj 1 Numerical verification in known cases
Implementation of the Sod shock tube (1D) and the Prandtl–Meyer expansion (2D)
in Trixi.jl, performing a convergence analysis by varying the polynomial degree,
number of mesh elements, numerical flux, and explicit and implicit time marching
methods. The accuracy with respect to the analytical solution and the computational
time associated with each configuration will be evaluated simultaneously.

Obj 2 Integration of the model in Julia and comparison
Integrate the physical model from the reference article in Julia using the Trixi.jl
framework, defining a new system of equations within the framework. In addi-
tion, the results obtained will be contrasted with the reference results, identifying
similarities and possible discrepancies.

Obj 3 Parametric study
Evaluate the influence of the adiabatic constant γ on the plasma dynamics through
an analysis that allows identifying its impact on the macroscopic variables of the
system.

Obj 4 Conclusions and future work
Establish conclusions on the potential of Julia and Trixi.jl for the design of electric
thrusters, specifically magnetic arch thrusters, identifying areas for improvement
and possible future implementations.

1.4. Regulatory framework

In Europe, any activity related to the space sector, including electric propulsion and sim-
ulation models, is standardized and regulated by the European Cooperation for Space
Standardization (ECSS).

3

For this project, and for the future development of the Magnetic Arch Thruster, three
documents are particularly important:

• ECSS-E-ST-35-01C – Liquid and electric propulsion for spacecraft (15 Novem-
ber 2008)
This document defines the design, testing, and acceptance requirements for all elec-
tric propulsion systems.

• ECSS-E-ST-40C Rev.1 – Software (30 April 2025)
This standard covers all aspects of space software engineering, including require-
ments definition, design, development, verification and validation, transfer, opera-
tion, and maintenance.

• ECSS-E-ST-40-07C – Simulation modelling platform (2 March 2020)
This document complements the previous one and enables the effective reuse of
simulation models within and between space projects and their stakeholders.

Together, these standards require that any simulation supporting the design of an elec-
tric thruster must be traceable, verifiable against reference cases, and reproducible under
the same numerical parameters.

1.5. Socio-economic environment

The use of Julia and Trixi.jl, both open-source, eliminates the licensing costs associated
with most commercial CFD software. This absence of direct expenses is particularly
attractive for academic groups and NewSpace companies, as it allows them to allocate
resources to hardware or experimentation instead of software licenses.

In addition, the open-source condition of these tools supports training and talent de-
velopment. Any student or researcher can examine the implementation, reproduce results,
and propose improvements, which strengthens a culture of collaboration and lowers the
entry barrier for new participants in the field of fluid simulation. This approach helps
build a technical community capable of sustaining the development of future versions of
the model.

Lastly, there is an environmental component: the high-order methods implemented
in Trixi.jl allow for the same numerical accuracy to be achieved with fewer time steps
and coarser meshes. In practice, this leads to a significant reduction in CPU-hours and,
consequently, in electricity consumption and associated emissions. Although the energy
savings from a single bachelor’s thesis may be minimal, the widespread adoption of such
techniques could become a relevant factor.

The following table presents the budget associated with this project.

4

TABLE 1.1. PROJECT BUDGET

Item Units Unit cost (€) Subtotal (€)
Student work 600 h 15 9 000
Mid-range computer (8 cores / 32 GB
RAM)

1 1 200 1 200

Electricity consumed during simulations 150 kWh 0,25 38
Julia + Trixi.jl license* — 0 0

Estimated total cost 10 238

* As open-source software, the license cost is 0€, representing a direct saving compared to commercial
suites.

1.6. Methodology

1.6.1. Preliminary study and knowledge acquisition

The development of this Bachelor’s Thesis first required an initial phase of knowledge
acquisition. During this stage, a review of the fundamentals of plasma physics was carried
out. In addition, numerical methods based on the Discontinuous Galerkin (DG) scheme,
used by the Trixi.jl simulation framework, were studied.

Since the chosen development environment was the Julia programming language, it
was also necessary to acquire a solid basis in it. This was achieved through official docu-
mentation, practical examples, and simple tests [5].

1.6.2. Familiarization with the simulation environment

Once a basic level in Julia had been achieved, the next step was to study the function-
ing of Trixi.jl, a tool for solving hyperbolic partial differential equations. To verify the
understanding of the framework and its associated workflows, two test simulations were
developed using classical cases:

• The one-dimensional Sod shock tube

• A two-dimensional Prandtl-Meyer expansion over an inclined plane

These simulations served as a foundation for consolidating the implementation of
boundary conditions, mesh configuration, numerical flux selection, and result evaluation.
Additionally, to assess the numerical behavior of the system, a convergence analysis was
carried out for both cases.

Several aspects that influence both the accuracy of the solution and the computational
cost were examined, including:

5

• The number of elements in the mesh.

• The polynomial order.

• The type of numerical flux, such as Lax-Friedrichs or HLL.

• The chosen time marching method

These analyses made it possible to understand how each parameter affects the solution,
providing a more detailed view of the simulation behavior.

1.6.3. Simulation of auxiliary variables

Before addressing the full plasma simulation, work was carried out on the evolution of
auxiliary variables such as the electron energy (He) and the out-of-plane velocity (Uye).
The propagation of these variables was studied to ensure they followed the magnetic
streamlines, and interpolators were implemented to extend the data defined at the domain
boundaries throughout the interior.

In addition, a convergence analysis was performed to verify that the obtained solutions
were accurate and consistent with the expected behavior.

1.6.4. Implementation of the plasma model

For this part, it was necessary to define a new type of system of equations in Trixi.jl
to capture the properties of the physical system under consideration [3]. In addition,
boundary conditions were designed to be compatible with the geometry and physics of
the problem, including the enforcement of symmetries and the specification of plasma
inflow and outflow conditions.

1.6.5. Main simulation and parametric analysis

As previously mentioned, the ultimate goal was to reproduce and compare the results
presented in the original article with those obtained from the implementation in Julia
using the Trixi.jl framework. To this end, a geometric and magnetic field configuration
similar to that of the article was designed, and the full plasma simulation was initiated.

During this phase, a parametric analysis was also carried out to study the effects of
variations in the value of the adiabatic coefficient.

6

2. PRELIMINARY VALIDATION OF TRIXI.JL

2.1. Fundamentals of Trixi.jl

All the information presented below, along with additional features and advanced func-
tionalities not covered here, can be found in the official Trixi.jl documentation available
on its website [2], as well as by exploring the source code on GitHub, where users can
also contribute, report issues, ask questions, or suggest improvements [6].

As previously mentioned, the programming environment used in this project is the
Julia language in combination with the Trixi.jl framework. Therefore, before proceeding,
it is essential to understand what it is and how it works.

Trixi.jl is an open-source framework developed in Julia, designed to solve hyperbolic
partial differential equations. To achieve this, it primarily uses the Discontinuous Galerkin
(DG) method, providing high accuracy in numerical solutions and allowing the simulation
of systems in one, two, and three dimensions.

Its architecture is based on modularity, which enables the separation of different com-
ponents of the numerical scheme, such as the physical equations, spatial discretization
methods, and mesh types, among others. This structure allows for rapid experimentation
with various configurations. Additionally, it facilitates extensions to implement custom
systems of equations, specific boundary conditions, source terms, or auxiliary functions
(callbacks).

Among the key features of Trixi.jl is the ability to use both structured and unstructured
meshes, including those generated with external preprocessing tools such as GMSH. It
also supports advanced techniques like adaptive mesh refinement (AMR).

The framework includes several predefined physical systems, such as the compress-
ible Euler equations, linear advection equations, and the Navier-Stokes equations, among
others. Moreover, Trixi.jl offers extensive documentation to support new users, along
with an active community that provides effective assistance in resolving questions and
difficulties during its use.

What follows is a description of the steps needed to configure and execute a simulation
using Trixi.jl:

2.1.1. Definition of the equations

The first step is to choose the system of equations to be solved. You can either use prede-
fined systems or create a new one. Implementing predefined equations is straightforward:

equations = S ystemO f Equations(parameters)

7

If the parameters or the name of the system of equations are unknown, they can be
found in the official documentation or in the source code available on GitHub [6]. In
cases where a custom system is required, as with the plasma model equations described in
later chapters, the implementation is more complex. However, the Trixi.jl documentation
[2] provides guidance on how to create a new one-dimensional equation, which can be
extended to two and three dimensional models.

