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Resumen

Detección de flujos turbulentos confinados por paredes basada en IA

Antonio Cuéllar Mart́ın, Departamento de Ingenieŕıa Aeroespacial, Universidad Carlos III de

Madrid

Esta tesis investiga la estimación del campo de velocidad en un canal mediante sensores no

intrusivos en la pared. Esto es crucial para el desarrollo de estrategias de control activo en flujos

turbulentos limitados por paredes. La estimación del flujo a partir de magnitudes medidas en

la pared es un reto pendiente desde hace tiempo. El principal objetivo de esta investigación es

desarrollar modelos basados en datos para predecir el comportamiento tridimensional del flujo

de fluidos.

Se emplearon datos de simulaciones numéricas directas para entrenar modelos de aprendizaje

profundo. Se demostró que las redes neuronales convolucionales tridimensionales con entre-

namiento adversativo predicen con precisión los campos de flujo desde mediciones de la pared,

con una reducción significativa del coste computacional en base a los estimadores planares. En

particular, la red propuesta es capaz de estimar estructuras coherentes adheridas a la pared

debido a que su huella se detecta en la pared. La arquitectura de red neuronal propuesta de-

mostró un excelente rendimiento incluso en presencia de ruido. Además, se ha explorado el

efecto de reducir la cantidad de información disponible en la pared. Las mediciones de presión

proporcionaŕıan mejores reconstrucciones del flujo con suficientes sensores como para muestrear

adecuadamente las escalas de flujo, mientras que la tensión de cizalladura de la pared en sentido

de la corriente debeŕıa preferirse para la medición de las fluctuaciones de velocidad en sentido

de la corriente y si el número de sensores es limitado.

Para allanar el camino hacia una demostración experimental, se ha diseñado una campaña

experimental para la adquisición de medidas sincronizadas de velocidades en la región próxima

a la pared y de transferencia de calor en la pared. El principal reto, la medición de los campos

instantáneos de la pared tiempo resueltos, se ha abordado con un sensor de lámina delgada
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calentada y termograf́ıa IR. La relación señal-ruido de este tipo de mediciones en el aire suele

ser baja. Se propone una receta de filtrado para extraer datos fiables en este escenario.

Esta investigación proporciona un nuevo marco para utilizar métodos basados en datos en

flujos confinados por paredes, con aplicaciones potenciales en el control activo del flujo para

sistemas de ingenieŕıa. La integración del aprendizaje automático abre nuevas v́ıas hacia la

predicción y el control del flujo en tiempo real.
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Abstract

AI-based sensing of turbulent wall-bounded flows

Antonio Cuéllar Mart́ın, Department of Aerospace Engineering, Universidad Carlos III de

Madrid

This thesis investigates the estimation of the velocity field in a channel flow from non-

intrusive wall-embedded sensors. This is crucial for the development of active control strategies

in wall-bounded turbulent flows. Flow estimation based on wall-measured quantities is a long-

standing challenge. The main objective of this research is to develop data-driven models to

predict the three-dimensional fluid flow behaviour.

Datasets from direct numerical simulations were employed to train deep-learning models.

Three-dimensional convolutional neural networks with adversarial training were shown to accu-

rately predict flow fields from wall measurements, with a significant reduction in computational

cost with respect to planar estimators. In particular, the proposed network is capable of esti-

mating wall-attached coherent structures due to their footprint being sensed at the wall. The

proposed neural network architecture demonstrated excellent performance even in the presence

of noise. Furthermore, the effect of reducing the amount of information available at the wall

has been explored. Pressure measurements would provide better flow reconstructions if the

number of sensors is large enough to sample flow scales properly, while streamwise wall shear

stress should be preferred if the target is the measurement of streamwise velocity fluctuations

and if the number of sensors is limited.

To pave the way towards an experimental demonstration, an experimental campaign for the

acquisition of synchronised measurements of velocities in the near-wall region and heat transfer

at the wall has been designed. The main challenge, measuring time-resolved instantaneous wall

fields, has been addressed with a heated-thin-foil sensor coupled with IR thermography. The

signal-to-noise ratio of these types of measurements in air is generally low. A recipe to extract

reliable data in this scenario is proposed.

xi



This research provides a new framework for using data-driven methods in wall-bounded flows,

with potential applications in active flow control for engineering systems. The integration of

machine learning opens new avenues towards real-time flow prediction and control.
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AG Alejandro Güemes, Universidad Carlos III de Madrid
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Abstracts

Paper 1

Different types of neural networks have been used to solve the flow sensing problem in turbulent

flows, namely to estimate velocity in wall-parallel planes from wall measurements. Generative

adversarial networks (GANs) are among the most promising methodologies, due to their more

accurate estimations and better perceptual quality. This work tackles this flow sensing prob-

lem in the vicinity of the wall, addressing for the first time the reconstruction of the entire

three-dimensional (3-D) field with a single network, i.e. a 3-D GAN. With this methodology,

a single training and prediction process overcomes the limitation presented by the former ap-

proaches based on the independent estimation of wall-parallel planes. The network is capable

of estimating the 3-D flow field with a level of error at each wall-normal distance comparable

to that reported from wall-parallel plane estimations and at a lower training cost in terms of

computational resources. The direct full 3-D reconstruction also unveils a direct interpretation

in terms of coherent structures. It is shown that the accuracy of the network depends directly

on the wall footprint of each individual turbulent structure. It is observed that wall-attached

structures are predicted more accurately than wall-detached ones, especially at larger distances

from the wall. Among wall-attached structures, smaller sweeps are reconstructed better than

small ejections, while large ejections are reconstructed better than large sweeps as a conse-

quence of their more intense footprint.

Paper 2

In this work we assess the impact of the limited availability of wall-embedded sensors on the full

3D estimation of the flow field in a turbulent channel with Reτ = 200. The estimation technique

is based on a 3D generative adversarial network (3D-GAN). We recently demonstrated that

3D-GANs are capable of estimating fields with good accuracy by employing fully-resolved wall

quantities (pressure and streamwise/spanwise wall shear stress on a grid with DNS resolution).

However, the practical implementation in an experimental setting is challenging due to the large

number of sensors required. In this work, we aim to estimate the flow fields with substantially

fewer sensors. The impact of the reduction of the number of sensors on the quality of the flow

reconstruction is assessed in terms of accuracy degradation and spectral length-scales involved.

It is found that the accuracy degradation is mainly due to the spatial undersampling of scales,

rather than the reduction of the number of sensors per se. We explore the performance of

the estimator in case only one wall quantity is available. When a large number of sensors is

xv



available, pressure measurements provide more accurate flow field estimations. Conversely, the

elongated patterns of the streamwise wall shear stress make this quantity the most suitable

when only few sensors are available. As a further step towards a real application, the effect

of sensor noise is also quantified. It is shown that configurations with fewer sensors are less

sensitive to measurement noise.

