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ABSTRACT
The use of machine learning (ML) algorithms to solve

complex problems of difficult experimental or theoretical ac-
cess has been exponentially increasing since the beginning of
the 2010’s. In the field of fluid mechanics and aerodynamics,
current technology allows for limited time-resolved data ac-
quisition, especially in the 3D domain. The most recent novel
application based on artificial intelligence to solve physics-
based problems is implemented by the so-called physics-
informed neural networks (PINNs), developed by Raissi et al.
(2019) and which are based on a fully-connected neural net-
work model that incorporates governing laws in the loss func-
tion. PINNs are therefore a very powerful tool to enforce phys-
ical constraints in experimental data.

Concerning the benefit of PINNs, their use comes in
handy when applied to the data reconstruction from fluid flow
experiments, since their behaviour is accurately modeled by
the well-known Navier-Stokes equations:
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where (u,v,w) is the dimensionless velocity vector, p is the
reduced pressure and Re is Reynolds number.

In the implementation of Raissi et al. (2019), PINNs re-
ceive as input the spatial grid over which the most relevant
fluid properties want to be computed and the time-resolved dis-
tribution of one flow quantity over a 3D domain, and make use
of automatic differentiation to calculate the corresponding gra-
dients. During the training process, the weights of the dense
layers are updated to reduce the residual of Eq. (1).

One of the main limitations of PINNs is that they require
time-resolved data to be able to properly calculate time deriva-
tives. While to date volumetric velocimetry offers full 3D de-
scription of the three velocity components, often the time res-
olution is not available due to hardware limitation, especially
at moderate-to-high Reynolds number. Therefore, even though
3D PIV data have great potential to disclose a full flow descrip-
tion (also including pressure fields), the lack of time resolution
impedes the proper application of PINNs.

The objective of this work is to enable the use of
PINNs to characterize in full the fluid behavior exploit-
ing simultaneously time-resolved measurements from few
point probes and non-time-resolved PIV measurements.

Proposed novel architecture
We propose incorporating in the PINN architecture a

multi-time-delay strategy, based on fast point probes, to
achieve the desired time resolution of spatially resolved fields.
The following methodology includes time history by introduc-
ing as input of the network the data collected by the probes
over a certain timespan, rather than a single instant. We aim
to exploit proper orthogonal decomposition (POD) as an en-
coder for the flow field information. The network is trained to
receive as input time segments recorded by the probes, and
estimate the corresponding POD time coefficients of veloc-
ity fields. The output flow fields are regularized with PINNs,
which further augment the data disclosing additional quanti-
ties, such as the pressure field. In Figure 1 a sketch of the
method is reported.

Multi-time delay MLP for estimation of POD
temporal modes

Consider a snapshot matrix U built from PIV data, with
dimensions T × dN (T being the number of snapshots and N
the number of points in the grid. The factor d indicates the
number of components of the velocity vector, i.e. 2 for 2D and
3 for 3D configuration, respectively). A discrete form of POD
can be obtained through Single Value Decomposition (SVD):

U = ΨΣΦ
T , (2)

where Ψ contains the temporal modes, Σ is a diagonal matrix
containing the singular values (which are representative of the
energy associated to each mode), and ΦT contains the spatial
modes. The product ΨΣ can be collapsed into a matrix A. It is
well known that the matrix product of Eq. (2) can be truncated
at rank R by retaining the most energetic modes, and that this
would provide the best rank-R estimation of the data.

Our purpose is to reconstruct the fields by estimating the
first R temporal coefficients through a set of probes. The idea is
that, if data are captured simultaneously by a set of probes with
high temporal resolution and by field measurements with high
spatial resolution, we can establish the relationship between
probe and field data. The principle we aim to exploit is similar
to the Extended POD estimation by Tinney et al. (2008). In
our approach, the relationship between probe and field data is
established using a Multi-Layer Perceptron (MLP). In order to
augment the input of the network, the MLP is fed with probe
data from a time segment. In particular, since in advection-
dominated flows it is reasonable to locate the probes at the
downstream edge of the domain, the data collected by the
probes at instants prior to the moment where a snapshot field
is available are actually representative of information present
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in the field at that time instant. This principles was also lever-
aged in different forms by Hosseini et al. (2015); Discetti et al.
(2018), among others.

Regularization of time-resolved velocity field
The time-resolved velocity fields obtained from estima-

tion with the probes contain errors due to noise, poor corre-
lation and truncation to the adopted rank for the POD recon-
struction. To this purpose, a PINN is included in the process
to regularize the data, enforcing the validity of Eq. (1) to re-
duce noise and truncation errors. Furthermore, the PINN aug-
ments the measurements giving access to additional quantities,
such as the pressure distribution. It must be remarked here
that the grid onto which the final data will be available is not
constrained to be the same of the PIV data, and actually it is
normally refined to allow accurate computation of the spatial
derivatives.

The loss function adopted for training consists of three
different contributions:

• residual of the Navier-Stokes (NS) equations,
• compliance with the velocity in the nodes where PIV
data are available,
• and a boundary condition on pressure.