2.1.2. Mesh definition

The next step is to define the domain and the type of mesh. Trixi.jl allows geometries to
be specified either by setting the minimum and maximum coordinates of the domain or
by using meshes generated with external tools such as GMSH.

If a mesh is generated using preprocessing software, it must contain square or hexag-
onal elements in Abaqus (.inp) format.

2.1.3. Initial conditions and source terms

Initial conditions can be defined using predefined functions or by creating custom ones.
When defined manually, a function is created that takes position, time, and the equation
system as parameters, and returns a vector of conserved variables. For example, for the
two-dimensional compressible Euler equations:

Fig. 2.1. Initial conditions example.

In this example, when defining the initial conditions for the primitive variables, namely,
density, velocities, and pressure, the prim2cons function must be used to convert them into
the corresponding conserved variables.

Similarly, source terms require functions that return vectors consistent with the con-
served variables. As an example, consider the source terms applied to the two dimensional
compressible Euler equations:

8

Fig. 2.2. Source terms example.

2.1.4. Boundary conditions

Trixi.jl provides several predefined boundary conditions, such as periodic, Dirichlet, Neu-
mann, and no-slip. It is important to first check whether these conditions are defined for
the chosen system of equations by consulting the documentation [2] or the source code
[6].

If the required boundary condition is not defined for the selected system, the available
documentation lacks sufficient information, making it challenging for beginners to fluid
simulation to implement custom boundary conditions.

2.1.5. Definition of the solver

This step involves selecting the solver (DGSEM or DGMULTI), specifying the polyno-
mial degree, the numerical flux, and determining whether techniques such as shock cap-
turing or adaptive mesh refinement (AMR) will be used. The DGMULTI solver enables
the use of triangular meshes in addition to square and hexagonal ones. However, since the
geometry required to solve our system is not complex, DGSEM was chosen.

2.1.6. Problem definition

Finally, the SemidiscretizationHyperbolic function is used, which requires the mesh, ini-
tial conditions, source terms, boundary conditions, and the solver as parameters. With
this function, the time interval is defined and the semidiscretization process is initiated:

semi = SemidiscretizationHyperbolic(...)

9

time_interval = (initial_time, final_time)

ode = semidiscretize(time_interval,semi)

2.1.7. Callbacks and simulation execution

Before running the simulation, it is possible to configure callbacks, auxiliary functions
that are executed at specific points during the simulation.

Some examples include:

• Analysis callback: calculates errors, integrals and also displays and stores the re-
sults.

• Alive callback: reports the progress of the simulation.

• Steady-state callback: stops the simulation once a specified tolerance is reached.

• AMR callback: handles adaptive mesh refinement.

• Save and Restart Callbacks: the save callback is necessary for post-processing in
ParaView, as it generates the files required to convert the output to VTK format.
The restart callback allows the simulation to be restarted from a saved state.

Trixi.jl contains all the necessary information to solve the problem except for the time
integration. Therefore, the simulation is executed using the solve function, which relies
on the OrdinaryDiffEq.jl package to manage time integration. This package offers various
time marching methods, including implicit methods such as the trapezoidal and explicit
methods like Runge-Kutta.

2.2. 1D Sod shock tube case

As a first step, the one dimensional Sod shock tube problem is analyzed. This study
includes a comparison with the analytical solution, evaluating the impact of various nu-
merical parameters: polynomial degree p, time marching method, numerical flux, number
of elements and the use of shock capturing techniques. The objective is to understand how
each of these parameters affects both the accuracy and the computational cost of the solu-
tion.

The accuracy of the solution is evaluated using the root mean square error (RMSE)
with respect to the analytical solution.

All analyses start from a baseline configuration consisting of: HLLC numerical flux, a
mesh of 500 elements, polynomial order p = 3, and no shock capturing. Each parameter
is modified in isolation to study its impact in a controlled manner.

There are two exceptions to the baseline configuration:

10

• In the comparison of time marching methods, 1 000 elements are used, since with
500 elements the simulation times were too short to clearly differentiate perfor-
mance.

• In the shock capturing test, 5 000 elements are used to more precisely observe the
effect of this technique on the solution.

2.2.1. Influence of the polynomial order

The first parameter analyzed is the polynomial order p, which determines the degree of
the polynomial function used to approximate the solution within each element. Higher
orders provide greater spatial resolution and an improved ability to capture complex gra-
dients without the need to refine the mesh. However, a high p value results in increased
computational cost and may introduce non-physical oscillations in the presence of strong
discontinuities if appropriate limiters are not used.

In cases involving smooth discontinuities, such as Prandtl–Meyer expansions or rar-
efaction waves, high-order polynomials allow accurate representation of transitions using
fewer elements.

(a) p = 1 (b) p = 2 (c) p = 3

Fig. 2.3. Influence of polynomial order for Sod shock tube case.

TABLE 2.1. INFLUENCE OF POLYNOMIAL ORDER FOR SOD
SHOCK TUBE CASE.

Polynomial order p RMSE Simulation time [ms]
p = 1 0.0298 169
p = 2 0.0194 238
p = 3 0.0139 389

The data presented in the table show an improvement in accuracy as the polynomial
degree increases. The error decreases from 0.0297 with p = 1 to 0.0139 with p = 3,
reflecting the scheme’s greater ability to approximate the analytical solution. This im-
provement is particularly noticeable in the rarefaction regions and the strong shock wave.

Although, as noted earlier, high-order p schemes can induce non-physical oscillations
near strong discontinuities, no significant artifacts are observed in this case. Therefore,

11

this order yields stable and accurate results without the need for additional techniques.

Regarding computational cost, the simulation with p = 1 completes in 169 ms,
whereas with p = 3 the time increases to 389 ms. Although this difference may seem
minor in a one dimensional case with few elements, the increase can be substantial in
larger-scale simulations or in three dimensional geometries. Thus, the choice of poly-
nomial order should consider both the desired accuracy and the available computational
resources. In this case, p = 3 appears to be a good choice to balance resolution and
efficiency.

2.2.2. Influence of time marching methods

The choice of time marching method also affects the accuracy, stability, and computa-
tional cost of a simulation. This temporal scheme defines how the solution evolves be-
tween time steps. As previously mentioned, in Trixi.jl, the time integration method is
implemented through the OrdinaryDiffEq.jl package, which offers a wide range of prede-
fined methods.

The methods compared in this study are as follows:

• Explicit methods:

– RDPK3SpFSAL510: It is a Runge-Kutta method of fifth order, ten-stage
method with embedded error estimator.

– SSPRK104: It is a Runge-Kutta method of fourth order and ten-stage strong
stability preserving method.

– RK4: It is a Runge-Kutta method of fourth order.

• Implicit methods:

– ImplicitEuler: It is an Euler method of first order.

– Trapezoidal: It is a second order symmetric method.

– SDIRK2: It is a Runge-Kutta implicit method of second order.

(a) RDPK3SpFSAL510 (b) RK4 (c) SSPRK104

Fig. 2.4. Explicit time marching methods.

12

(a) Trapezoidal (b) SDIRK2 (c) ImplicitEuler

Fig. 2.5. Implicit time marching methods.

TABLE 2.2. INFLUENCE OF TIME MARCHING METHOD FOR
SOD SHOCK TUBE CASE.

Time marching method RMSE Simulation time [s]
RDPK3SpFSAL510 0.0139 0.338
SSPRK104 0.0139 0.340
RK4 0.0139 0.792
ImplicitEuler 0.0178 338
Trapezoidal 0.0139 0.340
SDIRK2 0.0139 0.792

As shown in the results, both explicit and implicit methods yield similar errors, around
0.014, except for the ImplicitEuler method, whose error increases to 0.018.

Regarding simulation time, the difference between the two groups is significant. Im-
plicit methods are several orders of magnitude slower than explicit ones, without offering
any improvement in solution quality. In fact, ImplicitEuler produces a less accurate result.

Additionally, the plots show that the implicit Euler method smooths the solution, both
in the Prandtl–Meyer expansion and in the rarefaction region, while exhibiting very sim-
ilar behavior in the strong shock wave. On the other hand, the other methods more ac-
curately reproduce the analytical solution, although they introduce oscillations near the
shock and rarefaction zones.

Therefore, it can be concluded that explicit time marching methods are more efficient
in this case, offering shorter simulation times with comparable accuracy to the implicit
ones. In particular, the SSPRK104 method stands out as the fastest and most reliable
option.