Paper 3

We present an experimental setup to perform time-resolved convective heat transfer measure-

ments in a turbulent channel flow with air as the working fluid. We employ a heated thin foil

coupled with high-speed infrared thermography. The measurement technique is challenged by

the thermal inertia of the foil, the high frequency of turbulent fluctuations, and the measure-

ment noise of the infrared camera. We discuss in detail the advantages and drawbacks of all

the design choices that were made, thereby providing a successful implementation strategy to

obtain high-quality data. This experimental approach could be useful for experimental studies

employing wall-based measurements of turbulence, such as flow control applications in wall-

bounded turbulence.

xvi
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A. Cuéllar, A. Ianiro & S. Discetti Effect of the wall-sensor availability on the quality

of the flow field estimation in turbulent wall-bounded flows Euromech Colloquium 631 ‘Control

of skin friction and convective heat transfer in wall-bounded flows’, Madrid, Spain, 2024
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Part I

Overview and summary
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Chapter 1

Introduction

Turbulence is one of the most important and studied phenomena in fluid dynamics. It is present

in numerous natural mechanisms and configurations such as atmospheric and oceanic currents

or within our body’s circulatory system [1]. Turbulence is observed in daily situations, such

as in a car exhaust or in the rapids of a river. Some examples are illustrated in figure 1.1.

It affects bodies in motion in fluids, such as automobiles, aeroplanes, ships and wind farms.

Additionally, turbulence impacts natural flyers such as birds, influencing their flight patterns

and energy expenditure as they navigate through turbulent air currents. The complexity of this

phenomenon makes it difficult to predict its behaviour, notwithstanding the efforts motivated

by its ubiquitous presence in our daily lives.

(a) (b) (c) (d)

Figure 1.1: (a) Smoke at a volcano outlet, (b) Urban flow, reproduced from [2], (c) Ship wake, © Lancaster
University, (d) off-shore wind farm

This chapter starts with a brief historical context about the study of turbulence, referring to

some important milestones, and introducing today’s main challenges. In particular, the current

interest behind flow control is discussed, which pushes the development of smart flow sensing

systems, hence setting the motivation of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Brief history of turbulence in science

Leonardo da Vinci (1452–1519) was a pioneer in the observation of turbulent flows. Indeed,

he coined the word turbulence more than 500 years ago in the ‘Atlantic Codex’, where we can

read:

doue la turbolenza dell’acqua si genera

doue la turbolenza dell’acqua si mantiene plugho

doue la turbolenza dell’acqua si posa.

He systematically analysed numerous cases of turbulent flows. His contributions are even more

remarkable if we account that the theoretical tools to conduct a formal analysis were not yet

developed. In particular, the works by Navier and Stokes building the mathematical background

of fluid dynamics came about 300 years after da Vinci’s scientific contribution. Nevertheless, his

studies led to great technological advances at the time. He was able to develop experiments and

get explanations following logical reasoning from his observations, approaching the procedure of

the scientific method established after him by Galileo Galilei [3]. His drawings sketch different

setups, even with velocity streamlines and vortices, such as those seen in figure 1.2. To mention

some examples, he studied the water jet from a channel falling on a tank [4], the courses of

rivers used for transportation or as energy sources [3], wave dynamics or the cardiovascular

vortexes in the aorta artery [5].

Figure 1.2: A Deluge, by Leonardo da Vinci (No. 192), Windsor Castle, Print Room (Royal Collection Trust
© Her Majesty Queen Elizabeth II, 2020), reproduced with permission

Da Vinci’s contribution provided notions of what years later would become the fundamental

underpinnings in this field of knowledge. He was aware of the 3D multi-scale nature eddies as an
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essential part of turbulent flows. This notion would materialise centuries later in Kolmogorov’s

‘cascade model’ in 1941 [6]. He also described the water velocity profile in a pipe, noticing

its dependence on the distance to the wall, surface roughness and wall friction. His drawings

also report currents with reduced speed near a fixed solid body. Nowadays, we can talk about

the ‘no-slip wall boundary condition’ and ‘boundary layers’ [5]. It was relatively recently when

Froude’s experiments determined that the flow speed increases with the distance from the wall

in 1874 [7] and when Prandtl first introduced the ‘boundary layer’ concept and mathematical

formulation in 1904 [8].

Different definitions of turbulence can be found in the literature from varied points of view

and covering different aspects. Those are some of them:

• ‘Turbulence is the name given to the imperfectly-understood class of chaotic solutions to

the Navier–Stokes equations in which many degrees of freedom are excited’ [9].

• ‘The distinguishing feature of turbulent flow is that its velocity field appears to be random

and varies unpredictably. The flow, however, does satisfy a set of differential equations,

the Navier–Stokes equations, which are not random. This contrast is the source of much

of what is interesting in turbulence theory’ [10].

• ‘Creation of small-scale activity and dissipation is the principle of turbulence. Classical

fluid-dynamical instabilities play a role of the fuel, vortex stretching is the engine, and

viscous dissipation is the breaks’ [11].

• ‘We have therefore defined turbulence as random fluctuations of the thermodynamic char-

acteristics of vortex flows, thereby distinguishing it at the outset from any kind of whatever

random irrotational, i.e., potential flows, ...’ [12].

The advancements mentioned above, conducted just over a hundred years ago, allowed for

the subsequent turbulence research we continue developing today. Various physicists such

as Sommerfeld, Einstein or Feynman have stated that ‘turbulence is the last great unsolved

problem of classical physics ’ [1], and it remains one of the most challenging research areas of

fluid dynamics to the scientific community. Many fundamental questions are still unresolved.

This list with some of the most important pending challenges might provide a view of the

complexity of turbulent phenomena and the special interest it arouses:

• Complete statistical formulation for turbulence [13], [14]

• Link between the Navier-Stokes equations with chaos and randomness in turbulence [15]
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• Wall-bounded turbulence and complex geometries [16]–[18]

• Active and passive control for efficiency improvement [19], [20]

• Small-scale modelling impact on the larger scales for large eddy simulations (LES) [21],

[22]

• Reynolds stress modelling to close the Navier-Stokes equations [23], [24]

• Effects behind the laminar-to-turbulent flow transition [25], [26]

• The mechanisms behind turbulent flows [26], [27]

• Distribution of energy in a multi-scale flow [28]

• Transport and mixing in turbulent flows [29]–[32]

• Transport and interaction in turbulent multi-phase flows [33], [34]

The significant advancements reported in the last decades have been possible, among other

reasons, thanks to the technological leap forward of these times, both in terms of experiments

and simulations. For instance, today’s digital cameras, lasers, and computers allow us to

obtain much more complete flow characterisations with particle image velocimetry (PIV) [35]–

[37] than what was possible with only hot-wire anemometers [38], [39]. Besides, state-of-the-art

facilities such as (among many others) the long pipe ‘CICLoPE’ in Predappio (Italy) [40] or the

largest setup for highly turbulent Rayleigh-Bénard convection ‘Barrel of Ilmenau’ in Ilmenau

(Germany) [41], open up the possibility of performing experiments with the potential to validate

theories and discover new physical mechanisms in controlled conditions.

In parallel, progress in computing capabilities, with an exponential growth trend in the time

of floating point operations per second at which they can be solved, has enabled simulations

that were not possible some time ago [42]–[44], bringing high-fidelity simulations progressively

closer to the real applications. Recently, this growth has been largely driven by the development

of GPUs, which have revolutionised computational performance through their ability to handle

massively parallel processing efficiently. This raised the question of whether simulations could

replace experiments. However, the computational cost of a direct numerical simulation (DNS)

of the Navier-Stokes equations increases with the third power of the Reynolds number [45]

for one single time step. Cheaper alternatives, such as Large-Eddy Simulations (LES) and

Reynolds-averaged Navier-Stokes equations (RANS) for wall-bounded turbulence, may need

the previous development of a physical theory for the structure of the boundary layer [46].
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1.2 The turbulence control challenge

One of the main current societal challenges is to shift towards sustainable development models.