Each of these contributions has an independent role in terms of
optimizing the weights of PINNs. First, it has been observed
that enforcing the validity of the NS equations tends to homog-
enize the field. Secondly, the reference velocities force that
the solution complies the experimentally-accessible data. It is
clear, however, that a perfect matching in this case is not desir-
able, since the original data are inevitably corrupted by noise.
The two previous contributions together ensure the model pro-
vides a solution which matches the velocity profile in accessi-
ble places while complying with the NS equations. The third
condition has to be set since, strictly speaking, PINNs provide
the distribution of the pressure gradient. In order to obtain the
pressure field, one value of the pressure should be defined at
an arbitrary point of the domain.

The different error contributions are reduced differently as
the model is being trained through the multiple epochs. In this
work we implemented an adaptive loss function. Our modified
loss function weights the different contributions of the total
loss function in a dynamic way in which the component with
bigger error Ł receives a proportional higher weight:

L = ∑
i=NS,vel,inlet

wiŁi where wi =
Łi

∑Łi
. (3)

The benefit of this formulation is that it permits a faster conver-
gence to the real solution while keeping a very high accuracy
on the final results.

Validation
For a PIV experiment, even though time resolution can-

not be fully achieved due to the limitations of the experimental
set-up, the matrix APIV and ΦPIV may be obtained thanks to
Eq. (2) after being projected onto a refined grid. A tentative
prediction of the time-resolved ground truth ÃT R may be then
obtained by using our multi-time delay MLP. To reconstruct
the approximate time-resolved velocity field, we return again
to Eq. (2) to obtain ŨT R = ÃT RΦT

PIV . This first-order ap-
proximation will therefore contain truncation errors as well as
corrupted data coming from PIV, errors which will be subse-
quently regularized using PINNs.

By the time of submission of this abstract, our real-life
situation is modeled by a Direct Numerical Simulation (DNS)
from which we also extract PIV synthetic data (we aim to have
a fully-validated method with real PIV experiments by the time

of the conference). The synthesized PIV is computed by pro-
jecting the DNS field onto a regular grid of different pixel res-
olution (from 2048x2048 to 256x256) and calculating the av-
erage velocity within a window of size 32x32 pixels and grid
distance of 16 pixels. Additionally, we add artificial noise to
the data following a random normal distribution. The u com-
ponent of the velocity from the PIV corrupted data as well as
the final reconstruction using PINNs is shown in Figure 2a.
The three contributions to the loss function are represented in
Figure 2b, together with the mean squared error of snapshot 50
referred to the DNS data as a function of the PIV resolution.
The improvement of the PINN reconstruction with respect to
the original PIV corrupted data is more than evident and shows
that an increase in accuracy can be obtained up to 2 orders of
magnitude. The use of PINNs as a regularizer becomes thus
a significant improvement of experimental data acquisition by
PIV.

Conclusions
In this research, we have designed a new architecture

which allows us to extract and reconstruct from non-time-
resolved corrupted data (PIV experiments) a full time-resolved
domain, not only of the velocity field but of the pressure as
well. We have updated the architecture of a MLP to act as
a multi-time delay module in which non-time-resolved PIV
information and local time-resolved data measured by point
probes are used to reconstruct and predict the temporal modes
of an approximate time-resolved ground truth velocity matrix.
Subsequently, we are able to correct and regularize for the spu-
rious errors and instabilities that may have been incorporated
in the system with PINNs. In conclusion, our new architec-
ture is able to combine the strengths of a MLP in order to
reconstruct data from non-time resolved experiments to time-
resolved and regularize using PINNs. The combined modules
are able to correct and reconstruct from faded or corrupted
information originating from experimental noise during data
acquisition by fast probes and / or PIV, POD truncation and
prediction of temporal modes by the multi-time delay MLP.
The robust adaptative loss function by which our PINN is gov-
erned facilitates a fast convergence. Our methodology stands
for a novel manner of combining two different architectures to
bridge non-time resolution experimental data corrupted with
noise with accurate time-resolved full flow description, and
therefore, artificially overcome the limitations given by exper-
imental techniques.
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Figure 1: (a) Model architecture combining a multi-time delay MLP with PINNs. The MLP learns from non-time-resolved
PIV noisy experimental data and receives as input the time-resolved history data measured by fast probes. The outcome
of the module is a time-resolved approximation of the temporal modes of the approximate velocity matrix. The estimated
time-resolved ‘ground truth’ velocity field is then regularized thanks to PINNs enforcing Navier-Stokes’s equations within
a robust adaptative loss function. A very accurate reconstruction of the time-resolved velocity and pressure fields may be
then obtained.

(a)

(b) (c)

Figure 2: a) Dimensionless velocity (first row) and pressure (second row) field reconstruction using PINNs. The recon-
struction starts from PIV data, which has very small pixel resolution (256x256) and a 10% noise contribution. Our model
is able to fully reconstruct with precision the pressure field and improve the velocity domain. (b) Training loss and con-
tribution of the three different components as a function of the epoch number for a PIV configuration with and without
noise. The robust adaptative loss function is able to account for the existing noise in the reference data. (c) Mean squared
error of original PIV corrupted data and PINN-reconstructed field with respect to DNS. The improvement up to 2 orders
of magnitude shows the benefit from the application of our model architecture.
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