2.2.3. Influence of the numerical flux

After analyzing the impact of polynomial degree and time marching method, the next step
is to study the effect of the numerical flux on solution accuracy, a key component in Dis-
continuous Galerkin methods. Numerical fluxes determine how information is exchanged

13

between adjacent elements and therefore have a direct impact on the stability, diffusion,
and fidelity of the solution, especially in the presence of discontinuities or steep gradients.

In Trixi.jl, numerical fluxes are defined in a modular way, allowing the selection of
different schemes depending on the characteristics and equations of the problem. In this
study, the following fluxes were compared:

• Central: a purely centered flux with no numerical diffusion. Due to this, it may
produce oscillations in the presence of shocks and discontinuities.

• Lax–Friedrichs: introduces artificial diffusion proportional to the jump between
cells, stabilizing the solution at the expense of smoothing it.

• HLL: an approximate Riemann flux with intermediate diffusion, which preserves
discontinuities reasonably well.

• HLLC: an improved version of HLL, reconstructs the contact wave and offers
higher accuracy in regions with multiple waves.

This analysis makes it possible to observe how the solution varies depending on the
flux used, while keeping all other parameters constant. The goal is to evaluate each
scheme’s ability to resolve shocks, rarefaction waves, and Prandtl–Meyer expansions
without introducing significant numerical errors.

(a) Central (b) Lax-Friedrichs

(c) HLL (d) HLLC

Fig. 2.6. Influence of numerical flux for Sod shock tube case.

14

TABLE 2.3. INFLUENCE OF NUMERICAL FLUX FOR SOD
SHOCK TUBE CASE.

Numerical flux RMSE Simulation time [s]
Central flux 0.0219 1.40
Lax-Friedrichs flux 0.0093 1.26
HLL flux 0.0092 1.33
HLLC flux 0.0093 1.07

The plots show that the central flux is unable to handle discontinuities, introducing
significant oscillations in the contact region and the rarefaction zone, which results in a
considerably higher error.

In contrast, the Lax–Friedrichs, HLL, and HLLC fluxes produce nearly identical re-
sults, with errors around 0.0093 and similar simulation times. The HLLC flux is par-
ticularly noteworthy, as it maintains comparable accuracy while achieving the shortest
simulation time. Additionally, a reduction in oscillations is observed, likely due to the
lower diffusion introduced in the contact region.

Although the differences among the last three fluxes are subtle in this case study, the
use of the HLLC flux may be more advantageous in complex simulations, where accuracy
in regions with discontinuities is critical.

2.2.4. Influence of the number of elements

Mesh refinement is one of the most direct ways to increase the accuracy of a numerical
solution. Increasing the number of elements allows for a more detailed representation
of both abrupt changes and smooth gradient regions in the flow field, which leads to
a reduction in numerical error. However, this improvement in resolution comes at the
cost of increased computational effort, as the number of operations per time step rises
proportionally.

The following section presents a comparison between different mesh configurations:

15

(a) 100 elements (b) 1 000 elements

(c) 10 000 elements (d) 15 000 elements

Fig. 2.7. Influence of number of elements for Sod shock tube case.

TABLE 2.4. INFLUENCE OF NUMBER OF ELEMENTS FOR SOD
SHOCK TUBE CASE.

Number of elements RMSE Simulation time [s]
100 0.0254 0.041
1 000 0.0093 1.28
10 000 0.0036 81.2
15 000 0.0034 189

The table reveals a clear decreasing trend in error, which stabilizes around 0.003. The
most significant drop occurs between 100 and 1 000 elements, with a 63% reduction in
error. Accuracy continues to improve up to 10 000 elements, at which point the decrease
in error relative to the number of elements becomes negligible.

In the plots, oscillations are visible in the contact and rarefaction regions when using
a mesh with 100 elements. In contrast, with 1 000, 10 000, and 15 000 elements, the
differences in the solutions are virtually imperceptible.

Although increasing the number of elements improves accuracy, the associated com-
putational cost must be considered. For example, the simulation time with 15 000 ele-
ments reaches 3 minutes, compared to just 41 milliseconds with only 100 elements. Since
accuracy gains become marginal beyond a certain point, a trade-off must be considered
between accuracy and cost.

16

In this case, using a mesh with 1 000 elements appears to offer a good compromise,
providing a sufficiently accurate and stable solution with a low computational cost.

2.2.5. Influence of the use of shock capturing

To conclude the analysis of the one dimensional case, the impact of applying shock captur-
ing techniques is examined. In the presence of shock waves or steep gradients, numerical
solutions may exhibit significant errors or even instabilities if appropriate stabilization
mechanisms are not introduced. These techniques add localized diffusion in regions with
discontinuities, aiming to stabilize the solution without significantly affecting the rest of
the domain.

Trixi.jl allows these techniques to be activated through specific functions that incor-
porate adaptive diffusion based on indicators and user-defined parameters.

The results obtained are presented below:

(a) Without Shock Capturing (b) With Shock Capturing

Fig. 2.8. Influence of shock capturing for Sod shock tube case.

TABLE 2.5. INFLUENCE OF SHOCK CAPTURING FOR SOD
SHOCK TUBE CASE.

Shock capturing RMSE Simulation time [s]
ON 0.0147 121
OFF 0.0048 22

The solution obtained without using shock capturing maintains high accuracy with
respect to the analytical solution, without introducing significant numerical oscillations.
In contrast, when the technique is enabled, additional numerical diffusion is introduced
in the discontinuity regions, which smooths the transitions and artificially broadens the
affected areas.

This increase in diffusion explains the rise in error, as accuracy is sacrificed in favor
of greater robustness. In this specific case, the use of shock capturing does not provide

17

clear improvements and results in a significant increase in computational cost, with the
simulation time rising from 22 to 121 seconds, an increase of more than five times.

However, these techniques are essential in more complex scenarios, such as multi-
dimensional problems or those involving irregular geometries, where controlling non-
physical oscillations is critical to ensure numerical stability. Therefore, before applying
shock capturing techniques, one must carefully balance the need for stability against the
potential loss of accuracy and increase in computational cost.

2.3. 2D Prandtl-Meyer expansion case

Once the analysis of the one dimensional Shock Sod tube is completed, the study proceeds
with a two dimensional problem: the Prandtl–Meyer expansion

This problem presents several differences compared to the previous one. First, no
strong shock waves are observed, instead, it presents a Prandtl–Meyer expansion charac-
terized by a smooth discontinuity region. Second, it is a two dimensional problem, which
allows for the evaluation of practical aspects related to the implementation of Trixi.jl in
more complex configurations.

For this study, the geometry was created using the preprocessing tool GMSH. This
made it possible to verify Trixi.jl’s compatibility with externally generated meshes, demon-
strating its ability to integrate into more general and realistic engineering workflows.

2.3.1. Problem statement and analytical solution development

This problem consists of a Prandtl-Meyer expansion on a 32 degree inclined plane with
respect to the horizontal. The velocity of the flow at the expansion entry corresponds to
a Mach number of 3. With these data, we proceed with the development of the analytical
solution.

To determine the Mach number after the turn (M2), it is necessary to relate it to the
initial Mach number (M1) and the turn angle (θ). The expression that links them is:

θ = ν(M2) − ν(M1) (2.1)

where the Prandtl-Meyer function ν(M) is defined as:

ν(M) =

√︄
γ + 1
γ − 1

· tan−1

⎛⎜⎜⎜⎜⎜⎜⎝
√︄

(γ − 1)
(γ + 1)

· (M2 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ − tan−1
(︂√

M2 − 1
)︂
. (2.2)

From this relation, considering γ = 1.4, M1 = 3, and θ = 32 degrees (0.5585 rad), we
obtain:

18

ν(M1) = 0.86842 rad, ν(M2) = 1.42692. (2.3)

Finally, solving for M2, we obtain:

M2 = 5.56. (2.4)

Once the analytical solution is determined, a comparison is made between the poly-
nomial degree p, the number of elements, the numerical flux, and the use of adaptive
mesh refinement (AMR). In this case, no theoretical explanations will be provided for
each parameter evaluated, as they were already discussed in the previous section. Only
the analysis of AMR will be developed in more detail, since it is a new tool introduced
in this study. The parameters used—except for the one being varied—are: polynomial
degree p = 3, 2 842 elements, Lax–Friedrichs numerical flux, and the SSPRK104 time
marching method.

