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ABSTRACT

In this article, the time-resolved flow field estimation based on data-driven methods, which exploits the measurement

of snapshot PIV and probes working at high frequency, is introduced as a pathway to obtain pressure fields from non-

time resolved measurements. Time-resolved velocity fields are reconstructed from the combination of a large number

of uncorrelated velocity fields and time-resolved data from velocity probes sampled in few points in space. Using the

estimated time-resolved velocity fields, the pressure field is obtained from integration of the pressure gradient from the

Navier-Stokes equation without any further model for the time-derivative of the velocity. Extended Proper Orthogonal

Decomposition (Extended POD), which builds the relation between flow fields and probe data from their temporal

modes, is demonstrated in this paper to show the feasibility of this concept. Additionally, flow field estimation using a

Multilayer Perceptron (MLP) with time-delay embedding is tested. This kind of estimator can map non-linear relations

between probe and field data, at the expense of higher complexity and computational cost. The performances of both

data-driven methods as well as Taylor’s hypothesis are tested on a synthetic dataset, i.e. the numerical simulation of

the wake of a fluidic pinball, and experimental measurements on the wake of a wing. The tests show that both data-

driven methods estimate the velocity and pressure field with sufficient accuracy. In the cases analyzed in this paper,

both having compact POD spectra, the data-driven methods outperform the estimation based on Taylor’s hypothesis.

As an additional benefit, after training, the data-driven methods only require data from probe to estimate the flow

fields.

1. Introduction

The pressure field can be extracted from time-resolved PIV (Particle Image Velocimetry) data by
enforcing the Navier-Stokes equation (Van Oudheusden, 2013). The pressure gradient can be re-
stated as a function of the velocity as in the following,

∇p = f(u) = −ρDu

Dt
+ µ∇2u (1)
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where ρ and µ is the density and dynamic viscosity of fluid, ∇ is the gradient operator, and the
material derivative Du/Dt can be expressed in the Eulerian way as ∂u/∂t+ (u · ∇)u. This empha-
sizes the importance of time derivative of velocity in the estimation of pressure. The most direct
way to obtain the time derivatives is by having access to time-series of the velocity field obtained
through high-repetition rate PIV. However, the limitation in the sampling rate of available imaging
and illumination systems and their high price tag, restrict the access to time-resolved PIV for most
experimental studies. Moreover, the operations of temporal or spatial derivative amplify the noise,
thus even when the velocity field from PIV are moderately good, the pressure field integrated from
its gradient can have large degree of errors with respect to the real one. This requires high accuracy
for the velocity field.

To solve the first issue, some assumptions can be applied to estimate the time-derivative of the ve-
locity from a single snapshot when the time resolution is not available, such as Taylor’s hypothesis
(TH) (Van der Kindere et al., 2019), or non-dissipative vortex advection (Schneiders et al., 2018).
Another approach is to bypass the time derivative completely by reformulating Eq. 1 as a Poisson
problem and assuming that the flow is incompressible,

∇2p = −ρ∇ · (u · ∇)u (2)

However, even in this approach the time derivative is typically still required on the boundary of
the domain, thus needing additional assumptions there.

An alternative path to access time-resolved measurements is offered by estimation of fields using
sensors. Normally point probes (such as hot-wires or microphone) provide easily time-resolved
measurement at a reasonable cost, at the expense of spatial resolution. We have recently demon-
strated that a combined use of non-time-resolved PIV measurements and time-resolved probe mea-
surements can be enforced to obtain pressure fields from integration of estimated velocity fields.
The technique used by Chen et al. (2022) roots in the Extended Proper Orthogonal Decomposition
(Extended POD) (Borée, 2003). Probe data are used as encoders for the field information, thus
retrieving time-resolved velocity fields using probes. After training, this method only requires
probe data to obtain velocity and pressure field in the entire domain of training. The entire process
is summarized in Fig. 1.
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Figure 1. Flow chart of data-driven velocity estimation and pressure integration. Adapted from Chen et al. (2022).