This implies remarkable changes in our industrial model, consumption habits and other socio-

cultural aspects. Concerning the 2030 Agenda for Sustainable Development [47], more measures

must be implemented to achieve emission reduction goals, including the net zero emission goal

for 2050. Recently, the Centre for Research on Energy and Clean Air (CREA) pointed out

an 8% drop in 2023 in CO2 emissions in Europe [48], the second most significant reduction

ever registered after the year 2020 —with a clear influence from the COVID-19 pandemic. The

current level of CO2 emissions is the lowest since the 1960s. Most of this decrease is due to the

use of alternative and clean ways of producing electricity [48], but demand reduction has also

contributed significantly. This can be intensified by seeking higher levels of efficiency in each

device that requires a certain amount of energy consumption. Some applications can make use

of both green energy production and highly efficient designs to reduce the emissions of CO2 and

other pollutants. Nevertheless, the restricted access and availability of green energy, and more

importantly green power, in environments such as aviation, makes this issue more challenging.

As long as access to high levels of power obtained from sustainable sources is not possible, the

development of highly efficient devices becomes even more relevant in the aviation field.

Turbulent flows are present in various industrial applications [1] and have a great influence

on their performances, efficiency and energetic consumption. In particular, wall-bounded flows

are very relevant as they are directly in contact with the devices and turbulent transport

of momentum is related to skin friction, drag, and pressure losses. A good knowledge and

understanding of these flows might open up new possibilities for turbulence control that could

mitigate or exacerbate the effects of turbulence when they are undesired or wanted respectively,

making new devices more efficient. Some prominent examples include noise reduction, mixing

maximisation, lift enhancement or skin friction reduction [49].

The viscous drag from the wall-bounded turbulence around vehicles and pipelines has been

estimated to account for about 50% of the total human-made CO2 emissions [50]. The control of

turbulence is thus key to the reduction of CO2 emissions. Among all possible applications, the

aerospace industry has a clear dependence on this fluid dynamics problem, influenced by effects

such as the transfer of energy and momentum through the boundary layer, the development

of coherent structures, their propagation in the vicinity of a wall or the friction on the skin

of an immersed surface. Emissions in aviation are responsible for 12% of CO2 emissions of all
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transportation means, according to Air Transport Action Group (ATAG). As seen in figure 1.3,

in a typical aircraft at cruise conditions, skin friction can represent nearly 50% of its total drag

amount [51].

Figure 1.3: Transport aircraft drag breakdown. Figure 1 from [51], reproduced with permission

Turbulent flow control is generally classified as passive or active. Passive control strategies

rely on fixed and pre-designed features of the system that do not require external energy or

dynamic adjustments, while active control ones employ some external forcing to manipulate

the system behaviour. These techniques have demonstrated great potential in altering wall-

bounded flow behaviour to reduce skin friction. Passive control of skin friction has been shown

with surface modifications such as large eddy break-up devices (LEBUs) and riblets [52], [53].

Alternatively, active control could allow us to promote or suppress certain flow features. The

actuation can be typically tuned depending on the operating conditions [54], [55]. For example,

whenever it is detected that a turbulent event with a negative impact on the efficiency of

the system is present or is being developed, an actuator could prevent it or reduce its effect.

Active control devices, however, need a power source and should be carefully designed to ensure

that their operation results in a net energy saving [49]. Considering a turbulent flow as a

superposition of different flow features, each with a certain role in the flow dynamics, we might

think of controlling specific flow features through small-amplitude targeted forcing systems,

which consume less power and might be smaller and lighter [56]. For example, Ref. [57]

demonstrated a drag reduction of 13% at Reτ = 12800 with an actuation targeting the large-

scale eddies of a turbulent boundary layer; this reduction should increase with increasing Reτ

with a significantly lower power actuation cost.

The implementation of active control systems for these purposes may require continuous

monitoring of the flow and its state [58]. Intrusive sensing techniques, such as hot-wire anemom-

etry, alter the natural state of turbulent structures near the wall and might bring unwanted
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effects. This motivates the development of non-intrusive sensing techniques that do not disturb

the flow. For active control systems for wall-bounded turbulence, wall-embedded sensors seem

a reasonable approach, based on the evidenced correlations in wall-bounded flows. A detailed

section covering the literature on flow estimation methodologies from wall measurements is

included in chapter 2.

In this context, the fundamental objective of this thesis is the development of a

flow-sensing algorithm capable of making 3D velocity estimations from instanta-

neous mappings of wall measurements. A review of state-of-the-art estimation approaches

may allow us to identify some of the most promising ones. An extension of the methodology to

3D estimation would overcome certain limitations from 2D estimators.

The recent disruption of artificial intelligence (AI) provides new opportunities for flow con-

trol. Modern AI algorithms are capable of learning by extracting patterns and information

from data, even when modelling based on first principles is particularly challenging. In the

context of turbulence, AI algorithms bring forth the advantage of being capable of dealing with

data representative of physical scenarios even in the presence of strong non-linear behaviours.

This is a particularly intriguing skill in view of tackling different problems in the field of fluid

dynamics. In this thesis, AI is exploited to develop advanced flow-sensing strategies for flow

control. Chapter 3 contains a brief introduction to AI and more detailed explanations of the

AI concepts employed in this thesis.

Although the data-driven approach presented in this thesis has been developed employing

samples from a DNS, an experimental database would provide valuable validation, bringing

the method closer to real-world applications and validating its robustness under more practical

conditions, and potentially reveal additional insights. In spite of the additional challenges,

an experimental campaign has been proposed to take synchronised measurements of the flow

and of the wall fields. In chapter 4, the experimental techniques selected to perform both

measurements are introduced and the experimental campaign is described. This procedure

may be useful to get experimental datasets analogous to the computational datasets employed

for the training of the machine learning (ML) models.
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Chapter 2

Wall-bounded turbulence

This chapter covers some fundamental aspects of wall turbulence. A particular focus is on

turbulent channel flows, which is the main test case used in this thesis.

The chapter starts with §2.1 covering an introduction to fundamental aspects of wall-bounded

flows and their presence in common scenarios. This section also reports important fundamental

research milestones of the 20th century that later brought studies establishing correlations

within wall-bounded flows. Advancements in turbulence studies resulted in different models

to explain turbulence, such as coherent structures. A review of these models is provided in

§2.2. Then, different methodologies and mathematical models employed to study wall-bounded

flows are covered in §2.3 and 2.4. This includes techniques to identify flow structures, and

the approaches employed for flow estimation purposes, which started with linear models and

evolved until recent literature, which makes extensive use of neural networks.
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2.1 Wall-bounded flows

In a myriad of engineering and industrial applications fluid flows interact with solid boundaries.

The geometry of the body and/or surface roughness significantly influence the flow characteris-

tics and lead to complex interactions between the surface and the flow. As a direct consequence

of the continuous behaviour of fluid flows, a velocity gradient is observed near the wall to

comply with the no-slip condition. This leads to the formation of a boundary layer, a part of

the flow field in which viscous forces are comparable to inertia forces. Within the boundary

layer, the velocity gradient at the wall is responsible for the skin friction. One of the main

properties of turbulent flows is their transport capability, which is responsible for high mixing

and high mass, momentum, and energy transfer rates. In particular, the enhanced transport of

momentum within a turbulent boundary layer leads to large velocity gradients and increased

friction at the wall. This has a direct impact on the efficiency of all man-made applications

where a solid body interacts with a flow, such as the energy expenditure to transport fluid in

pipes, or the propulsive power to move a vehicle.