This case includes one exception:

• In the comparison involving AMR, 722 elements are used, as simulations with
2,842 elements result in excessively high runtimes due to the computational cost
of this technique.

2.3.2. Influence of the polynomial order

Following the same approach used in the Shock Sod tube case, the results are analyzed
for polynomial degrees p = 1, p = 2, and p = 3.

The following table presents the Mach number obtained, the simulation time, and the
relative error:

TABLE 2.6. INFLUENCE OF POLYNOMIAL ORDER FOR
PRANDTL-MEYER EXPANSION CASE

Polynomial order p Mach number Simulation time [s] Relative Error
1 4.490 7.08 0.1932
2 4.791 18.9 0.1391
3 4.950 40.3 0.1105

As expected, increasing the polynomial degree improves the accuracy of the solution,
with a reduction in relative error from 19.32% for p = 1 to 11.05% for p = 3. However,
this increase in accuracy comes with a considerable rise in computational cost, resulting in
a simulation time that is more than five times longer between the two extremes analyzed.

19

2.3.3. Influence of the number of elements

This section compares different meshes generated using the GMSH preprocessing tool.
Specifically, meshes with 322, 722, 2 842, and 6 952 elements are analyzed.

The results obtained are as follows:

TABLE 2.7. INFLUENCE OF NUMBER OF ELEMENTS FOR
PRANDTL-MEYER EXPANSION CASE

Number of elements Mach number Simulation time [s] Relative error
322 4.327 2.1 0.2224
722 4.572 5.7 0.1785

2 842 4.950 40.3 0.1105
6 952 5.110 256 0.0813

As the number of elements increases, a clear decreasing trend in relative error is ob-
served, dropping from 22.24% with the coarsest mesh to 8.13% with the finest one.

However, this improvement in accuracy comes at a considerable computational cost,
with the simulation time increasing from 2.1 to 256 seconds. The change in accuracy and
runtime between 2 842 and 6 952 elements shows that, for a 2.6% reduction in error, the
simulation time becomes six times longer.

Due to this behavior, it is expected that beyond 6 952 elements, the gain in accuracy
would be negligible, while the time required to solve the problem would increase signifi-
cantly, leading to an inefficient computational cost.

2.3.4. Influence of the numerical flux

Before addressing the use of AMR techniques, the impact of numerical fluxes is exam-
ined. In this case, the Lax–Friedrichs, HLL, and HLLC fluxes are considered. The central
flux, analyzed in the previous section, is not suitable for this case, as it produces a large
number of oscillations that lead to numerical instabilities and, consequently, the interrup-
tion of the simulation.

The following table summarizes the results obtained:

TABLE 2.8. INFLUENCE OF NUMERICAL FLUXES FOR
PRANDTL-MEYER EXPANSION CASE

Numerical flux Mach number Simulation time [s] Relative error
Lax-Friedrichs 4.950 40.3 0.1105

HLL 4.959 48.0 0.1089
HLLC 4.966 40.3 0.1077

20

All three fluxes yield similar performance, with relative errors around 11% and com-
parable simulation times. The slight differences in accuracy are mainly due to the level
of numerical diffusion each flux introduces to capture discontinuities. Greater diffusion
results in more smoothing of gradients, which can negatively impact solution accuracy.

In this case, the HLLC flux appears to be the most suitable option, as it provides the
highest accuracy while maintaining a simulation time equivalent to the others.

2.3.5. Influence of AMR

Adaptive mesh refinement (AMR) is an adaptive meshing technique in which the mesh
is dynamically updated at user-defined time intervals. In regions of the domain where
gradients are high, the mesh is automatically refined, while in smoother areas it remains
unchanged. This technique allows for higher resolution where it is most needed, improv-
ing the behavior of the solution.

It is important to note that AMR involves a very high computational cost, making it
useful primarily in problems that require fine resolution in regions with steep gradients.

The following is a comparison between two simulations: one with AMR enabled and
one without it.

TABLE 2.9. INFLUENCE OF AMR TECHNIQUES FOR
PRANDTL-MEYER EXPANSION CASE

AMR Mach number Simulation time [s] Relative error
ON 5.496 835.0 0.0124
OFF 4.571 16.5 0.1785

As previously mentioned, the use of AMR comes with a very high computational cost,
being approximately 50 times slower. On the other hand, the relative error is reduced from
17.85% to 1.24%, representing a 93% improvement in accuracy.

Therefore, although AMR involves significant computational costs, its use is justified
in problems that require high resolution and precision, provided that sufficient resources
are available to handle such demands.

2.4. Conclusions associated with the convergence studies

Both analyses explored key numerical parameters that directly affect the quality and sta-
bility of the solution obtained with Trixi.jl. The simulations conducted lead to a funda-
mental conclusion: improving accuracy or increasing robustness always results in higher
computational cost, leading to longer simulation times.

21

Whether by increasing the polynomial order, refining the mesh, selecting more com-
plex numerical fluxes, or enabling techniques such as shock capturing or AMR, every
decision aimed at enhancing solution accuracy and stability translates into greater simu-
lation time and resource demand.

However, greater accuracy does not always lead to a significantly better final result.
There are thresholds beyond which the gains in precision become negligible compared to
the increase in cost.

Therefore, this study highlights the need to find a balance between three fundamental
factors:

• The solution must be sufficiently accurate.

• The simulation must remain stable, especially in the presence of strong discontinu-
ities.

• The computational cost must be reasonable, allowing for efficient use of available
resources.

This balance is essential in engineering applications, where the goal is to perform
multiple simulations, optimize designs, or integrate them into more complex workflows.
Choosing an appropriate numerical configuration is not only a matter of accuracy, but also
of computational feasibility and sustainability.

22

3. STUDY OF PLASMA IN A MAGNETIC ARC

The objective of this section is to define the physical model to be simulated using
Trixi.jl, for later comparison with the results presented in the reference article by Merino
et al., from which the following information on the physical model has been obtained
[3]. This model falls under the category of Magnetic-Arch Thruster (MAT) devices and
proposes a two dimensional, bifluid formulation with ion species i and electron species e.

The following assumptions are established:

• Fully ionized, collisionless, and quasi-neutral plasma.

• Perfectly magnetized, quasi-Maxwellian electrons with no inertia and a polytropic
closure.

• Cold ions with unit charge and arbitrary magnetization. It is assumed that ions
remain cold downstream, neglecting any shock-like discontinuity in temperature or
distribution.

• Planar symmetry geometry, as an intermediate step toward a three dimensional con-
figuration.

The conservative form of the equations, defined in the article [3] and implemented in
the Julia-based model, is as follows:

∂Q
∂t
+ ∇ · F = R (3.1)

where,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
n

nuzi

nuxi

nuyi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
nuzi nuxi

nu2
zi + nγ nuziuxi

nuziuxi nu2
xi + nγ

nuziuyi nuxiuyi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−n(H′e + uyi)Bx

n(H′e + uyi)Bz

n(uziBx − uxiBz)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.2)

The boundary conditions are defined as follows:

• Symmetry plane at x = 0: the flux perpendicular to this plane is zero.

• Plasma inlet:: located between x = 6 and x = 4.Although this inlet range is
specified in the article, it is extended up to the position of the current-carrying wires
to avoid regions with zero density, following the same approach as in the original
work.

23

• Plasma outlets: located along the right, top, and left edges of the domain, excluding
the inlet region.

The magnetic field is generated by four wires located at x = 7, x = 3, x = 3, and
x = 7, such that the total current is zero. According to the article, the magnetic field is
normalized so that its magnitude equals 1 at the center of the plasma outlet (x = 5), which
matches the ion magnetization level. To avoid singularities near the wires, the decision
was made to displace them by 0.125 units in the negative z-direction, in order to prevent
Trixi.jl from encountering instabilities in the regions close to the wires. This decision may
introduce slight inaccuracies, as the variables defined at the inlet may not exactly match
the imposed conditions. Nevertheless, this offset is considered small, and the results are
assumed to remain valid for comparison purposes.

The electron properties, such as the energy He and the out-of-plane velocity Uye, are
defined throughout the entire domain starting from the inlet plane (z = 0). This is possible
because, given that the electrons are fully magnetized, the value of He is conserved along
magnetic field lines. Therefore, once the inlet conditions are known, it is possible to
propagate both He and Uye throughout the domain.