In this work, we revise the performances of this method and compare it to an enhanced version
based on a non-linear estimator of the flow fields. Deep learning architectures have widely demon-
strated their suitability for this task (Güemes et al., 2019; Erichson et al., 2020; Giannopoulos &
Aider, 2020; Guastoni et al., 2021; Manohar et al., 2022). Such estimator seeks to encode the probe
data into the POD temporal coefficients of the fields to be estimated. The estimation methods will
be described first in Sec. 2. The methodology is then assessed on a synthetic test case of the wake
of a fluidic pinball (Sec. 3) and an experiment on the wake of a wing (Sec. 4).

2. Velocity field reconstruction methods

2.1. Estimation of time-resolved velocity fields with Extended POD

In this section the data arrangement and the implementation of the EPOD-based method for the
estimation of velocity fields from point probes is presented. The treatment follows the formulation
presented in (Discetti et al., 2018). It is worth to remark that this approach, although defined in the
time-domain, is equivalent to a multi-time delay Linear Stochastic Estimation (Ewing & Citriniti,
1999; Tinney et al., 2006).

Assume that nt snapshots of the fluctuating velocity field are arranged into a matrix U , where each
row (with length np × 2 for planar PIV) contains the velocity components in all the nodes of the
domain. The matrix U can be decomposed by the economy-size Singular Value Decomposition
(SVD), i.e.

U = ΨΣΦT (3)



20th LISBON Laser Symposium 2022

For simplicity it is herein assumed that all grid points cover the same area, thus there is no need
to explicitly include a weighting matrix. Furthermore we assume nt < 2np. Both conditions are
normally met in PIV experiments. Nonetheless, the method can be easily formulated for the gen-
eral case of non-uniform spatial resolution and/or nt > 2np. In the decomposition of Eq. 3, the
columns of the nt × nt orthogonal matrix Ψ contains the temporal modes ψi, the columns of the
nt × 2np orthogonal matrix ΦT contains the spatial modes ϕi and Σ is a square diagonal matrix
containing the singular values σi arranged in a decreasing order.

The same decomposition can be applied on velocity data from s probes synchronized with veloc-
ity field measurements. The data from the probes extracted at the same time instants of the PIV
measurements can be arranged in a snapshot matrix, with dimension nt × (s × nc), with nc be-
ing the number of components measured by the probe. In order to increase the quantity of probe
data available for each snapshot, a multi-time-delay embedding approach, analogous to the one
adopted in (Sicot et al., 2012; Hosseini et al., 2015), is employed here: for each physical probe,
a time-resolved sequence of q probe samples is extracted after the velocity field sampling time
and considered as additional probes, referred for simplicity as “virtual probes”. This approach
is also known as Multichannel Singular Spectrum Analysis (Ghil et al., 2002). This method is in
wide sense enforcing Taylor’s hypothesis, although not explicitly including a model nor imposing
a precise convection velocity. The final result is a multi-time delay embedding in the snapshot
probe matrix. The final result is a matrix Upr with nt rows (as the velocity field snapshots) and
ntt = (s× nc)× q columns which can be decomposed as

Upr = ΨprΣprΦ
T
pr (4)

The extended POD modes Φe corresponding to the field measurements can be estimated by pro-
jection of the PIV snapshot matrix U on the temporal modes of the probe, i.e.

ΨT
prU = ΣeΦ

T
e = ΦT

prΨΣΦT = ΞΣΦT (5)

where the subscript e refers to extended POD modes and the matrix Ξ = ΨT
prΨ contains the infor-

mation about the temporal correlation between field and probe modes.

Knowing the POD spatial modes (Φ and Φpr) and singular values (Σ and Σpr) of the velocity field
and of the probe snapshot matrix, as well as the temporal correlations matrix Ξ, it is possible to
estimate the velocity field uest at an generic instant from a probe data snapshot use sampled at that
instant:

uest = useΦprΣ
−1
pr ΞΣΦ

T = ψestΣΦ
T (6)

with use containing delay-embedded probe data in the same arrangement used to construct the
probe snapshot matrix.

Since the pressure gradient estimation heavily relies on a correct estimate of the time derivative
of the velocity field, it is of utmost importance to reduce spurious noise in the reconstruction. For
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this reason, a temporal smoothing of the estimate temporal modes is tested. In the present work a
6th order low-pass Butterworth filter with cutoff frequency equal to 0.05 times the data sample rate
is applied to each estimated temporal mode ψest. This approach has been referred to as ψ-filtering
approach by Chen et al. (2022).