The classical canonical examples of wall-bounded flows include turbulent boundary layers,

pipe flows, and channel flows. Furthermore, numerous examples can be found in multiple

engineering devices, such as hydraulic pumps and valves, air conditioning units, heat exchang-

ers, windmills, water treatment channels, internal combustion engines, and automobile exhaust

pipes. Some examples are shown in figure 2.1. More specifically, the performance of aerospace

devices relies highly on the behaviour of wall-bounded flows, with aircraft wings being a remark-

able example. This motivates a strong interest in wall-bounded turbulence in the aerospace

engineering community.

(a) (b) (c) (d)

Figure 2.1: (a) Heat exchanger, reproduced from [59], (b) Flow over a car, (c) DNS of a turbulent boundary
layer [60], (d) Engine flow simulation

Boundary layers were first described by Prandtl, who noticed a thin layer around the surface

with significant viscous effects and an outer region with a nearly potential flow behaviour
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where viscous effects are absent [8]. Given the no-slip boundary condition, the relative fluid

velocity at the solid surface is zero and gradually increases up to the free stream velocity at the

edge of the boundary layer. This theory revolutionised fluid dynamic studies, contributing to

understanding turbulence, the transition from laminar to turbulent regime (see below) and the

general improvement in aerodynamic designs.

Inertia and viscous forces play a relevant role in turbulent flows. Inertia forces tend to

preserve velocity fluctuations, while viscous forces dissipate the turbulent kinetic energy of the

flow into heat by the viscous shear stress. When viscous forces dominate, turbulence is damped

and the flow remains in a laminar regime, while the prevalence of inertial forces produces

turbulent regimes. The Reynolds number is a fundamental non-dimensional group in fluid

dynamics that expresses the relation between these two forces:

Re =
UL

ν
, (2.1)

where ν is the kinematic viscosity of the fluid, and U and L are the characteristic speed and

length of the problem respectively. Consequently, turbulent flows are characterised by Re ≫ 1.

Strict thresholds for categorisation might be difficult to impose and may be affected by the

particular definition of characteristic length and speed, but we can follow this classification as

a rule of thumb [1]:

• Re < 10: The flow is laminar. Perturbations are easily damped by viscous forces. There

are no multi-scale motions. As an example, they can be found in pipe flow with small

diameter and/or low bulk velocity.

• 10 < Re < 103: The flow is at an intermediate state, commonly referred to as transitional.

Inertia forces become stronger to produce perturbations in the flow although not a self-

sustained turbulence. For instance, they can be experienced around a region with increased

surface roughness in a pipe flow with a laminar regime.

• Re > 103: Viscous forces are not capable of damping the instabilities due to strong inertial

forces and the flow becomes fully turbulent. The wake behind a boat is an example of

turbulent flow.

Locally, the Reynolds number can be defined using the local streamwise coordinate x as charac-

teristic length. If the problem domain is sufficiently large, laminar, transitional and turbulent

regimes could be experienced in the flow over a surface with progressively increasing Rex. The

flow, originally laminar, becomes turbulent downstream, and in between we may find the tran-
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Figure 2.2: The development of a boundary layer over a flat plate. Reproduced with permission from Intro-
duction to Aerospace Flight Vehicles Copyright © 2022–2024 by J. Gordon Leishman is licensed under a Cre-
ative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

sition region where features of both of them coexist, as represented in figure 2.2. As mentioned,

these thresholds may change among different problems. In the flat plate sketched in figure 2.2,

transition might be experienced around Rex = O(105) [61] or could be triggered earlier by some

roughness effects.

In wall-bounded flows, the friction at the wall plays a remarkable role in the balance between

inertia and viscous forces. The friction-based Reynolds number Reτ is commonly used to

characterise the state of the flow. Being uτ the friction velocity, defined in terms of the wall-

shear stress τw and the fluid density ρ as
√

τw/ρ, Reτ is given by :

Reτ =
uτh

ν
, (2.2)

where h is the outer scale (half-channel size for channel flows, boundary layer thickness δ

for boundary layers, pipe radius R for pipe flows). Considering that the speed of the fluid

near the wall is significantly lower than the bulk/outer speed, and small scales prevail in it,

scaling based on quantities relevant in the near-wall region is often more appropriate. This

characteristic velocity and the fluid properties define the inner characteristic length scale as

l∗ =
ν

uτ

, (2.3)

This quantity represents the order of the length scale of the smallest eddies in the flow. Al-

ternatively, the friction-based Reynolds number can be written as the ratio between outer and

inner characteristic length scales:

Reτ =
h

l∗
, (2.4)
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which is of utmost importance for studies on wall-bounded turbulence. It also reveals the

relative size of the turbulent scales, meaning the variety of scales present in the flow. The

complexity related to the wide range of length scales present in wall-bounded turbulent flows

brings the Reynolds number to most practical flows.

The analysis conducted assessing the flow from different scaling conditions revealed the

presence of characteristic scales and flow patterns. These can be identified as having time/space

coherence, despite the chaotic behaviour of turbulent flows. This coherence opens up the

possibility of investigating and characterising a flow regarding the space-time correlation of

flow features.

Space-time correlations of velocity fluctuations were first evidenced by Favre et al. [38], [39]

by means of hot-wire probe anemometers as in the setup represented in figure 2.3. These works

introduced a framework to understand the flow dynamics and structure, strongly influencing

both theoretical and practical advancements. The analyses of these space-time correlations were

fundamental to the development of more precise turbulent models, providing useful information

about how velocity fluctuations at different points of the domain are related in space and time.

Examples can be found both for boundary layers [62] and channel flows [63], [64]. In particular,

the studies on the structure and behaviour of large eddies in wall-bounded turbulent flows [65],

and the detailed investigations focused on the viscous sublayer and near-wall turbulence in

pipe flow [66] provided important insights. These studies advanced the understanding of the

interaction between large-scale eddies and near-wall turbulence, revealing the critical role that

these structures play in the overall dynamics of wall-bounded turbulence and helping to bridge

the gap between near-wall and outer flow behaviour. This was even crucial for turbulent wall-

bounded flow modelling such as Reynolds-averaged Navier-Stokes (RANS) [67] or large-eddy

simulation (LES) [68].

The attached eddy model proposed by Townsend [69]–[71] is an example of a model to explain

space-time correlation in wall-bounded flows. It proposes that self-similar wall-attached eddies

populate the logarithmic layer of wall-bounded flows. This model does not yet describe the flow

structure concerning how eddies are arranged but establishes that large wall-attached eddies are

organised, persistent and contain the energetically dominant motions of a wall turbulent flow.

This facilitated the interpretation of the contribution of these structures to the turbulence

dynamics and energy distribution in the flow. However, observation of instantaneous fields

failed to show evidence of the coherent structures that could explain the behaviour of the
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Figure 2.3: Experimental setup for two-point correlations with hot-wires. Figure 1 from [38] ”Experimental
arrangement: transition by roughness on leading edge or by preturbulence downstream of a grid”, 2006 ©
Cambridge University Press, reproduced with permission.

logarithmic region [72]. The inertial length scales of the eddies characteristic in the logarithmic

and wake layer are dominant over the viscous ones, with multi-scale eddies ranging from O(y+)

to O(h). The intensity profile in the logarithmic layer has been recently reconstructed from

the superposition of attached structures satisfying Townsend’s attached-eddy hypothesis from

a DNS database, even if the total turbulence intensity did not show this logarithmic behaviour

[73].