He is calculated using the following expression:

He(ψB) =
γ

γ − 1

(︂
nγ−1 − 1

)︂
− ϕ. (3.3)

Assuming that the electrostatic potential is zero at the plasma inlet, the initial equation
propagated by interpolation along the magnetic lines is:

He(ψB) =
γ

γ − 1

(︂
n(0, x)γ−1 − 1

)︂
− ϕ (3.4)

Once He is known throughout the domain, the out-of-plane velocity component of the
electrons, Uye, can be determined using the following expression:

uye(ψB) = −
1
B
∂He

∂l⊥
= −

dHe

dψB
= −H′e. (3.5)

Another way to obtain Uye is to compute its value at z = 0 and propagate it along the
magnetic lines, in an analogous way to the approach used for He. The equation used for
its computation at z = 0 is:

uye(0, x) =
1
Bz
·

γ

γ − 1
·
∂n(0, x)γ−1

∂x
. (3.6)

The initial conditions are defined as follows:

24

• Density n(x, y): a Gaussian profile centered at the plasma inlet region, decreasing
by three orders of magnitude toward the edges. The functional form used is:

n(x, y) = 10−3(x−5)2
(3.7)

• Axial velocity vz: Defined using the local sound speed, such that the ions are sonic
at the magnetic throat.

vz =
√︁
γnγ−1 (3.8)

• Radial velocity, out-of-plane velocity and electrostatic potential: all of them are
initially assumed to be zero.

The derivation of these equations is detailed in the reference model [3], therefore, only
the final expressions used for the code implementation are included in this document.

Before running the full model simulation, an intermediate step is carried out by com-
puting He and Uye using the advection equation.

3.1. Advection of the He and Uye variables

The behavior of the variables He and Uye is essential for properly understanding plasma
dynamics. In particular, Uye determines the magnetic force that appears in the source
terms of the system of equations. Moreover, this variable depends directly on the electron
energy, He.

Given the assumption of a perfectly magnetized and collisionless plasma, these vari-
ables can be considered constant along magnetic field lines. This would justify computing
them using interpolation, propagating their values from the plasma inlet throughout the
domain.

However, in this work, it was decided to explicitly solve the advection equation for
these variables. This decision is based on two main reasons:

• Generality and extensibility of the model: by formulating He and Uye as ad-
vected variables, it enables future implementation of effects such as collisions or
other physical phenomena that may break conservation along magnetic field lines.
This approach makes the model more versatile and applicable to more complex or
realistic configurations.

• Modification of a predefined equation: Since Trixi.jl provides a predefined 2D
advection equation, its behavior was tested. However, it only accepted a constant
advection velocity, so it was modified to adapt it to the case under study, where
the advection velocity is the magnetic field and depends on the position within the
domain.

25

Nonetheless, although this numerical advection-based analysis was carried out, the
model used for direct comparison with the results of the reference article [3] relies on the
interpolated version of He and Uye. This is because that approach allows for an analyti-
cally precise definition of these variables, suitable for ideal, collisionless cases, consistent
with the physical conditions of the model being compared. The introduction of collisions
or non-conservative effects is beyond the scope of this work.

A convergence analysis was performed between the simulated values and the analyt-
ical ones, the latter being obtained through interpolation along the magnetic field lines.
Unlike the analyses in previous sections, this study focuses solely on the influence of the
number of elements and the polynomial degree.

The accuracy of the solutions was evaluated using the Root Mean Square Error (RMSE).
The reference solutions used for comparison are presented below.

(a) He interpolated (b) Uye interpolated

Fig. 3.1. Interpolated solution for He and Uye.

3.1.1. Influence of number of elements

In this case, a Lax–Friedrichs numerical flux was used, with a polynomial degree of p = 1
and the SSPRK104 time marching method. The meshes evaluated consist of 1 500, 6 000,
13 500, and 37 500 elements. The time step (dt) was chosen as the largest possible value
that ensures the solution remains as fast and stable as possible.

Results obtained for He:

26

(a) 1 500 elements (b) 6 000 elements

(c) 13 500 elements (d) 37 500 elements

Fig. 3.2. Influence of number of elements for He.

TABLE 3.1. INFLUENCE OF NUMBER OF ELEMENTS FOR HE .

Number of elements RMSE Simulation time [s] dt
1 500 0.8467 10.8 1.0
6 000 0.4219 69.9 0.5
13 500 0.2848 220 0.35
37 500 0.1732 1058 0.2

Results obtained for Uye:

27

(a) 1 500 elements (b) 6 000 elements

(c) 13 500 elements (d) 37 500 elements

Fig. 3.3. Influence of number of elements for Uye.

TABLE 3.2. INFLUENCE OF NUMBER OF ELEMENTS FOR UYE .

Number of elements RMSE Uye Simulation time [s] dt
1 500 0.8106 10.2 1.0
6 000 0.4402 70.4 0.5

13 500 0.3092 222 0.35
37 500 0.1935 1051 0.2

As shown in the table, increasing the number of elements improves the accuracy of the
simulation. However, even with the finest mesh, the errors remain relatively high. This
may be due to the propagation of local errors throughout the domain, an effect that can
be amplified by the artificial diffusion introduced by the Lax–Friedrichs flux. In regions
with higher gradients, this leads to smoothing of those gradients and a widening of such
areas, contributing to a loss of accuracy in regions far from the initial values.

This behavior can be seen more clearly in the images: at the plasma outlet, the values
are higher than in the rest of the domain, deviating from the theoretical behavior in which
the quantities are conserved along magnetic field lines. This contradicts the assumption
of fully magnetized electrons, under which perfect advection of these quantities along the
magnetic lines would be expected.

28

3.1.2. Influence of polynomial order p

For this second analysis, the effect of the polynomial order p is evaluated, using a fixed
mesh of 1 500 elements. The remaining parameters are the same as in the previous anal-
ysis.

Results obtained for He:

(a) p = 1 (b) p = 2 (c) p = 3

Fig. 3.4. Influence of polynomial order for He.

TABLE 3.3. INFLUENCE OF POLYNOMIAL ORDER FOR HE .

Polynomial order p RMSE Simulation time [s] dt
1 0.8467 10.8 1.0
2 0.4078 49.3 0.4
3 0.3005 172 0.2

Results obtained for Uye

(a) p = 1 (b) p = 2 (c) p = 3

Fig. 3.5. Influence of polynomial order for Uye.

TABLE 3.4. INFLUENCE OF POLYNOMIAL ORDER FOR UYE .

Polynomial order p RMSE Simulation time [s] dt
1 0.8106 10.2 1.0
2 0.4607 48.7 0.4
3 0.3354 172 0.2

29

As the polynomial order increases, a significant improvement in error is observed,
specifically, a 51.8% reduction when moving from p = 1 to p = 2, with a simulation time
that is 4.5 times longer. Despite the increase in runtime, the solution with p = 2 is more
accurate and efficient than the one obtained with 6 000 elements and p = 1, suggesting
that increasing the polynomial order is more efficient than refining the mesh.

For p = 3, although the error decreases by an additional 26% compared to p = 2,
the simulation time triples. Nevertheless, a runtime of 172 seconds with 1 500 elements
and p = 3 yields an error comparable to that obtained with 13 500 elements and p =
1, but with 1.3 times less computational time. This comparison reinforces the earlier
conclusion that, for this type of problem, increasing the polynomial order is more efficient
than increasing the number of elements.

Two main conclusions can be drawn from this study: First, the model based on explic-
itly solving the advection equations, in which He and Uye serve as useful approximations,
allows for the future inclusion of electron–ion collisions, which would be modeled via
source terms. Second, the results show that accumulated numerical errors significantly
affect solution accuracy, especially when using numerical fluxes that introduce artificial
diffusion, such as Lax–Friedrichs.

Therefore, to advance toward more realistic models where electron–ion collisions in-
fluence the solution, it would be necessary to improve the numerical scheme, for example,
by using fluxes with lower artificial diffusion, increasing both the polynomial order and
mesh resolution, or incorporating adaptive refinement techniques. These improvements
would help ensure greater fidelity in solving the problem.

3.2. Comparison with the reference model

The next step is to compare the solution obtained using the model developed in Julia with
the Trixi.jl framework against the reference model [3]. For this simulation, a mesh of
6 000 elements was used, with 100 elements in the z-direction and 60 in the x-direction,
along with a Lax–Friedrichs numerical flux, the SSPRK104 time marching method, and
a polynomial order of p = 1.