2.2. Estimation of time-resolved velocity fields with artificial neural networks

In order to extend the capabilities of the pressure-estimation method proposed by Chen et al.
(2022), we introduce a non-linear estimator for the POD time coefficients. The relation between
the probe data Upr and the temporal modes of velocity fields Ψ is built with a multilayer percep-
tron (MLP). MLP is one of the basic forms of ANN, based on fully-connected layers. The fully-
connected layers are composed of artificial neurons, performing weighted sums on neuron values
from input or previous layers, and passing the summation through a activation function (usu-
ally non-linear) producing a single output. The values of weight are refined in training, using
backpropagation algorithm. In our implementation the training data are the coefficients of spatial
modes of the flow field and probe data in the same snapshot, thus the learning is supervised. The
price to pay to build a non-linear estimator is an increase in computational cost and complexity
with respect to EPOD.

After the training, the temporal modes of the flow field can be reconstructed by feeding the neural
networks with the probe data of generic time instants. Also in this case, a low-pass filter can be
applied to the temporal modes to improve the reconstruction quality.

3. Validation

In this section a validation using a synthetic dataset is carried out. The settings of the virtual
experiment are the same adopted by Chen et al. (2022) and summarized here briefly.

The dataset has been extracted from a 2D-DNS (2 Dimensional Direct Numerical Simulation) of
the wake of a fluidic pinball (Deng et al., 2020). The pinball is formed by three cylinders with
diameterD, whose centres form an equilateral triangle with side length equal to 1.5D. The triangle
is oriented with one vertex pointing upstream. The 2D-DNS is performed at Re = 130 (referred as
chaotic regime, (Deng et al., 2020)), with Re being the Reynolds number based on the freestream
velocity and the diameter of the cylinders forming the pinball.

The region selected to test the EPOD-based estimation is placed in the wake of the obstacles, rang-
ing from x = 1D to x = 7D and from y = −3D to y = 3D, with x and y being respectively the
streamwise and crosswise directions. The velocity data from the original DNS mesh are interpo-
lated on a Cartesian grid with distance between two adjacent points of 0.08D in order to simulate
the results of a PIV experiment, yielding 76 × 76 vector fields (although neither modulation nor
random errors are introduced).
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Figure 2. Absolute value of Ξ for the fluidic
pinball case (first 360× 360 entries).

Figure 3. MLP Setting for the pinball test.

layer nodes activation function

1 512 relu
2 512 relu
3 60

Five point probes measuring the 2 in-plane components of velocity, are placed at the downstream
edge of the region (x = 7D), with a spacing of 1D in the y direction, being the central one lo-
cated at y = 0. The training dataset is composed of 4685 velocity field snapshots as well as of
the synchronized virtual probe data, forming the matrices U and Upr, respectively, as reported in
Sec. 2.1. The snapshots are selected to have a temporal spacing of 1.9 non-dimensional times.
The probes instead store data with the same time separation of the DNS time step, i.e. each 0.1 in
non-dimensional time units. This corresponds to a target super-sampling by a factor of 19. When
building the probe snapshot matrix, a time segment equal to 60 samples is used. The number of
virtual probes is estimated by considering a timespan covering the convection time through the
observation domain, as proposed in (Discetti et al., 2018).

Fig. 2 shows the absolute value of the upper-left portion of unfiltered matrix Ξ, which is represen-
tative of the correlation between the ith temporal mode of the probes and the jth temporal mode
of the flow field, with i and j being respectively the row and column numbers in Ξ. The matrix Ξ

shows a clear diagonal dominance for at least the first 100 modes, which indicates a strong direct
correspondence between probe and field modes. As the mode number is increased, this dominance
disappears and each probe mode tends to correspond to a larger number of field modes.

The neural networks are trained on Google colab with one Tesla P100 GPU. The table reported in
Fig. 3 illustrates the structure of the shallow neural network for the pinball test. The MLP contains
3 layers, with 512, 512 and 60 nodes, respectively. The relu activation functions is applied in the
first two layers. The mean-square-error is applied as the lost function and the parameters of the
neural networks are updated in the backpropagation to decrease the value of the loss function.
The first 60 temporal modes, corresponding to 99.9% of the energy, are estimated with the MLP.

