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ABSTRACT

We propose a novel approach to obtain a time-resolved description from non-time-resolved PIV measurements. The

method needs in input velocity and acceleration fields from (at least) 3-pulse PIV data, without time resolution. A

sparse identification of nonlinear dynamics (based on the SINDy technique proposed by Brunton et al., 2016) is carried

out to estimate the time history of coordinates in a low-dimensional space from Proper Orthogonal Decomposition

(POD). The output is a reduced-order model of the dynamics which can be integrated to obtain time-resolved velocity

fields using the snapshots as initial conditions. The time-resolved evolution of the pressure fields is then derived

from the momentum equation. The time history of the velocity and pressure fields is obtained through a weighted

Backward-Forward Integration (BFI) of the identified system. Time super-sampling can be achieved by integration

between consecutive non-time-resolved realizations. In alternative, simple one-directional time integration can be

used for short-time prediction starting from individual snapshots. The algorithm is validated using a synthetic test

case from 2D Direct Numerical Simulation of the wake of a fluidic pinball at a Reynolds number Re equal to 130, and

PIV measurements of the wake of a NACA 0018 wing profile with Re = 4800. We show that the method is able to

reconstruct the flow dynamics for horizons of several convective times, provided that the basis for the data reduction

is sufficiently compact. Our results suggest that manifold learning and data assimilation can be combined to obtain

an enhanced flow description..

1. Introduction

The advances of time-resolved (TR) Particle Image Velocimetry (PIV) have paved the way to a
complete description of turbulent flows including pressure fields (Van Oudheusden, 2013). On the
downside, TR PIV requires expensive equipment, and it is often affected by reduced laser light
intensity and measurement noise due to the relatively larger pixel size of high-speed cameras,
thus limiting its applicability. This has pushed towards developing methods to estimate pressure
from non-time-resolved PIV. Methods based on Taylor’s hypothesis (Laskari et al., 2016; Van der
Kindere et al., 2019) or non-diffusive vorticity transport (Schneiders et al., 2016) demonstrated be-
ing capable of estimating pressure fields without time-resolution. In both cases a time-marching
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procedure can be set to estimate pressure field sequences. The main issue is the progressive ero-
sion of the domain due to advection through the boundaries. Furthermore, methods based on
Taylor’s hypothesis rely on a delicate choice of the correct convection velocity; non-diffusive vor-
ticity transport, on the other hand, require 3D flow measurements to be implemented.

An alternative route to obtain a time-resolved flow description is to pour time resolution from
point probes to non-time-resolved PIV measurements. Model-free approaches based on Extended
Proper Orthogonal Decomposition (EPOD, Borée, 2003) have shown that the correlation between
synchronized measurements can be leveraged in basis with reduced dimensionality for efficient
estimation of one measured quantity as a function of another simultaneous measurement. Multi-
time delay estimation can also be included to increase the robustness of the estimation (Tinney et
al., 2008). This concept, with variants, has been exploited in wake flows (Bourgeois et al., 2013; Tu
et al., 2013; Discetti et al., 2018), and turbulent wall-bounded flows (Hosseini et al., 2015; Discetti et
al., 2019). Recently, Chen et al. (2022) have demostrated that this path can also be used to estimate
pressure fields enforcing the Navier-Stokes equations. On the downside, this requires intrusive
simultaneous measurements with PIV, which are often unfeasible due to access requirement, ob-
struction of the optical access, flow perturbation and unwanted reflections.

An interesting opportunity is offered by non-time-resolved multi-pulse PIV setups. Applications
based on multiple synchronized illumination systems have been recently proposed (Lynch & Scarano,
2014; Ding & Adrian, 2016; Novara et al., 2019), either exploiting polarization to obtain single-
exposed frames, or on multiple-exposed frames. This solution provides acceleration field mea-
surements, although without time resolution.

In this work we investigate a possible pathway to obtain time-resolved measurement from non-
time-resolved acceleration and velocity field measurements. The main principle we leverage is
that turbulent flows show underlying patterns whose dynamics often evolve on low-dimensional
manifolds. Provided that an adequate basis is identified, a parsimonious model for the flow dy-
namics can thus be sought to infer a time-marching estimation of the most significant flow scales.
The method we propose is based on the sparse nonlinear system identification (SINDy) introduced
by Brunton et al. (2016). Non-time-resolved instantaneous velocity and acceleration fields are fed
into the system identification algorithm. First physical principles are then enforced to estimate
the pressure field, in this case from spatial integration of pressure gradient from the Navier-Stokes
equations. It must be remarked that this solution can also be fed by estimated fields from probe
data, as in the work by (Loiseau et al., 2018). In this work we explore the possibility of using
directly acceleration fields, without having to rely on probe measurements.