The choice of the SSPRK104 method is due to its stability-preserving properties com-
pared to other methods. On the other hand, the polynomial order was limited by computa-
tional cost, higher order requires smaller time steps to ensure stability, which significantly
increases the overall cost. The choice of the remaining parameters is detailed in Appendix
A.

To compare both models, two regions are considered: the plasma outlet region, de-
fined between x = 4 and x = 6 at z = 0; and the line located at x = 5, which spans the
entire domain.

The first region is analyzed only at the plasma outlet, as both the Julia-based model

30

and the reference model exhibit errors in the upper and lower areas near the outlet, regions
without plasma, resulting in solutions that are not physically meaningful.

Evaluating the solution along the centerline at the plasma outlet allows for the analysis
of variables throughout the expansion. This analysis is necessary to assess the quality of
the expansion produced by the Trixi.jl model in comparison with the reference model [3].

(a) Plasma density (b) Electron temperature

(c) In-plane Ion velocity (d) In-plane Mach number

Fig. 3.6. Plasma properties at z = 0.

TABLE 3.5. RMSE FOR Z = 0

Variable RMSE (z = 0)
Density 0.0181

Electron Temperature 0.1917
Electrostatic Potential 0.2132
In-plane Ion Velocity 0.5485

In-plane Mach Number –

The variables to be compared are: density, temperature, velocity, and Mach number,
as shown in Figure 3.6. In addition to comparing these variables with each other, they are
also compared against the expected inlet values, plotted with black lines.

Due to the relationship between the four variables, one of them, the density, has a
direct influence on all the others. In the Trixi.jl simulation, the inlet density reaches
around 0.9, whereas it should reach 1 at the center of the outlet, resulting in an error of

31

0.0181. This error in the inlet density, which is defined at the start of the simulation, may
be attributed to how boundary conditions are handled in Trixi.jl: through ghost nodes,
where the transfer of information from these ghost nodes to the inlet nodes occurs via the
numerical flux, thereby altering the imposed inlet conditions relative to those initialized
in the code.

To address this, a numerical flux capable of properly handling numerical dissipation
between ghost nodes and inlet nodes would be required. Another possible solution is to
reduce the size of the elements, in other words, to increase the number of elements in
order to achieve higher accuracy at the boundary. However, this would also result in a
significantly higher computational cost.

As for the temperature, which is directly linked to the density, the solution obtained
with Trixi.jl approximates the expected values, while the reference solution exactly matches
the imposed values.

The previously mentioned deviations in density and temperature also lead to errors in
velocity. Since both density and temperature are lower, the ion velocity in the simulated
case is higher than expected. This affects ion expansion: starting from a higher velocity
leads to a slight deviation throughout the domain compared to the reference solution.

It is also important to note that, as mentioned at the beginning of the chapter, in the
Julia-based model the current-carrying wires that generate the magnetic field were shifted
0.125 units to the left, outside the domain. This decision, made to avoid singularities,
introduces slight geometric differences with respect to the reference model [3].

Due to this displacement, the exact positions where the wires should be located no
longer coincide with the true geometric center. As a result, the magnetic field exhibits
a non-zero Bx component, whereas under ideal conditions only a Bz component should
exist. This deviation introduces discrepancies between the reference model and the one
implemented in Julia, and may be one of the reasons for the observed differences between
both models.

32

(a) Plasma density (b) Electron temperature (c) Electrostatic potential

(d) In-plane ion velocity (e) In-plane Mach number

Fig. 3.7. Plasma properties at x = 5.

TABLE 3.6. RMSE FOR X = 5

Variable RMSE (x = 5)
Density 0.0159

Electron Temperature 0.4739
Electrostatic Potential 0.0490
In-plane Ion Velocity 0.0418

In-plane Mach Number 0.0699

By analyzing the downstream variables, now including the electrostatic potential as
one of the variables under consideration, it can be observed that the shock wave, generated
by the collision of the two ion beams at the symmetry plane, occurs slightly earlier in the
reference solution than in the one obtained using Trixi.jl. This difference may be due to
the fact that, starting with a higher initial velocity, the ions in the Trixi.jl simulation take
longer to reach the symmetry plane, causing the shock wave to appear later.

After the shock wave, the expected behavior is observed: electron density, electron
temperature, and electrostatic potential increase, while ion velocity and Mach number de-
crease. Although differences between both solutions remain after the shock, they follow
the same physical trend, which is consistent with the initial discrepancy. What would be
more concerning is a case where, after the shock wave, the velocity and Mach number
drop below the reference values, while the electron density, temperature, and electrostatic
potential rise above them. Such behavior would suggest that the flux being used intro-
duces errors upstream of the shock.

33

On the other hand, the table shows that all variables exhibit low errors, except for the
electron temperature, which presents an error of 0.4739, primarily caused by the region
at the entrance to the shock wave.

Conclusions

The results show that the model implemented in Julia using the Trixi.jl framework
consistently reproduces the plasma dynamics in a Magnetic Arch Thruster, in accordance
with the reference model.

The differences observed are mainly due to the displacement of the current-carrying
wires and the inlet conditions, which introduce errors but do not alter the overall plasma
behavior. Therefore, it can be concluded that the developed tool is valid for studying and
predicting the plasma behavior in a MAT based on the reference model.

3.3. Parametric analysis

Once the model implemented in Julia was developed and verified, a study of plasma
behavior was conducted by modifying different parameters. Initially, three studies were
planned: the first by varying γ, the second by increasing ion magnetization, and the third
by changing the position of the wires.

The last two studies could not be completed due to the requirement of very small
time steps, a high computational cost, and the fact that the solution failed to converge in
any case. After thoroughly reviewing the code for potential errors, no specific cause was
identified. Therefore, the analysis focuses solely on how plasma dynamics change with
variations in the adiabatic constant γ. For this purpose, three cases are compared: a nearly
isothermal flow with γ = 1.01, and adiabatic flows with γ = 1.2 and γ = 1.67.

3.3.1. Comparison of plasma dynamics under varying adiabatic coefficients

This study analyzes the impact of varying the adiabatic constant γ on the behavior of the
plasma generated in a Magnetic Arch Thruster (MAT), allowing for a better understanding
of how the thermodynamics of the gas influence plasma dynamics.

Before analyzing the results obtained, it is important to theoretically examine how
changes in the adiabatic constant are expected to affect plasma behavior.

The adiabatic constant γ governs the relationship between pressure and density through
the polytropic equation of state adopted in the model, expressed as p = nγ, due to the ab-
sence of an energy equation. From this relation, the pressure gradient can be expressed
as ∇p = γnγ−1∇n, showing that, for the same variation in density, a higher γ value will
result in a stronger pressure gradient.

This pressure gradient acts as the source of the ambipolar field that arises in quasi-

34

neutral plasmas, responsible for accelerating ions and decelerating electrons to maintain
quasi-neutrality. This ambipolar electric field can be expressed as E = −∇ϕ.

Based on this information, we can deduce that in a nearly isothermal state, with γ =
1.01, the electron temperature remains nearly constant throughout the domain, resulting
in smoother gradients and, therefore, lower ion acceleration. This should cause ions to
collide sooner along the symmetry axis, generating a shock wave closer to the plasma
outlet. Additionally, due to lower axial acceleration, the ions exhibit a broader transverse
spread, resulting in increased dispersion across the domain.

On the other hand, for γ = 1.67, which corresponds to a monoatomic gas, tempera-
ture variations are more pronounced, resulting in stronger pressure gradients and, conse-
quently, higher axial velocities. This generates the shock wave farther from the outlet and
leads to reduced ion dispersion.

The intermediate case, with γ = 1.2, represents a value that can be empirically ob-
served in magnetic nozzles [7]. In this regime, both ion acceleration and pressure gradi-
ents take on intermediate values, resulting in a mixed behavior, with shock wave position
and ion dispersion falling between those of the other two cases.

(a) Plasma density (b) Electron temperature

(c) In-plane Ion velocity (d) In-plane Mach number

Fig. 3.8. Plasma properties at z = 0.

In graphs 3.8, the profiles of plasma density, electron temperature, and both the in-
plane velocity and Mach number of the ions at the outlet can be observed. As expected,
since the same numerical flux is used, the densities for the three cases have similar values.