For completeness, the assessment includes also the pressure estimation based on enforcing Taylor’s
hypothesis, as in (Van der Kindere et al., 2019). This method enables the estimation of the time
derivative of velocity, and thus of the pressure, for a measured snapshot. This approach will be
referred to as in-sample TH in the remainder of this paper. A Gaussian spatial filter with standard
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deviation equal to 7 vectors on a kernel of 29 × 29 vectors has been applied to the local velocity
inside the measured snapshot to provide the convection velocity uc.

The performances of EPOD and MLP are reported in Fig. 4 for a single snapshot of the testing
dataset, both in terms of velocity and of pressure. The velocity from DNS and pressure integrated
from the velocity field using method in (Chen et al., 2022), normalized by the freestream velocity
U∞ or corresponding dynamic pressure 1/2ρU2

∞, are presented in the first row for comparison. In
the second and third row, the velocity and pressure from ψ-filtered EPOD and ψ-filtered MLP are
presented. The error of estimation via EPOD, MLP and TH in the same snapshot is presented in
Fig. 5. Both EPOD and MLP reconstruct the velocity field and estimate the pressure field with
relatively-high fidelity. MLP reconstructs almost exact velocity field, thus resulting in very good
pressure estimation. The error of EPOD mainly affects the streamwise velocity component in the
wake region (from x = 2D to x = 4D), producing an error pattern which suggests the misplace-
ment of flow structures in the y-direction. The crosswise velocity component and pressure shows
lower levels of error, still localized in the same region. The region of the reconstruction error stands
farther from the probe, thus hinting to the limited capability of estimating field data far from the
probe locations. Additionally, the localization of such error might be an effect of the presence of
intense flow features, strongly subjected to stretching and deformation, and for which the linear
methods do not perform well. These two aspects contribute in the reduced capability of the probes
to sense accurately the fluctuations in this region with linear methods such as EPOD. However, the
capability of MLP to model non-linear mapping between probe and field data allows a significant
reduction of this source of error.

A further quantitative assessment of the estimation error has been carried out over a testing dataset
of 1500 snapshots by computing the Root Mean Square (RMS) error with respect to the original
DNS fields. Additionally, the TH can be used to propagate the measured frame in time, obtaining
an estimated time-resolved sequence of velocity fields. The simplest way to fulfill it is by means of
a unidirectional Euler propagation, which is

u(t0 + dt) = u(t0) +
∂u

∂t

∣∣∣∣
t0

dt

= u(t0)− (uc · ∇)u′(t0)dt

(7)

in the present case, where the convective velocity uc is the spatially-filtered velocity inside the
snapshot, and the time-resolved sequence has been estimated with TH using a 4th order Runge-
Kutta method with unidirectional propagation. This approach will be referred to as out-of-sample
TH in the remainder of this paper. It should be noted that the error comes from both the absence
of inlet information and the accumulation of that in propagation.

Fig. 6 shows the maps of estimation error for the unfiltered EPOD estimation (the first row), the ψ-
filtered EPOD (the second row), the unfiltered MLP (the third row), the ψ-filtered MLP (the fourth
row), and in-sample TH (in Fig. 7), where the RMS error of two-component velocity and their
time-derivative, or pressure is calculated in all snapshots tested. The error of velocity is reported
on the left column (Fig. 6a,d,g,j), and the error of the time-derivative of velocity is reported on
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Figure 4. Exact and estimated velocity and pressure fields for a single snapshot: (a) streamwise velocity from DNS;
(b) crosswise velocity from DNS; (c) pressure from DNS; (d) streamwise velocity from filtered EPOD; (e) crosswise

velocity from filtered EPOD; (f) pressure from filtered EPOD; (g) streamwise velocity from filtered MLP; (h)
crosswise velocity from filtered MLP; (i) pressure from filtered MLP; (j) pressure from TH.
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Figure 5. Error of estimated velocity and pressure fields for a single snapshot: (a) streamwise velocity from filtered
EPOD; (b) crosswise velocity from filtered EPOD; (c) pressure from filtered EPOD; (d) streamwise velocity from

filtered MLP; (e) crosswise velocity from filtered MLP; (f) pressure from filtered MLP; (g) pressure from TH.