The proposed data-driven methodology is briefly described in §2. It will be shown that the method
can be either used for short-term prediction, or to increase the temporal resolution by filling
the temporal gaps between subsequent snapshots. In this last “time super-sampling” case, a
backward-forward integration procedure is proposed. The potential of the technique is demon-
strated in §3 on the DNS dataset of the wake of a fluidic pinball and on PIV experimental data of
the wake past a stalled wing in a water tunnel.
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2. Methodology

The flowchart of the proposed approach is sketched in Figure 1. It can be atomized in three main
phases: dynamics estimation; time-marching reconstruction of the velocity fields; pressure com-
putation.

Figure 1. Schematic of the flow reconstruction algorithm. Non-time resolved data of velocity and acceleration fields
are collected. Data are projected into a low-dimensional set of coordinates whose dynamics are inferred from a sparse

system-identification method. Backward-forward integration is applied to the obtained model using the measured
snapshots as initial conditions, providing an estimated time-resolved velocity field. Finally, the pressure field is

obtained from the Navier-Stokes’ equations.

2.1. Dynamics estimation

The dimensionality reduction of the velocity field data into a low-order basis is leveraged through
Proper Orthogonal Decomposition (POD, Berkooz et al., 1993). POD seeks to find an optimal
decomposition, in the sense of the minimization of the Frobenius norm of the residual energy of
the decomposition. For discrete systems this can be achieved with Singular Value Decomposition
(SVD) or the method of snapshots (Sirovich, 1987). Assume a snapshot matrix U[i,k] ∈ RNs×Nt ,
where Nt ≤ Ns. The economy-size SVD arranges the data in a temporal history of Nt discretized
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times such that k ∈ [1, ..., Nt] and in a spatial grid with i ∈ [1, ..., Ns], with Ns being the number of
gridpoints times the vectorial dimension of the data.

U[i,k] = ϕ[i]ΣΨ[k]T . (1)

In Equation (1), ϕ and Ψ refer to the spatial and temporal modes respectively, whereas Σ contains
the singular values σj along its diagonal, sorted according to their value. The energy optimality
of the POD renders it particularly appealing for the dimensionality reduction of the dynamics of
velocity fields. POD temporal modes, for instance, have been shown to be suitable coordinates for
parsimonious nonlinear dynamic estimation for shedding-dominated flows (Brunton et al., 2016)
and shear-driven cavity flows (Callaham et al., 2022). Furthermore, Galerkin regression models
can also be generalized to include constraints or higher-order effects of truncated terms (Loiseau &
Brunton, 2018). A dynamical model will thus solely rely on seeking a formulation for a dynamical
system as

dΨr

dt
(t) = f(Ψr(t)) with

dΨr

dt
=

(
Σr

−1

ϕr
T dU

dt

)T

, (2)

with vector Ψr(t) = [ψ1(t) . . . ψNr(t)] ∈ RNr being the truncated temporal mode set at a time t.
The time derivative of each mode is expressed as an unknown nonlinear function f(Ψr(t)). The
assumption of available velocity and acceleration measurements, although without temporal res-

olution, is necessary to infer the time derivative of the temporal modes
dΨr

dt
(t) by projection of

acceleration measurements on the POD basis, as shown in Equation (2).

The framework of Sparse Identification of Non-Linear Dynamics by Brunton et al. (2016) relies on
the principle that many dynamical systems are sparse in the space of possible functions. SINDy
identifies governing non-linear equations by performing a regularized linear regression model
onto time series data, such that

dΨr

dt
= Θ(Ψr)Ξ. (3)

Here, Θ ∈ RNt×Nf is a library matrix of Nf candidate non-linear functions in terms of Ψr, where
typically Nt ≫ Nf defines the system as overdetermined. A dictionary based on polynomial func-
tions has been shown to represent adequately turbulent flow behaviour (Loiseau et al., 2018), hav-
ing a general form of

Θ(Ψr) = [1 Ψr P2(Ψr) . . . Pn(Ψr)], (4)

where Pn(Ψr) refers to a matrix whose columns are given by all possible combinations of the states
of the system that provide a nth order polynomial. In Equation (3), each column of Ξ ∈ RNf×Nr

denotes the active functions from the library basis for a given state.
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Figure 2. Expected behaviour of dynamical system fitting process. Each data point corresponds to a different value of
the given parameter set, e.g. (δ, α) in ALASSO. The red point represents the best compromise between accuracy and

sparsity according to the elbow criterion.