2.2 Turbulent coherent structures

Even if turbulence is described as a chaotic three-dimensional state of the fluid with certain

randomness and unpredictability, coherent and organised motions have been identified and

described in the literature. A coherent structure was defined by Hussain as a ‘turbulent fluid

mass connected by a phase-correlated vorticity’ [74]. In particular, four models of organised

turbulent motions directly related to wall-bounded turbulence have been found and described

so far [75].

The near-wall streaks model was described by Kline et al. [76]. These streaks were charac-

terised as spatio-temporal coherent motions in the laminar sub-layer with a spanwise size of the

order of 100 l∗. The lift-up, oscillaton, burst and ejection processes are recursively repeated,

enabling the interaction between them and the patterns further from the wall in high-shear

regions. Furthermore, they may contribute to the transport and formation of turbulence near

the wall.

Alternatively, the hairpin structures model by Theodorsen (1952) [77] proposed this type

of structure with a similar characteristic spanwise size for its legs near the wall. This model
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Figure 2.4: Flow visualisation of an LSM from Fig 2 (a) from reference [86] ‘Smoke visualisation of the
streamwise-wall-normal plane in a turbulent boundary layer showing various eddy structures’, 2007 © AIP
Publishing, reproduced with permission.

was supported by experimental works such as the flow visualisation of a zero-pressure-gradient

turbulent boundary layer by Head & Bandyopadhyay [78], which characterised them as very

elongated hairpin vortices that extend through most of the boundary layer at high Reynolds

number, and as horseshoe vortices, not as elongated, at low Reynolds number. Similarly, a

turbulent boundary layer densely populated with hairpin vortices was computationally obtained

from the Navier-Stokes equations with a DNS by Wu and Moin [79].

Additionally, the models of large-scale motions (LSMs) and (VLSMs) have been gaining

traction in recent decades. The LSMs rely on the hairpin structures seen in Ref. [78], and occur

when such hairpins travel sequentially at a similar speed and arrange into a larger structure.

Their dynamics and behaviour have been the object of special interest for various studies

[80]–[86]. Through the presence of bulges, as seen in the flow visualisation in figure 2.4, a

characteristic LSM streamwise size of the order of 2-3 δ (being δ the boundary layer thickness)

[75] was estimated. The study of the flow dynamics of this type of event contributed to a better

understanding of the role of turbulence in wall-bounded shear flows. A representation of the

dynamics of a hairpin is given in figure 2.5. A region with strong velocity fluctuations in the

second quadrant (u < 0, v > 0) is developed with a certain inclination with respect to the wall

below the core connected to the two legs. One important feature of hairpin vortices is the low

streamwise momentum region induced in between the two legs near the wall [83], [87], [88].

In relation to VLSMs, low streamwise momentum regions confined between high momentum

regions were reported also in the logarithmic and wake regions [81], [84], [89]–[91]. Arrays

of hot-wire anemometers were used to study the turbulent flow in pipes and channel flows,

reporting streamwise lengths of the structures as long as 25-30 pipe radii R and half-channel

heights h, respectively. Similarly, there is evidence of VLSM of the order of 15-20 δ in length in

turbulent boundary layers [89]. Importantly, VLSMs seem to scale on outer variables. Hence

their dimensions do not change with the Reynolds number [87]–[89], [92].
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Figure 2.5: Representation of a hairpin vortex from Fig 10 (a) from reference [83] ‘Schematic of a hairpin vor-
tex attached to the wall and the induced motion’, 2000 © Cambridge University Press, reproduced with per-
mission.

LSMs and VLSMs are highly energetic carriers and contribute greatly to the production of

turbulent kinetic energy and Reynolds stress. For example, they have been assessed in turbu-

lent boundary layers, pipe flows and channel flows, highlighting the importance of their energy

contribution and their interaction with the near-wall small scales as the Reynolds number in-

creases [87]. The wavelengths of LSMs and VLSMs were characterised in pipe flows, and the

contribution of VLSMs to the total turbulent streamwise kinetic energy was quantified in about

50%, while Reynolds shear stress due to VLSMs was more than half [84]. A similar study was

developed on channel flows and zero pressure gradient turbulent boundary layers, reporting sim-

ilarities supporting the idea that these motions are developed through similar mechanisms, and

showed that the VLSMs may be responsible for the deceleration right above the region where

the Reynolds shear stress is maximum [85]. As mentioned above in relation to Townsend’s

attached-eddy model, the implications of LSMs and VLSMs seem accentuated with increasing

Reynolds number [75]. Following POD-based approaches, it has been shown how the eigen-

modes characterising the largest flow scales contain turbulent kinetic energy in very significant

proportions [93]. Studies on this matter extend to the present days, frequently introducing

AI-based approaches; for instance, explainable-AI has recently assessed the contribution of the
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different scales and types of structures to the Reynolds stress [94].

Furthermore, the footprint of these structures at the wall is responsible for the turbulent

kinetic energy in the sub-layer near the wall and shows consistency with the attached-eddy

hypothesis by Townsend (1976) [89]. Furthermore, these motions that extend far from the wall,

characterised by large scales and spatial wavelengths, were found to produce a modulation

effect on the near-wall region, both by experimental and computational studies [89], [90], [92],

[95]–[97]. Conversely, the outer layer dynamics and the coexistence of wall-attached and -

detached families of vortices seem to be independent of the small structures in the near-wall

flow dynamics according to the simulation with the artificial removal of the viscous layer in a

channel flow in Ref. [98], and to be independent on the wall roughness [99]. The experiments

developed in pipes in Ref. [100] highlighted the existence of detached LSMs mainly concentrate

in the wake region and have varied spanwise sizes, while attached LSMs are smaller and more

uniform in size, travel at smaller convection velocities and do not extend beyond the logarithmic

layer. These attached LSMs may be the responsible ones for the aforementioned modulation

effect of the near-wall cycle [95]. The fact that detached LSMs have a span comparable to that

of VLSMs suggests that they could be involved in the formation of VLSMs, supporting their

formation theory based on pseudo-streamwise alignment [81]. This might not be the case with

the smaller wall-attached LSMs.

2.3 Strategies to discover patterns in wall-bounded flows

Wall-bounded flows contain a hierarchy of structures. The data generated by simulation and

experiments of turbulent flows are high dimensional. However, the existence of coherent struc-

tures suggests the possibility of identifying low-dimensional approximations of turbulent flows

to simplify the problem.

In the framework of providing low-rank approximations of turbulence, the theory of compact

self-adjoint operators [101], [102] brings the advantage of enabling data compression through

linear operators over not-necessarily linear data, and is one of the cornerstones of methods used

to analyze wall-bounded flows, among others. Principal component analysis (PCA) decom-

poses complex systems in modes, preserving as much variability as possible and identifying the

most important ones. These modes capture the relations defined by the linear combination of

the original features. For example, a PCA-based model contributed to obtaining a more com-

prehensive model to predict the channel flow behaviour for different wall roughness [103]. Its
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application to turbulence gave rise to the proper orthogonal decomposition (POD) methodology

[104]. While PCA is used on matrices in a variety of fields, POD, with the same principles, is

commonly applied in fluid dynamics with spatio-temporal series [105]. This enabled the identifi-

cation of patterns within data sorted by their variance contribution, making POD very suitable

for the study of the aforementioned LSMs and VLSMs as those are significantly energetic. The

use of POD over the past decades has allowed the community to come up with advancements

and a better understanding of wall-bounded turbulence [106].