35

Regarding the temperature, we can see that for γ = 1.01, the temperature is practically
constant, representing an ideal case where γ = 1.01, whereas for the cases of γ = 1.2 and
γ = 1.67, a progressive decrease is observed at the edges.

The difference in the temperature profile is reflected in the ion velocity profile. For
γ = 1.67, the ions reach higher velocities at the beginning; this happens because the initial
ion velocity is defined as the speed of sound, so if there is no significant temperature
change at the center of the outlet, the speed of sound, and therefore the ion velocity, will
be higher for greater adiabatic coefficients. In contrast, for a more pronounced change,
as occurs at the edges of the outlet, a lower adiabatic coefficient will result in a higher
velocity.

(a) Ion density (b) Ion temperature (c) Potential

(d) Ion velocity (e) Mach number

Fig. 3.9. Plasma properties at x = 5.

In Figure 3.9, the same variables are shown, except for the electrostatic potential,
which has been introduced for this case.

First, it is observed that the electron temperature undergoes a greater change as the
adiabatic coefficient increases. For the case of γ = 1.67, although there is a significant
exchange of thermal energy from the electrons to the kinetic energy of the ions, the am-
bipolar field will be smaller for this case, becoming more pronounced for lower values of
γ.

This means that the acceleration of the ions is lower, with a null acceleration around
z = 7, where the ions have a constant velocity. Having a lower ion velocity does not imply
a lower Mach number; this is calculated as Mi =

ui√
γTe

. Therefore, at lower temperature,
the speed of sound is lower and the Mach number is higher for a given velocity. This

36

is why, although lower adiabatic coefficients imply higher ion velocities, we also have
a relation with a lower speed of sound, resulting in higher Mach numbers for higher
adiabatic coefficients, see Figures 3.9d and 3.9e.

(a) Streamlines for γ = 1.01 (b) Streamlines for γ = 1.67

(c) Streamlines for γ = 1.2

Fig. 3.10. Streamlines and in-plane ion velocity.

Finally, as seen in Figures 3.10, the dispersion of the ions is greater for lower adia-
batic coefficients. This behavior has an effect on the distance at which the shock wave is
produced; the higher the γ, the farther from the plasma exit region it will be generated.

3.3.2. Conclusions

The analysis carried out demonstrates how the adiabatic coefficient influences the behav-
ior of the plasma. During the analysis, patterns consistent with the previously explained
theory have been identified, which validates both the physical model and its numerical
implementation in Julia using the Trixi.jl framework.

First, it has been confirmed that, the higher the γ, the lower the dispersion of the
ions, caused by a higher initial axial velocity, which generates a shock wave farther from
the plasma exit. Moreover, it has been observed that as this parameter increases, the
electrostatic potential and, consequently, the ion velocity tend to stabilize.

On the other hand, the value of the Mach number stands out for showing high values
even under low-velocity conditions, due to the reduction of the plasma temperature.

In conclusion, this study confirms that the adiabatic constant not only determines the
thermodynamics of the plasma, but also directly affects macroscopic variables such as the
ion geometry, the position of the shock wave, and the intensity of the ambipolar field.

37

4. CONCLUSIONS

During the development of this project, both known cases and the simulation of
plasma flows in a Magnetic Arch Thruster (MAT) have been implemented and evalu-
ated using the Julia programming language and the Trixi.jl framework, where the main
objective has been to verify the capability of this open-source tool to accurately repro-
duce the plasma physics of the model described in the reference article [3], validating the
results through the comparison of both solutions.

The results obtained show that Trixi.jl is capable of simulating the plasma dynamics.
All variables have shown behavior consistent with the reference model. Furthermore,
through the parametric study carried out by varying the adiabatic coefficient, it can be
observed that the model integrated in Julia behaves physically and predictably, showing a
trend in the analyzed variables consistent with the theoretical behavior described.

In terms of computational performance, Julia has great efficiency, combining the read-
ability of a high-level language with execution speeds close to those of the C language [5].
On the other hand, Trixi.jl has offered flexibility, extensibility, and good documentation,
facilitating both the development of simulations and the post-processing of results.

Nevertheless, it is worth highlighting some specific limitations of using Trixi.jl that
have been identified during the course of the project. The first to note is that it does
not allow querying the solution at an arbitrary point in the domain, which limits the im-
plementation of some visualization techniques. For example, to represent streamlines or
carry out more detailed post-processing, the use of external tools such as ParaView is
necessary, which introduces an extra layer of complexity. On the other hand, although the
active development of Trixi.jl is an advantage in terms of continuous improvement, it also
implies long-term instability, as some functions may change their syntax, parameters, or
disappear overnight. This can break previously functional implementations if one intends
to use the most up-to-date version of the framework and requires constant attention to its
updates.

Despite these limitations, which are usability issues rather than numerical capability
issues, this work has shown that Julia and Trixi.jl are viable tools for plasma simulation,
combining efficiency, accuracy, and flexibility. Being open-source, modular, and sup-
ported by a growing community of users and developers makes them a strong candidate
for future research, especially in early design phases. Moreover,during the development
of this project, several questions were raised regarding functionalities such as how to stop
the simulation when steady state was reached. Responses took between one and two days
and were very helpful. This community engagement reinforces Trixi.jl’s suitability for
future research, especially in early-stage academic and design environments.

In short, this work has demonstrated that it is possible to integrate plasma simulations

38

such as those in the reference article [3] using Julia and the Trixi.jl framework, open-
source and constantly evolving tools, forming a foundation for future developments in the
field of electric propulsion.

39

5. FUTURE WORK

Once it has been demonstrated that Julia and Trixi.jl can accurately reproduce the
described dynamics, it is important to mention potential improvements and future imple-
mentations that could be developed.

Firstly, the implementation of the energy equation could be considered in order to
avoid relying on the polytropic closure used in the current model. Among other factors,
this would increase the computational cost, since adding an extra variable raises the de-
grees of freedom in the system and, therefore, the number of operations required to obtain
the solution. However, it would allow a more realistic behavior of plasma dynamics.

On the other hand, the current model does not include collisions between ions and
electrons, so adding them may be interesting to observe the interaction between these
species, as well as the effects of dissipation and momentum transfer.

Finally, moving from a 2D to a 3D model appears to be a reasonable step. Although
it would require modifying the equations to be solved, leading to an increase in com-
putational cost, requiring more powerful hardware, and a more complex postprocessing
procedure to visualize the data, it would also represent the real nozzle geometry in a more
reliable way than in the 2D case.

Implementing the modifications outlined above would not only allow for a deeper un-
derstanding of plasma dynamics in the MAT, but also help improve the Trixi.jl codebase,
by adding new systems of equations or even creating predefined functions for visualizing
results without the need for external tools.

40

BIBLIOGRAPHY

[1] C. Boyé, J. Navarro-Cavallé, and M. Merino, “Ion current and energy in the magnetic
arch of a cluster of two ecr plasma sources,” Journal of Electric Propulsion, vol. 4,
no. 10, 2025. doi: 10.1007/s44205-025-00100-w.

[2] Trixi Framework. “Trixi.jl documentation (stable branch).” Accessed: June 14, 2025.
[Online]. https://trixi- framework.github.io/TrixiDocumentation/
stable/. (2025).

[3] M. Merino, D. García-Lahuerta, and E. Ahedo, “Plasma acceleration in a magnetic
arch,” Plasma Sources Science and Technology, vol. 32, no. 6, p. 065 005, 2023. doi:
10.1088/1361-6595/acd476.

[4] E. Ahedo and M. Merino, “Two-dimensional supersonic plasma acceleration in a
magnetic nozzle,” Physics of Plasmas, vol. 17, p. 073 501, 2010. doi: 10.1063/1.
3442736.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “The julia programming
language.” (2025), [Online]. Available: https://julialang.org/.

[6] M. Schlottke-Lakemper et al., Trixi.jl: Adaptive high-order numerical simulations of
hyperbolic PDEs in Julia, https://github.com/trixi-framework/Trixi.jl,
2025. doi: 10.5281/zenodo.3996439.

[7] M. Merino and E. Ahedo, “Influence of electron and ion thermodynamics on the
magnetic nozzle plasma expansion,” IEEE Transactions on Plasma Science, vol. 43,
no. 1, pp. 244–251, 2015. doi: 10.1109/TPS.2014.2316020.