The active coefficients may vary depending on the regression model applied. Risk of overfitting
the solution or encountering blow-up problems in the numerical integration of the dynamical sys-
tem can be avoided by introducing appropriate regularization and sparsity-promoting parameters.
Adaptive Least Absolute Shrinkage and Selection Operator (ALASSO, Zou, 2006), is reported by
Fukami et al. (2021) to be a suitable and flexible candidate to enforce sparsity for high-dimensional
complex flow problems.

Ξj = argmin
Ξ′

j

∣∣∣∣∣∣ΘΞ′
j −

dψj

dt

∣∣∣∣∣∣2
2
+ α

Nr∑
j=1

(|Ξ′
j|)−δ|Ξ′

j|. (5)

Equation (5) shows the optimization problem of the ALASSO algorithm. Note that it will always
be sought to find the minimum amount of involved terms Nact in the dynamical system for the
closest fit of Equation (2), that is, for a maximum determination coefficient R2

f , where

R2
f = 1− ||z − z′||22

||z − z′||22
, with z =

dΨr

dt
, z′ = Θ(Ψr)Ξ (6)

Regardless of the method, sparsity-enforced algorithms depend a set of free parameters (in the
chosen case, [δ, α]) that have been proven (Brunton et al., 2016) to provide an intractable conver-
gence to the desired optimal fit. Moreover, it must be noted that the minimum Nact/R

2
f does not

necessarily ensure a good retrieval of the dynamical features of the system. Indeed, the trend it
presents has the shape of Figure 2. Therefore, selection of the mentioned parameters will be done
through a brute-force iterative process that converges into a compromise between the two sought
conditions max(R2

f ) and min(Nact), corresponding to finding the elbow in Figure 2 (elbow crite-
rion, Thorndike, 1953, Brunton et al., 2016).
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2.2. Time-marching reconstruction of the velocity fields

From the retrieved dynamical system, a time-marching reconstruction of the velocity fields is ob-
tained from Backward-Forward numerical integration (BFI) of Equation (2). Available non-time-
resolved velocity field measurements are leveraged as a set of multiple Initial Conditions (ICs),
thus obtaining a time super-sampling. BFI integrates the system forward (Ψr,F(t)) and backward
(Ψr,B(t)) in time for each time span comprised between two adjacent PIV snapshots, that is, at
times ti and ti+1 where field measurements are available. A cubic B-spline function ω(t) ∈ [0, 1] is
introduced as a weighting factor that counteracts the propagation of each forward and backward
integration error near ti+1 and ti, respectively.

ψj,est(t) = (1− ω(t)) · ψj,est,F (t) + ω(t) · ψj,est,B(t) with t ∈ [ti, ti+1]

ψj,est,F (t) =

∫ t

ti

Θ(t)Ξj dt ψj,est,B(t) =

∫ ti+1

t

Θ(t)Ξj dt
(7)

2.3. Pressure estimation

The final step is attained by expressing the pressure gradient from the momentum equation in
Equation (8) as a function of the estimated (indicated with subscript est) velocity fields ∇p =

f(uest, vest), obtained from BFI of its POD reduced-order dynamical model. The pressure field
is integrated through the same iterative process described by Chen et al. (2022), based on a finite-
differences version of the Modified Richardson Iteration method (Richardson, 1911).

∇p = −ρDu

Dt
+ µ∇2u (8)

3. Validation

The proposed methodology will be validated through two different datasets: a numerical and
an experimental one. For each flow configuration, its dynamical system will be inferred from a
training set of snapshots. A different dataset will be then used as testing for the integration of the
retrieved dynamical system.

3.1. DNS dataset: Fluidic Pinball

The synthetic test case is based on the Direct Numerical Simulation (DNS) of the wake of a fluidic
pinball (Deng et al., 2020), comprised of three equally-spaced cylinders of normalized diameter
D, whose centers form an equilateral triangle of side 3D/2 (see Figure 3). All data will be hereon
referred to their normalized values basen on the cylinder diameter D and the free-stream velocity
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Figure 3. Generic snapshot displaying main geometrical features of the Fluidic Pinball dataset. A grid of 0.5 spacing
in x and y is given for proportion purposes. The red equilateral triangle of side 1.5 shows the positioning of the three

cylinders. The blue point represents the boundary condition used for the pressure integration.