Significant discoveries about patterns in wall-bounded flows were obtained through other

data-driven techniques, such as dynamic mode decomposition (DMD). In this case the modal

decomposition is applied on the frequency domain, with each dynamic mode being assigned to

a specific frequency of the problem [107]. DMD enables the identification of non-linear features

in flows with oscillatory elements and reconstruction of those fields [108]. Recent higher-order

formulations have further extended the reach of the technique [109], [110]. DMD revealed

important information about the cycle followed by certain types of structures in the near-wall

region [111].

Alternative methodologies built on the AI framework have also studied the identification of

patterns with low-order models. Manifold learning aims to uncover and represent the underlying

low-dimensional structure of high-dimensional data, to facilitate analysis and understanding of

complex systems, commonly non-linear. For instance, Isometric mapping has been employed to

provide a nonlinear, low-dimensional representation of complex shear-flow data while preserving

important geometric relationships, thus enabling more efficient and potentially more accurate

low-order modelling [112]. As another example, a novel way to understand the effects of various

actuation strategies on fluid behaviour was possible through its actuation manifold [113]. This

approach has the potential to inform the development of more advanced control algorithms,

ultimately leading to improved performance in fluid systems. Furthermore, the dimensionality

of a problem can be reduced into a ‘latent space’ through the use of encoders, which are a key

component of autoencoders [114], [115].

2.4 Estimation in wall-bounded flows

The aforementioned space-time correlations in wall-bounded flows by Favre et al. [38], [39] was

a key milestone that opened the ground for the study of flow estimation from sensors. This

covers approaches such as temporal predictions or spatial estimations from different points.
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POD-based methodologies have been employed very extensively in this regard [106], [116], [117].

Extended-POD (EPOD) has been gaining momentum in the last two decades (although recently

superseded by nonlinear estimators). This linear approach relies on the modal correlation

between the decomposition of both elements to be correlated, under the hypothesis of the

existence of a certain type of space-time correlation, depending on the particular configuration of

the case under study. The extended modes report the correlation between flow quantities, such

as the velocity, even with other possible quantities. These extended modes may provide eddy

structures interactions or may link velocity modes to other quantities such as pressure [118].

Numerous examples of experimental applications of this linear methodology and derivatives

to different fluid-mechanical configurations, such as jets [119], a wall-bounded flow with ribs

[120], flow separation in boundary layers [121], pipe flows [122], the fluidic pinball problem or

a channel flow [123], can be found in recent literature. A variety of experimental techniques

can be found in these references, including particle image velocimetry (PIV) and infrared (IR)

thermography.

Analogously, other linear approaches have been implemented with estimation purposes for

wall-bounded flows [124]–[133], among which linear stochastic estimation must be highlighted.

It can be shown that LSE is equivalent to the sum of the contribution of all extended modes

[118]. Given the limitations of linear operators, the comparison between EPOD- and LSE-

based methodologies has been discussed, for example, EPOD can be employed to select certain

flow features, such as the most energetic ones, by mode truncation. Under the restriction

of linearity dealing with higher-order physics, some of these approaches have been shown to

successfully improve the estimation results thanks to different implementations intending to

include non-linearities. For instance, we can find the extended Kalman filter based approach

which introduces them in the Navier-Stokes equations as a forcing term [125], [126], [134].

Examples of works addressing other problems in turbulence and how to introduce non-linear

terms in them can be found in the literature, such as the development of Eddy Viscosity Models

[135]. An estimator based on POD and LSE efficiently estimates full flow fields from limited

measurements by leveraging the POD representation, operating directly on POD bases rather

than the full velocity fields [131].

Machine learning (ML) (see chapter 3) has recently shown its great potential to solve flow

estimation problems [136]. For example, the heat transfer through a surface and the near-wall

region has been estimated from wall measurements of pressure and shear stresses [137], and,
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flow field resolution enhancement has been employed in the near-wall region to estimate wall

shear stresses [138]. In particular, the flow estimation problem from wall measurements has

been addressed with different neural network (NNs) architectures, such as convolutional neural

networks (CNNs)[139], [140], recurrent neural networks (RNNs) [141] or fully-convolutional net-

works (FCNs) [142]. A superior estimation performance on this problem was shown employing

generative adversarial networks (GANs) [143].

The importance of including non-linear terms in wall-bounded turbulence predictions has

been the object of a longstanding debate. Both linear and non-linear transfer function based

methods have been studied and compared, even with multiple inputs, [144]. The effect of non-

linearities in a channel flow on the estimation of velocity fluctuations from wall measurements

was addressed through multiple-time-delay estimation techniques, showing that non-linearities

allow to extend the model into the buffer layer, where linear models were not capable of pro-

viding faithful results [145]. Also, Kalman filter estimators have been shown to provide better

performances when non-linearities are considered within the approach [126], [134].

Recently, several flow estimation problems in wall-bounded flows have been approached in

3D employing varied methodologies. Velocities near the wall and in the buffer region have been

successfully reconstructed from wall measurements using linear stochastic estimation [132]. An

approach based on continuous data assimilation showed how to reconstruct the velocity field in

a region from the velocity in a contiguous region [146]. Similarly, GANs have been employed for

3D flow reconstructions from 2D velocity measurements [147], or for super-resolution purposes

from limited data [148]. Other 3D concepts of CNNs were employed to assess the dynamics

of a channel flow [149] and to reconstruct free-surface flows [150]. 3D estimation of turbulent

channel flows from wall measurements are still unexplored and are the object of the present

thesis.
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Chapter 3

Deep Learning for fluid flows

AI is a field of computing science seeking to develop systems capable of performing tasks that

may require human intelligence. Typical examples include voice recognition, decision making

or problem-solving.

Within AI, ML is particularly relevant, as it focuses on developing algorithms and models

that enable machines to learn from data and improve over time with sufficient input. Other key

branches of AI not covered in this thesis include natural language processing, which enables

tasks like speech recognition and automatic translation; expert systems, which mimic human

decision-making in specific domains; robotics, focusing on autonomous decision-making for real-

world tasks; evolutionary algorithms, which simulate natural selection to optimize solutions; and

computer vision, aimed at interpreting images and videos for tasks such as object recognition

and image segmentation.

This chapter contains a discussion on ML, in §3.1 as a broad concept from a general per-

spective and in §3.2 with an utter focus on the main applications in the field of fluid dynamics.

Then, §3.3 provides further details about deep neural networks (DNNs) and the elements em-

ployed in the GANs developed in the framework of this thesis. Finally, §3.4 focuses in more

detail on GANs.
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3.1 Overview on ML approaches

ML applications employ data to learn information, so the system can finally perform a certain

task without being explicitly programmed to do so. Depending on how this data is employed,

ML approaches are traditionally grouped in the following classes [151], [152]:

• Supervised learning methods employ labelled data and require external supervision. De-

cision trees, regressions (linear, logistic, ...), artificial NNs or support vector machines are

examples of these algorithms.

• Unsupervised learning methods employ unlabelled data and do not require any external

supervision. They are employed to identify patterns or to cluster data. Some example

algorithms are K-means, K-Nearest Neighbours or Principal Component Analysis.

• Semi-supervised methods rely on partially labelled data or need partial supervision. Some

of these algorithms are derived from variations of other supervised or unsupervised learn-

ing algorithms and are developed with the purpose of further improving their learning

performance.

• Reinforcement learning does not need labelled or unlabelled data, but learns directly from

experience, based on trial and error. An agent interacts with an environment and makes

decisions to maximise a certain reward. Q-learning, dynamic programming and model-

based value estimation are examples of reinforcement learning algorithms.