41

https://doi.org/10.1007/s44205-025-00100-w
https://trixi-framework.github.io/TrixiDocumentation/stable/
https://trixi-framework.github.io/TrixiDocumentation/stable/
https://doi.org/10.1088/1361-6595/acd476
https://doi.org/10.1063/1.3442736
https://doi.org/10.1063/1.3442736
https://julialang.org/
https://github.com/trixi-framework/Trixi.jl
https://doi.org/10.5281/zenodo.3996439
https://doi.org/10.1109/TPS.2014.2316020

APPENDIX A: SIMULATION PARAMETERS SELECTION

To obtain the configuration that will be used, a convergence study has been conducted,
analyzing the number of elements and the numerical flux used.

Both the analysis carried out in this appendix and those in sections 3.2 and 3.3 com-
pare the relevant variables at x = 5, that is, from the plasma exit to the downstream region,
as well as at the plasma exit, at z = 0. This has been fixed in this way since what matters
is to study the behavior of the plasma at the thruster exit and what happens downstream
from its center.

In addition to the plots at z = 0, a table is shown with simulation times and errors
calculated using the Root Mean Square Error (RMSE). The variables considered for the
analysis are density, Mach number at x = 5, and ion velocity at z = 0.

Number of elements

The first analysis is the comparison of the number of elements. For this, a polynomial
degree p = 1, the time marching method SSPRK104, and Lax-Friedrichs as the numerical
flux have been fixed. The number of elements compared are: 1 500, 6 000, and 15 000
elements.

(a) Density (z = 0) (b) Ui (z = 0)

(c) Density (x = 5) (d) Mach (x = 5)

Fig. A.1. Impact of the number of elements compared with reference solution.

TABLE A.1. ERRORS AND SIMULATION TIME FOR Z = 0.

Number of elements RMSE density (z = 0) RMSE ui (z = 0) Simulation time [s]
1 500 0.0412 0.9680 46.6
6 000 0.0181 0.5485 287

15 000 0.0120 0.6060 1736

TABLE A.2. ERRORS AND SIMULATION TIMES FOR X = 5.

Number of elements RMSE density (x = 5) RMSE Mach (x = 5) Simulation time [s]
1 500 0.0302 0.1117 46.6
6 000 0.0159 0.0699 287

15 000 0.0122 0.1064 1736

The first thing we can notice is that the density at the inlet conditions is lower than
the reference one, which will produce errors in the other variables. This error in the inlet
density, which is defined at the beginning of the simulation, may be due to the fact that
boundary conditions in Trixi.jl are handled through ghost nodes, where the transfer from
these ghost nodes to the inlet nodes is done through the numerical flux, which modifies
the inlet conditions compared to those initialized in the code.

Continuing with the density, along the domain at x = 5, we observe that the behavior
is very close to the reference, and moreover, the solution for 6 000 and 15 000 appears to
be practically identical. This similarity can be seen in the table, where we observe that
the difference in error is 0.0037.

The behavior of the ion velocity is the same as for the density; the difference between
1 500 and 6 000 elements is 43.3%, while between 6 000 and 13 500 elements we observe
an increase in error.

Comparing the Mach number, we see that the results for 15 000 and 6 000 elements
are similar, whereas the one with 1 500 deviates from the reference solution.

All of this, added to the fact that with 15 000 elements the simulation time is 6 times
longer than with 6000 elements, allows us to conclude that the number of elements to be
used is 6 000.

Numerical flux

For the comparison of different numerical fluxes, as in the previous analysis, a poly-
nomial order p = 1, a time marching method SSPRK104, and a mesh of 6 000 elements
have been used. The fluxes compared are: Lax-Friedrichs, HLL, and HLLC.

(a) Density (z = 0) (b) Ui (z = 0)

(c) Density (x = 5) (d) Mach (x = 5)

Fig. A.2. Impact of the numerical flux compared with reference solution.

TABLE A.3. ERRORS AND SIMULATION TIMES FOR Z = 0.

Numerical flux RMSE density (z = 0) RMSE Mach z = 0 Simulation time [s]
Lax-Friedrichs 0.0181 0.5485 287

HLL 0.0309 0.6901 244
HLLE 0.0305 0.5704 230

TABLE A.4. ERRORS AND SIMULATION TIMES FOR X = 5.

Numerical flux RMSE density (x = 5) RMSE Mach (x = 5) Simulation time [s]
Lax-Friedrichs 0.0159 0.0699 287

HLL 0.0280 0.2567 244
HLLE 0.0276 0.2594 230

As can be observed both in the graphs and in the tables, the behavior of the HLL and
HLLE numerical fluxes is practically identical. However, both show worse performance
than the Lax-Friedrichs flux. Regarding the density at the outlet, the latter approaches
unity better than the others, with an error improvement of 70.17%. For the ion velocity,
a similar behavior to that of the density is observed, where the HLLE and HLL fluxes

behave similarly, while the Lax-Friedrichs flux provides a better approximation to the
reference solution.

As for the variables at x = 5, it can be seen that the HLL and HLLE fluxes enter the
shock wave with more delay compared to the Lax-Friedrichs flux, the latter being the one
that gives the best results when compared to the reference.

Given these results, the flux used for the comparison between the model implemented
in Julia and the reference model will be the Lax-Friedrichs flux.

Conclusions

Analyzing the data obtained, it is concluded that, in order to perform the comparison
between the numerical solution obtained using Trixi.jl and the reference solution extracted
from the reference article, the most suitable configuration consists of using a mesh of
6 000 elements, the Lax-Friedrichs numerical flux, a polynomial order p = 1, and the
SSPRK104 time marching method.

Although the simulation times for Lax-Friedrichs are slightly higher, being able to use
6 000 elements mitigates this drawback, providing a balance between computational cost
and accuracy.

1

APPENDIX B: DECLARATION OF USE OF GENERATIVE IA IN BACHELOR THESIS

(TFG)

I have used Generative AI in this work

Part 1: Reflection on ethical and responsible behaviour

Please be aware that the use of Generative AI carries some risks and may generate a series

of consequences that affect the moral integrity of your performance with it. Therefore, we ask

you to answer the following questions honestly (please tick all that apply):

Question

1. In my interaction with Generative AI tools, I have submitted sensitive data with the
consent of the data subjects.

YES, I have used this

data with permission

NO, I have used this

data without

authorisation

NO, I have not used

sensitive data

2. In my interaction with Generative AI tools, I have submitted copyrighted materials
with the permission of those concerned.

YES, I have used these

materials with

permission

NO, I have used these

materials without

permission

NO, I have not used

protected materials

3. In my interaction with Generative AI tools, I have submitted personal data with the
consent of the data subjects.

YES, I have used this

data with permission

NO, I have used this

data without

authorisation

NO, I have not used

personal data

YES NO

2

4. My use of the Generative AI tool has respected its terms of use, as well as the
essential ethical principles, not being maliciously oriented to obtain an inappropriate
result for the work presented, that is to say, one that produces an impression or
knowledge contrary to the reality of the results obtained, that supplants my own work

or that could harm people.

YES
NO

If you did NOT have the permission of those concerned in any of questions 1, 2 or 3, briefly

explain why (e.g. "the materials were protected but permitted use for this purpose" or "the

terms of use, which can be found at this address (...), prevent the use I have made, but it was

essential given the nature of the work".

Part 2: Declaration of technical use

I declare that I have made use of the Generative AI system ChatGPT for:

Documentation and drafting:

● Revision or rewriting of previously drafted paragraphs

I have asked for paragraphs to be rewritten to improve the style and make the content easier

to follow for the reader.

3

Part 3: Reflection on utility

Please provide a personal assessment (free format) of the strengths and weaknesses you

have identified in the use of Generative AI tools in the development of your work. Mention if it

has helped you in the learning process, or in the development or drawing conclusions from

your work.

Generative artificial intelligence has proven to be very useful at times, as it has helped me

correct errors and improve the way certain parts of the text were written, making the

reading experience clearer and easier to follow.

	Introduction
	Motivation
	State of the art
	Objectives
	Regulatory framework
	Socio-economic environment
	Methodology

	Preliminary validation of Trixi.jl
	Fundamentals of Trixi.jl
	1D Sod shock tube case
	2D Prandtl-Meyer expansion case
	Conclusions associated with the convergence studies

	Study of plasma in a magnetic arc
	Advection of the He and Uye variables
	Comparison with the reference model
	Parametric analysis

	Conclusions
	Future work
	Bibliography
	Appendix A: Simulation parameters selection
	Appendix B: Declaration of AI use