Table 1. Main parameters of the dataset and the training case considered.

Dataset Training
∆x,∆y 0.1 Nt 1000
Ns 40602 Nr 10
∆t 0.1 E [%] 90
Re 130 n ∈ Pn 2

U . Table 1 provides a summary of the most relevant parameters of the discretized data and the
training set.

Velocity, acceleration and pressure data have been interpolated onto a regular grid ranging from
x = −5, y = −5 to x = 15, y = 5 with a discretized spacing of ∆x = ∆y = 0.1. This spacing is
considered sufficient for proper integration of the pressure gradient with minimal effect of trun-
cation errors. The Reynolds number is set to Re = 130 and the time step adopted for the DNS is
∆t = 0.1. This condition lies within the symmetric-chaotic regime (Deng et al., 2020). This regime
is optimal for a first insight into chaotic behaviour estimation while still allowing for a representa-
tive enough low-order dimensionality reduction of the dynamics ensured by the dominance of the
vortex shedding.

2D-velocity and acceleration data is considered for the estimation of the dynamical model in Equa-
tion (2). A training set of 1000 randomly-spaced snapshots with an average time spacing of t = 1

is prepared for this purpose. Reduction to a low-order model is chosen to be provided setting an
energy threshold at approximately 90 %, giving a system characterized by r = 10 modes. More
refined methods based, for instance, on the elbow criterion (Thorndike, 1953), can be included to
obtain a more robust user-independent rank selection. A parametric study of the optimal energy
criteria based on reconstruction accuracy and low-order reduction is regarded for further develop-
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ments.

For the selected flow regime the main flow features are an oscillating antisymmetric base-bleeding
jet between the two rearward cylinders and the vortex shedding. The spatial modes in Figure
4b can be shown to separately distill the base flow contribution (mode 5) from the dissipation of
vortices along the wake (modes 1,3,7).

A library basis of polynomials up to order 2 is constructed as a function of the truncated temporal
mode set Ψr. The given order has been chosen to be consistent with the basis spanned by Galerkin-
POD projections (Noack et al., 2005). Although this second-order basis is proven to be complete
only for a non-truncated model, it was assumed as the best compromise between a known analyt-
ical model and a reduction in computational cost in the training process. Expressing the dynam-
ical model as Equation (3), the active functions for each temporal mode can be inferred from the
ALASSO method in Equation (5). Notice in Figure 5 that the first 4 modes allow for a sparse repre-
sentation of their dynamics, whereas the rest seem to be dominated by non-linearities. Moreover,
it can be seen that modes 9 and 10 are not well dynamically represented with the available library
matrix Θ(Ψr).

(a)
(b)

Figure 4. (a) Energy and cumulative energy distribution for the first 100 POD modes. (b) Contour maps of a selection
of the most representative spatial POD modes of the horizontal velocity component.

Accuracy of the dynamic reconstruction is assessed through a testing dataset of two-dimensional
velocity fields with varying time separation of ts ∈ [1, 10]. Different degrees of undersampling
between the instantaneous realizations are compared to provide an insight on the limitations of the
numerical dynamic integration. A first estimation of the reconstruction error is thus done through
a comparison of the relative root mean square error (RMSE, ϵ) between the estimated 2D-velocity
fields and the truncated DNS for increasing time supersampling (see Figure 6a). The truncated DNS
is here referred to a truncated version of the original DNS dataset to the same rank adopted for
Equation (2). The original time-resolved DNS dataset will be hereafter denoted as DNS. The ϵ for



20th LISBON Laser Symposium 2022

Figure 5. Results from ALASSO training. The bar plot represents the number of active terms of first (P1) and second
order (P2). The right axis depicts the determination R2 coefficient of the fitted dynamics.

any given snapshot matrix of data U[i,k] is defined as

ϵ2 =
1

NsNt · σ2
ref

||U[i,k]est −U[i,k]ref ||
2
F . (9)

In Equation (9), the Frobenius norm || · ||F is computed onto the difference between the estimated
and reference (subscript ref ) data. The normalization parameter for the MSE computation is cho-
sen as the variance σ2

ref , evaluated on the reference data. Notice from Figure 6a that a weighted
contribution of both forward and backward integration methods can result beneficial in the final
determination of the velocity field evolution. In fact, BFI for a certain time spacing retrieves a more
accurate description of the flow than what Forward Interpolation (FI) and Backward Interpolation
(BI) are capable of doing for half the time separation. Except for reduced time separation, the
proposed method shows superior performances if compared to cubic Spline Interpolation (SI).