Recent disruptive advances in ML algorithm development have enabled their application in

a wide range of sectors. To mention some examples beyond the scope of this thesis: in industry,

they are used to optimise production processes and predictive maintenance; in medicine, for

the early diagnosis of diseases and treatment customisation; in marketing and advertising, to

customise advertisements and campaigns according to consumer behaviours and preferences; in

the financial sector, for fraud detection and risk management. ML is revolutionising the way

research and development is approached in multiple fields of knowledge, opening up new chal-

lenges and opportunities. Also, scientific research is being massively invested by the advances of

ML. For example, ML is used in biology for analysing genomic sequences, in physics to simulate

complex phenomena, in economics to predict market trends and optimise investment portfolios,

and in meteorology to develop more precise predictive models.
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3.2 Machine learning and its impact on fluid dynamics

At the end of section §1.1, some recent technological advancements with a direct beneficial

impact on fluid dynamics research have been mentioned. This includes the exponential increase

in the computational and processing capabilities of computers and the availability of large

datasets from experiments and simulations. This allowed the implementation of ML techniques

in fluid mechanics, unlocking new interesting research pathways [101].

A non-exhaustive list includes:

• Prediction of chaotic flows: for instance, RNNs have been employed to predict the evolution

of chaotic dynamical systems, enabling arbitrarily long predictions [153].

• Flow estimation from sensors: this problem has been approached with different types

of NNs [139], [142], [143], [147]. Convolutional layers are particularly interesting for this

purpose due to their capabilities for pattern identification tasks. Further details about this

application in the context of channel flows are contained more extensively in the remainder

of this chapter.

• Low-order modelling: Manifold learning techniques perform nonlinear dimensionality re-

duction, with methods such as Isomap [112], [113]. Autoencoders are a type of neural

network whose architecture enables the encoder to compress input data in the latent space

and the decoder to retrieve information in the original decompressed format from the la-

tent space [114], [115]. With a similar architecture to an autoencoder, but including skip

connections, U-Nets also offer this capability [154]. Furthermore, some classical low-order

modelling techniques have been integrated into varied ML techniques, such as POD, which

have been employed in combination with CNNs [139]. Galerkin regression, which projects

the governing equations, such as the Navier-Stokes equations, onto a reduced set of basis

functions, is another case of approach combined with modern ML techniques. In Ref. [155],

this approach enhances the physical consistency of reduced-order models while identifying

simpler, more parsimonious modes.

• Super-resolution: different ML techniques have been implemented to reconstruct high-

resolution turbulent flow fields from incomplete or low-resolution samples. This principle

was used to increase the resolution of simulations [156] and experimental data [157], [158].

The implementation of these super resolution-oriented methodologies was seen successful

thanks to CNNs [159], [160].
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• Data repair: Deep learning (DL) techniques have been shown to successfully reconstruct

flow databases with missing information [161].

• Acceleration of numerical simulations: the integration of ML techniques to accelerate

computational fluid dynamics simulations has enhanced efficiency and enabled fast analysis

of fluid flow phenomena [162]–[164].

• Flow control: different configurations and ML models can be found in the literature with

active control purposes, leveraging deep reinforcement learning [165]–[167] or genetic al-

gorithms [168]–[171].

• System identification: genetic programming has been used to compute conservation laws

and governing equations of flow field configurations [172]. Other notable examples include

the sparse identification of nonlinear dynamical systems [173] and the neural-network-

based autoregressive models [174].

• Identification of closure models: ML-discovered models are offering new possibilities for

closure [175].

• Data assimilation: some of its applications are the reconstruction of unknown regions in

the flow [146], the reduction of error propagation in high-dimensional dynamical systems

in fluid dynamics [176], and data enrichment/regularisation imposing compliance with first

principles, as it is the case of physics informed neural networks (PINNs) where equations

are combined in data-driven techniques through the loss function [177], [178].

• Sensor placement: data-driven techniques have been employed for smart sensor placement

purposes, including techniques based on the exploitation of patterns in the data [179],

[180].

• Uncertainty quantification: ML has contributed to overcoming certain limitations in the

uncertainty quantification problem [176], [181].

3.3 Introduction to Deep Neural Networks

Among the several ML approaches, this thesis makes use of DNNs. In this section, the main

concepts involving DNNs are introduced and described, paying special attention to the tools

employed in this thesis.

Many fundamental concepts of modern DNNmethods root their basis in applied mathematics
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Figure 3.1: Example of Multilayer Perceptron network architecture. By Izaak Neutelings https://tikz.net/
neural_networks/, 2021 © TikZ, reproduced with permission https://creativecommons.org/licenses/

by-sa/4.0/

developments of several decades ago, even if their technical implementation was severely limited

due to the lack of computational infrastructure [182]. The first works with NNs date back to

the 1960s, with the work by Hubel and Weisel using individual neurons to study the activity

in cat brains [183], for which they were awarded the Nobel Prize in Physiology of Medicine.

Rosenblatt’s perceptron algorithm was presented in 1958 [184]. Inspired by human neurons,

this model establishes a mapping between a vector of inputs x and an output y. Rosenblatt’s

perceptron imposes a linear transformation to these input values with the weight coefficients

wi that multiply the p entries in x and the bias ζ:

y = s(ξ) = s

(
p∑

i=1

wixi + ζ

)
, s(ξ) =

1, if ξ ≥ 0

0, otherwise
(3.1)

The linear transformation is followed by a threshold function that sets the output to 0 or 1, and

is an example of what today is known as an activation function. The progressive combination

of these units gives rise to NNs. NNs are a type of computational model that consists of a set

of units, named artificial neurons, connected among them to transmit signals. The network

receives data as input, going through the network follows a set of operations neuron after

neuron, and produces some output. Perceptrons can be combined in layers that produce a

vector rather than a single output. Then, layers can be combined sequentially in a particular

type of artificial neural network known as multilayer perceptron (MLP). A diagram of an MLP

is shown in figure 3.1.

The depth of the network is a concept commonly used to refer to the inclusion of multiple

layers sequentially. Those layers that are not directly in contact with the input nor with the
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output of the network are referred to as hidden layers. This brings DNNs and (DL) on stage,

becoming very popular during the last decade thanks to their advanced capabilities and the in-

creasing accessibility to the computational resources that allow us to develop them. These layers

hierarchically process data and can learn very detailed and complex representations. For that

to be effective, large amounts of data are typically needed. Hence, training DL models is com-

putationally intensive and may require advanced hardware such as GPUs or TPUs—specialised

hardware accelerators to efficiently handle parallel computing tasks—to handle the large num-

ber of computations required.

ML algorithms need to see data containing the information to be learnt. In this learning

process, a key element is the loss function L, intended to be minimised according to the purpose

of the problem. This process is organised in epochs (one epoch is a complete pass of the

full training dataset through the learning process), with the weights of the perceptrons being

initialised and progressively updated until the network is trained and ready to work.

Data sets are typically organised into training, validation and testing sets. The training set is

the one employed during the training process to adjust the weights recursively, epoch by epoch.

The validation set is used during the training process to evaluate the model’s performance on

unseen data and help tune hyperparameters, such as learning rate, batch size, or regularisation

factors. It provides an unbiased evaluation to prevent overfitting, ensuring that the model

generalises well to new data. Finally, the testing set is reserved for the very end of the process,

offering a final assessment of the model’s performance. It is used to evaluate how well the trained

model performs on entirely unseen data, ensuring that the model is reliable and effective in real-

world applications.

