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ABSTRACT This paper presents a novel super-resolution approach for image velocimetry, which combines K-Nearest-

Neighbours Particle Tracking Velocimetry (Tirelli et al., 2023, KNN-PTV) with constrained Radial Basis Functions (Sperotto 

et al., 2022, c-RBFs) regression. KNN-PTV improves the spatial resolution of a vector field by leveraging data coherence in 

space and time, while c-RBF enables the computation of an analytical vector field that adheres to physical constraints such as 

no-slip conditions at walls or the divergence-free for incompressible flows. We investigate the potential of the KNN-RBF 

combination in 2D and 3D applications, which are challenging for traditional methods due to sparser particle distributions. This 

extension is the focus of our ongoing research and will be discussed in detail in our upcoming conference contribution. 

1 INTRODUCTION 
The methodology presented in this paper aims to improve the spatial resolution of Particle Image Velocimetry (PIV) or Particle 

Tracking Velocimetry (PTV) by combining the ensemble approach of KNN-PTV (Tirelli et al., 2023) with constrained 

regression using Radial Basis Functions (cRBFs), as proposed in Sperotto et al. (2022). KNN-PTV identifies similar flow 

structures at different time instants using a large ensemble of statistically independent snapshots, allowing for the enhancement 

of spatial resolution by merging particle vectors from different snapshots. The algorithm splits the measurement domain into 

subdomains to enforce similarity on a local scale and then uses an unsupervised KNN search in the space of significant flow 

features obtained through Proper Orthogonal Decomposition (POD) of the original data obtained via cross-correlation in PIV 

or binning in PTV. The enhanced fields obtained by KNN-PTV are then fed into the cRBFs regression to achieve super-

resolution. This algorithm approximates the velocity field as a linear combination of RBFs, which is constrained to respect 

physical priors such as boundary conditions or solenoidal conditions. The analytical approximating functions can be evaluated 

(and differentiated) on any grid. 

The goal of this combination is to leverage the complementary strengths of KNN-PTV and c-RBFs to achieve physically 

constrained super-resolution by exploiting the space-time coherency of the data. In the preliminary combination presented in 

this work, the cRBF is fed with fields whose local density is increased via KNN-PTV.  

2 VALIDATION AND PRELIMINARY RESULTS 
 

The algorithm proposed was tested using synthetic PTV data derived from a direct numerical simulation (DNS) of a turbulent 

channel flow obtained from the Johns Hopkins Turbulence Database (http://turbulence.pha.jhu.edu/). The dimensions of the 

channel consist of 2 half-channel-heights ℎ from wall to wall, 3𝜋ℎ in the span-wise direction and 8𝜋ℎ in the streamwise 

direction. For all simulation settings, please refer to Li et al. (2008). In this simulated experiment, subdomains of 2ℎ × ℎ are 

extracted in the streamwise and wall-normal directions, respectively. The resolution is set at 512 pixels∕ℎ and the particle image 

density is 0.01 particles per pixel. To reduce the correlation between different samples, the snapshots are generated with a time 

separation of 1 convective time. A large number of snapshots are extracted by exploiting flow homogeneity in the streamwise 

and spanwise directions. The subdomains are separated by 2ℎ in the streamwise and 0.25ℎ in the spanwise direction, resulting 

in a total of 11856 generated snapshots. The exact particles position fed the KNN-PTV to avoid errors from blending snapshots 

of other sources due to the image pairing process. The performance of the algorithm was evaluated using the normalized root 

mean square error 𝛿𝑅𝑀𝑆 as a metric, defined in Equation 7 of Tirelli et al. (2023). 

The contours of the instantaneous stream-wise velocity field estimated by standard PIV with an interrogation window of 32x32 

pixels, KNN-PTV and KNN-PTV combined with RBF, along with the reference field from the original DNS, are shown in 
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Figure 1. Table 1 shows the spatial average of the root mean square error 𝛿𝑅𝑀𝑆 evaluated for all the above-mentioned 

application. 

 

 
Figure 1. Instantaneous stream-wise velocity field contours estimated with: (a) standard PIV with interrogation window of 

32×32 pixels, (b) KNN-PTV, (c) KNNPTV + RBF. The reference field from the original DNS is included for comparison 

(d) . 

PIV IW = 32 KNN-PTV KNN-PTV + RBF 

0.0222 0.0196 0.0173 

Table 1. Spatial average of the root mean square error ⟨𝛿𝑅𝑀𝑆⟩ evaluated for PIV with interrogation window of 32 pixels, KNN-

PTV and KNN-PTV with the help of RBF. 

The preliminary results of the new methodology demonstrate promising accuracy in reconstruction. The benchmarking was 

performed against standard PIV with an interrogation window of 32 pixels, simulated by filtering the data with a moving 

average and down-sampling the result, and the stand-alone implementation of the KNN-PTV. From both the methodology the 

bias error due to modulation effect has been removed as explained in Tirelli et al.(2023). The c-RBF regression was 

constrained to have no-slip conditions at walls. Additionally, it was applied also as a penalty. The domain contained 3104 

collocation points following the clustering approach explained in Sperotto et al. (2022). 

The validation of the method on experimental test cases is currently ongoing. Furthermore, the authors are working on the 

extension to 3D. The combination of KNN-PTV and RBF methodologies is expected to be particularly well-suited for 3D flow 

analysis, as the enforcement of physical constraints should be able to compensate for the larger interparticle spacing. The 

results of this extension and its application to more complex flows will be presented in the final conference contribution. 
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