The estimated velocity fields are then inserted in Equation (8) to estimate the pressure gradient,
and thus, the pressure field with temporal resolution. Spatial integration of the pressure gradient
requires a single-point boundary condition, provided by a added time-resolved history of a point
pressure measurement, placed at x = −5, y = 5. The relative RMS error among the BFI estimated
and truncated DNS pressure fields for increasing time separation of instantaneous realizations is
included in Figure 6b. It can be shown that the pressure estimation error depends mostly on mode
truncation, with the error due to inaccuracy of the low-rank velocity field estimated being relevant
only for large time separation between measurements. It must be remarked that, even for signifi-
cant time separations (up to ts = 5), the error of the estimated pressure field is practically the same
of performing the integration on the truncated DNS field. This suggests that the nonlinear system
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(a) (b)

Figure 6. (a) Relative RMS error between the estimated and truncated DNS velocity fields for varying time spacing of
the initial conditions. Cubic-Spline interpolation (SI), Forward (FI), Backward (BI) and Backward-Forward

Integration (BFI) methods are compared. (b) Error of pressure field for several time separations between snapshots
for estimated, DNS and truncated DNS. Velocity fields have been estimated with BFI method.

identification is capable of correctly identifying the dynamics generating the pressure fluctuations,
within the limits of the performed rank truncation.

Further insight into the dynamical reconstruction capabilities is given with the results reported
by a time separation case of ts = 5, which corresponds to approximately one complete shedding
cycle between consecutive measurements. A preliminary comparison of the backward-forward in-
tegration procedure with straightforward cubic spline interpolation of the POD time coefficients is
illustrated in Figure 7. The quality of the fit is modelled through the squared correlation coefficient
R2 for each mode j (see Equation (10)). It is observed that, with the exception of some modes mod-
eling slowly-evolving features (e.g. mode 5), the identified system is largely superior in accuracy
with respect to POD coefficients interpolation.

R2
j =

< ψj,est(t)ψj,ref (t) >
2

< (ψj,est(t)2 >< (ψj,ref (t))2 >
. (10)

Figure 8 depicts a reconstructed pressure field computed at a time instant equidistant between two
consecutive realizations, i.e. at t = 2.5, for which the estimation error on the integrated dynamical
model is expected to be maximum. It can be seen that the pressure integration based on the esti-
mated BFI velocity fields largely succeeds in identifying the most relevant features of the pressure
distribution.
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Figure 7. Reconstructed POD temporal modes from Backward-Forward Integration method with snapshot
separation of ts = 5. The time at which the initial conditions are taken are depicted as red dots. The correlation

coefficient R2 is compared between the backward-forward integration and a cubic spline interpolation.
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Figure 8. Contour of the pressure distributions from integration of Equation (8) using velocity and acceleration from
the DNS (left), truncated DNS (middle) and estimated field with BFI (right). A case with time separation ts = 5 is

considered. The pressure field corresponds to a snapshot separated by t = ts/2 from measured ones, i.e. equidistant
from two realizations.

3.2. Experimental dataset: wake on wing profile

An experimental validation is performed using planar PIV measurements on the wake of a 2D
stalled wing with a NACA 0018 airfoil. The experimental setup is briefly described here; full
details are available in the work by Chen et al. (2022). The experiments are carried out in the water
tunnel of the Universidad Carlos III de Madrid. A wing chord length L = 80mm and a free-stream
velocity of U∞ = 6 cm/s are set, thus resulting in a Reynolds number of 4800. Spatial resolution is
set to Rs = 0.1197mm/px with a field of view covering x ∈ [0.75, 2.4] and y ∈ [−0.75, 0.75] (with x
and y being non-dimensional coordinates normalized with the wing chord L). Figure 9 and Table 2
provide for the main characteristics of the exploited dataset.

The original sampling frequency of fs = 30Hz (i.e. ∆t = 0.025) provides a time-resolved descrip-
tion of the flow field. In effect, the original PIV resolution will be leveraged as the reference dataset
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(hereon referred as PIV ) for comparison with the reconstructed flow from non-time resolved mea-
surements obtained by downsampling the original sequence. The training set is composed of 1000
snapshots with an average time spacing of ts = 0.375.