20th LISBON Laser Symposium 2022

the central column(Fig. 6b,e,h,k, Fig. 7a), and the error on the pressure on the right column(Fig.
6c,f,i,l, Fig. 7b). The in-sample TH is based on the assumption that exact velocity fields were avail-
able in all snapshot tested, thus only the time derivative of velocity is to be estimated. Despite the
velocity estimation from the unfiltered EPOD (Fig. 6a) has reasonable levels of error, the pressure
estimation (Fig. 6c) is affected by large error. Such error is mainly produced by the time derivative
of the velocity (Fig. 6b), which also embodies in the spurious fluctuations in the POD temporal
modes. The ψ-filter removes most of the error for the time-derivative, thus improves the pressure
estimation significantly. It should be mentioned that time filtering may smear out high-frequency
fluctuations. Nonetheless, such scales motions shift very fast and are less likely to exhibit corre-
lation with the probe data, thus the estimation process is already partially filtering their intensity.
The error of MLP shows significant improvement of velocity and their time-derivative even with-
out filter, thus improving the pressure estimation, especially in the center region of the domain. A
low-pass filter in time allow a minor improvement of the performance of MLP in the estimation of
velocity, with a more significant reduction in the error in pressure estimation due to the integration
process. Similar error levels of unfiltered EPOD are present in the pressure estimation from the TH
(Fig. 7b), also in this case produced by large errors in the time derivative (Fig. 7a).

Since the frequency of data-driven methods in this article is based on the repetition rate of sensors,
they can provide by default time-resolved flow fields. Taylor’s hypothesis, by contrast, is generally
employed to estimate the time-derivative from the velocity field within one snapshot (in-sample
TH). The time-resolved flow field can be also derived by applying the unidirectional Euler propa-
gation in 7, with the time-derivative from TH (out-of-sample TH), but the error increases rapidly
due to lack of information between snapshots. To demonstrate it, the pressure estimation error
along time from data-driven methods and in-sample/out-of-sample TH are shown in Fig. 8a.
The out-of-sample TH on this figure propagates starting from the snapshots spacing in every 1/6

non-dimensional through-time t∗, this non-dimensional amount in this article is defined as L/U∞,
where L is the domain length and U∞ is the freestream velocity. the figure shows MLP is better
than EPOD, the filter improves the estimation, and data-driven methods outperforms the TH in
current case. The error of out-of-sample TH experiences three and half periods, with the error
accumulates from the exact snapshot.

The robustness of the methods is tested given noise to the probe data of training and testing and
field data of training. Gaussian noise with zero mean value and standard deviation up to 4% of U∞

is superposed onto both velocity components. The RMS error of the pressure on all testing frames
and the whole domain are shown on Fig. 8b, the out-of-sample TH has also the snapshot spacing
at 1/6∆t∗. The noise impacts the pressure estimation to all methods, thus the error increases for
the model based method and in-sample TH, while the out-of-sample TH fails even the noise level
is just 0.5%.
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Figure 6. RMS error map of velocity and pressure fields estimation using the EPOD with and without filter, MLP
with and without filter. The first column shows error on velocity, the second column shows error on time derivative,

and the last column shows the error on pressure.
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Figure 7. Continuing Fig. 6, the RMS error of time derivative of velocity and pressure generated from TH.
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Figure 8. (a) RMS error of estimated pressure over the whole domain as propagating in time, where the
out-of-sample TH is propagated up to ∆t∗ = 1/6. (b) RMS error of estimated pressure over the whole domain for

different levels of noise in probe data and training velocity field, the out-of-sample TH is the average in ∆t∗ < 1/6.



20th LISBON Laser Symposium 2022

x

y

O

U
1

2

3

4

5

6

1. Water tunnel

2. 2D Wing Model

3. LASER

4. Lens

5. Mirror

6. Camera

Figure 9. Sketch of experimental setting.

4. Experiments on the wake of wing

The proposed method is tested on an experimental dataset of a PIV measurement in the wake
of a 2D wing with a NACA 0018 airfoil. The experiment is carried out in the water tunnel of the
Universidad Carlos III de Madrid, which has a 2.5×0.5×0.55m3 test section. The Reynolds number
is approximate 4800, with the chord length of the wing at 80mm, and the freestream velocity at
U∞ = 0.06m/s. The wing is mounted with an angle of attack of 10◦ to generate a moderate-intensity
shedding wake.

As shown in the sketch in Fig.9, a dual cavity pulsed Nd:YAG Quantel Evergreen laser is used
to produce an approximately 1mm-thick sheet after reshaping the laser beam via a spherical and
a cylindrical lens. An Andor sCMOS camera with 2560 × 2160px2 sensor (with pixel pitch of 6.5
µm) is equipped with a 50mm focal length objective, and set to a resolution of 8.3px/mm. The
flow is seeded with neutrally-bouyant polymide particles with 56µm diameter. Particle images are
sampled at 30Hz, which is sufficient to obtain time-resolved measurements, being the particle dis-
placement in the freestream within frames equal to approximately 16 pixels. A sliding correlation
(Scarano & Moore, 2012) with 3-frame kernel is applied and the final interrogation window size is
40px with 75% overlap, resulting in a vector spacing of 1.20mm.

The training dataset for EPOD is composed of 1591 velocity fields captured at 2.72Hz, i.e. down-
sampling by a factor of 11 the original sequence. Artificial probes with higher temporal resolution
are built by using the original sequence with sampling frequency at 30Hz. This approach for test-
ing is similar to the one proposed by Tu et al. (2013). The complete PIV domain spans 1.6c in the
streamwise direction, starting at approximately 0.75c from the trailing edge. Eleven probes are set
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on the downstream edge of the domain, and 100 records soon after the snapshot are extracted from
the time series of probe data, to make the time span equal to one convective throughtime within
the domain.

Both EPOD and MLP in Sec. 2 are tested to reconstruct the flow field from probe data. All temporal
modes are reconstructed from EPOD. The MLP is trained to estimate the first 128 temporal modes.
The MLP is made of a five-layers neural networks with 2048, 2048, 1024, 1024, and 128 nodes. Both
temporal modes from EPOD and MLP are then low-pass filtered.

As a comparison, the in-sample and out-of-sample TH are tested, and the result of pressure estima-
tion for one snapshot and RMS error over 980 frames are shown in Fig. 10. One snapshot pressure
of the EPOD, MLP and in-sample TH result as well as pressure directly integrated from PIV field
are shown in the left. MLP provides the best result, while EPOD shows reasonable estimations, but
with significant contamination of random errors. In-sample TH predicts well in the centre of the
domain, but the error is more significant near the edges of the domain. When propagating velocity
fields with TH, the error on the pressure fields increases rapidly.

5. Conclusions

Fully data-driven approaches to estimate instantaneous pressure fields using snapshot PIV (i.e.
without time resolution) and probe data have been presented and assessed. The velocity fields
are estimated at the same time resolution of the probes using either EPOD or an artificial neural
network, and the pressure gradient is integrated in space enforcing Navier-Stokes equation on the
time-resolved flow field. After training, the estimation process only requires data from probes in
input. The EPOD reconstructs the flow field leveraging the one-to-one relation of temporal modes
between flow field and probe data, while the MLP builds a more complex non-linear mapping.
Both approaches provide sufficient accuracy in estimating flow field. The MLP shows superior
performance if compared to EPOD because it allows mapping of non-linear relations between
probe and field data. On the downside, this approach has higher computational cost and requires
careful training to avoid overfitting. Both methods outperform in most cases a pressure estimation
based on Taylor’s hypothesis, particularly in the flows with compact POD spectrum illustrated
here.
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Figure 10. Non-dimensional instantaneous pressure field from: (a) time-resolved PIV; (c) EPOD reconstruction with
filtering; (e) MLP reconstruction with filtering; (g) in-sample Taylor’s hypothesis. Non-dimensional RMS error of
pressure field from: (b) EPOD reconstruction with filtering; (d) MLP reconstruction with filtering; (f) in-sample
Taylor’s hypothesis; (h) out-of-sample Taylor’s hypothesis, after the propagation of 0 ≤ ∆t∗ < 0.25 from sample

snapshot.
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