Figure 9. Generic snapshot displaying main geometrical features of the wing experiment dataset. The gridded region
corresponds to the span of the available 2D data. A 0.06 spacing in x and y is given for proportion purposes. The red

lines indicate the orientation of the chordline of the NACA 0018 airfoil with an angle of attack of α = 10◦.

Table 2. Main parameters of the dataset and the training case considered.

Dataset Training
Dimensional Normalized

L [mm] 80 ∆x,∆y 0.015 Nt 1000
U∞ [cm/s] 6 Ns 22624 Nr 41
Rs [mm/px] 0.1197 ∆t 0.025 E [%] 80
fs [Hz] 30 Re 4800 n ∈ Pn 1

Differently from the previous test case, a less compact basis transformation is now retrieved; only
about 80% of the energy is captured by 41 POD modes, thus entailing initial constraints in terms
of complexity of the dynamical system. The library basis for the system identification process
is limited now to first-order polynomials to reduce the computational cost. Higher-order basis
were shown to involve a significant increase in the computational effort of the available optimiza-
tion procedure, while not providing a significant improvement in terms of accuracy of the system
identification. Figure 10a shows the number of active terms and the determination coefficient of
each temporal mode dynamics. It can be seen that efficiency in achieving a simple sparse system
determination of a turbulent case substantially decreases with respect to the previous synthetic
test case.

However, combined integration of the retrieved model with BFI can be shown to provide a similar
reconstructed flow field to the reference time-resolved sequence. The dynamical model is inte-
grated using as initial conditions data from a testing dataset of two-dimensional velocity fields
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(a) (b)

Figure 10. (a) Results from ALASSO training for the wing training dataset. (b) Correlation coefficient R2 of the
reconstructed POD temporal modes using BFI and SI, for a time super-sampling of ts = 0.5.

with two larger degrees of undersampling: ts = [0.5, 1], corresponding to super-sampling factors
of Fs = [20, 40].

BFI and SI of the POD temporal basis is contrasted in Figure 10b for one of the time separation
cases. The identified dynamics for the first modes succeeds in providing an accurate estimation of
its time history. Higher-order modes are not captured as sharply, although still BFI shows being
superior to SI.

The reconstructed instantaneous pressure field is graphically compared in Figure 11 with the ref-
erence time-resolved sequence and the truncated version of the latter (truncated PIV) for the same
energy threshold used in estimation. The instantaneous fields are chosen at the most critical time
instant in terms of integration error, that is, at the equidistant point between consecutive realiza-
tions. Time-marching pressure representation of the BFI estimated field proves to capture the most
relevant dynamical features of the system in the limit of its energy truncation capabilities, and it
shows remarkably higher performances than SI.

4. Conclusions

An enhanced flow description method from incomplete measurements has been presented. The
proposed technique roots its basis on nonlinear system identification and on the availability of ve-
locity and acceleration field measurements with poor time-resolution. We demonstrated the time
propagation being feasible with a model-free approach, i.e. the dynamics is directly extracted from
the data. Enforcing first physical principles is then possible to compute time-resolved pressure
fields, thus disclosing relevant information, for instance, for unsteady aerodynamics or aeroacous-
tic noise investigation. The time history of the velocity and pressure fields is obtained through its
dynamic estimation and a weighted integration process between consecutive non-time-resolved
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(a)

(b)

Figure 11. From left to right, contour of pressure distribution of the reference time-resolved sequence, the truncated
PIV, the estimated field with BFI and with SI. The pressure field corresponds to a snapshot separated by t = ts/2

from measured ones, i.e. equidistant from two realizations. Two cases of time separations of (a) ts = 0.5 and (b)
ts = 1 are considered.

realizations. The algorithm is validated on 2D simulation data of the wake of a fluidic pinball at
Re = 130. Notwithstanding its simplicity, this test case features a chaotic behaviour, thus posing
already a challenge to the identification of sparse dynamical systems. Extension to more complex
turbulent flows is attained with a two-dimensional experimental dataset of the wake of a wing
profile with Re = 4800. The increase in complexity in its POD basis is a challenge for the conver-
gence of the system identification technique. Nevertheless, for both scenarios, results are shown
to capture the most relevant dynamics for significant time separation values and excel those from
regular spline interpolation of POD time coefficients between non-time-resolved snapshots.
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