Different loss function definitions may be convenient depending on the particular purpose,

the type of neural network or the type of data employed. Some loss functions commonly used

are Mean Squared Error (MSE), the Huber Loss, which combines MSE with Mean Absolute

Error (MAE), Cross-Entropy, used for classification purposes with variants such as Binary

Cross-Entropy, Categorical Cross-Entropy or Cosine Similarity Loss, among others.

The neural network learning process, the training, is based on backpropagation. The concept

of backpropagation was formulated almost 40 years ago by Rumelhart (1986) [185]. It defines

how the weights are updated from their current value, according to the gradient of the loss

function L with respect to the weights of the perceptron. The learning rate η, typically ≪ 1, is

a very important hyperparameter in the training process and can strongly influence the success
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of the network since the weights are updated as:

∆w = −η
∂L
∂w

. (3.2)

Variations in the formulation introduced with (3.1) lead to different layers or elements to

introduce in a NN. Activation functions are key elements that decide whether a neuron must

be activated or not, introducing non-linearities in the model and hence allowing the network to

learn more complex relations and patterns within the data. Different activation functions can

have an influence on the learning process, as they have an impact on the gradient propagation.

Activation functions can contribute to the efficiency of the model and can help in avoiding

problems such as vanishing gradient. There are several commonly used activation functions

[186]. The sigmoid function provides with a number in the 0–1 range, and is useful in the last

layer in binary classification problems:

y = f(x) =
1

1 + e−x
. (3.3)

The Rectified Linear Unit, commonly known as ReLU, has become very popular for its simplicity

and effectiveness and is defined as [187], [188]:

y = f(x) = max(0, x) . (3.4)

The hyperbolic tangent is also used as activation function, similar to the sigmoid function but

with outputs centered at zero in the range -1–1:

y = f(x) =
ex − e−x

ex + e−x
. (3.5)

The softmax activation function provides a multiple output whose sum adds up to 1, which

makes it very suitable for classification problems, to provide a score to each group as a matter

of probability. It can be expressed as:

f(xi) =
exi∑
j e

xj
. (3.6)

There are other two activation functions employed in this thesis, defined on the basis of

ReLU (3.4) among other possible variants. Leaky-ReLU provides the same value for positive

entries as ReLU, while for negative ones provides a negative number proportional to the entry

by a factor to be defined a, typically introducing a small gradient (a < 1) [189], [190]. It is
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Figure 3.2: Plot of the ReLU (a) and PReLU/LeakyReLU (b) activation functions.

expressed as:

y = f(x) =

x, if x ≥ 0

ax, otherwise
. (3.7)

Parametric-ReLU (PReLU) adds the complexity that this parameter a is to be learnt in the

training process, not initially set as for Leaky-ReLU [190]. It allows the introduction of further

effects in the learning process while it does not deactivate all neurons receiving entries lower

than the threshold. This fact makes PReLU very suitable to model fluctuations of centred

data, as it is the case of the methods developed in this thesis, where the network receives the

fluctuations of the wall measurements and must provide us with the fluctuations of the velocity

field. The difference between these two functions with the classical ReLU definition can be

visually seen in figure 3.2.

Other elements can be introduced in the network architecture beyond layers with multiple

perceptrons and activation functions. Convolutional layers are indeed a very common feature.

They were first defined and used in the 1980’s with the NeoCognitron network (see figure 3.3)

[191]–[193], showing a great potential particularly for digital imaging purposes. A convolutional

layer weights inputs with the coefficients wi as in (3.1), with the additional complexity that

each output element is influenced by its neighbouring region. A kernel contains several weights

that multiply the values of the input mapping, and the sum of these values provides the output.

The kernel stride defines what step the kernel moves along the input image to map the output

[194]. Great pattern and image recognition capabilities are claimed to CNNs [195]. Here the

classical 2D convolution operation is defined and illustrated (see figure 3.4), for an input image
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Figure 3.3: Sketch of the first CNN by Fukushima. Figure 2 from [191], 1980 © Springer-Verlag, reproduced
with permission from SNCSC.

Figure 3.4: Diagram of a convolution operation. Figure 2 from [196], 2017 © by the authors, licensee MDPI,
reproduced with permission.

I of size [i, j] and a kernel K of size [l,m]:

C(i, j) =
L∑
l

M∑
m

I(i− l, j −m)K(l,m) . (3.8)

As was mentioned concerning the possible applications of ML in fluid mechanics, convo-

lutional layers are highly effective in identifying patterns within data, particularly in images.

With the kernel scanning the input data, these layers can detect local patterns such as edges,

textures, and shapes. Hierarchically, simple patterns are captured in the early layers and more

complex features in deeper layers. Each convolutional filter can detect patterns of certain length

scales. In this thesis, which focuses on three-dimensional flow estimations, the main element

of the NNs employed is the 3D convolution layer. It works exactly in the same way as a 2D

layer, with the addition of one extra dimension. A 3D convolution layer receives a 3D feature

as input mapping, to be convoluted with a 3D kernel with sizes [l,m, n] that is strided along

the domain in the three directions to produce a 3D output mapping. Following this procedure,
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higher-order convolution layers could also be defined.

Kernels can act over multiple filter dimensions. The most common example can be a 2D RGB

image, with three channels, one for each primary color. Then, the input image decomposed in

channels is convoluted separately. This can be represented as an additional dimension of data

in the problem. In the case of the CNNs employed in this work, the input filter dimension of the

generator coincides with the different sensor inputs from the wall—wall pressure and streamwise

and spanwise wall-shear stresses—while each output channel provides a different component of

the velocity fluctuation. When multiple layers are included in the model architecture (hidden

layers), the filters live in a hyperspace dimensionally different from the input and the output.

Convolutional layers offer different degrees of customisation that must be set during the

definition of the model. They are of special importance as they directly affect the output size.

The size of the kernel, already mentioned, is one of these parameters. Typically the same size

is used along the different dimensions, but not necessarily. The striding defines how many

elements the kernel must be displaced between the operations that lead to consecutive elements

in the output. Padding encapsulates the input mapping in zeros so that the kernel acts over a

slightly larger domain.

A certain region of an image may be affected by other regions as all of them contribute to

setting the weights of the kernels in the learning process, but once set, it should not affect as

the kernel only acts over the neighbouring pixels, ensuring bi-univocal mapping between the

same input and output regions. This is not the case for fully connected layers, also used in this

thesis. Those are defined by a size, which determines the number of weights to be used, and

all the output elements are seen by all input elements. It does not act locally over data, as

convolution operations do. It is used in the discriminator network presented in this thesis, and

it is preceded by a flatten layer, which just rearranges a multidimensional tensor in a 1D array.

Furthermore, up-sampling layers are often employed in DNNs, which are also used in the

architectures designed in this thesis. They are used to increase the size of the domain. They

are commonly used for super-resolution purposes in 2D imaging problems [143], [160]. In the

methodology concerning this thesis, they are needed to develop a 3D space from 2D. The

original 2D wall images are rearranged in a 3D tensor with size 1 for the wall-normal direction.

Then, each up-sampling layer increases the size of this dimension by a factor to be specified,

for example, a factor 2 doubles the amount of data increasing the size of the domain in this

direction while the rest of the dimensions are kept the same.
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Residual blocks or skip connections are recurrently used in these architectures. They do

not imply the presence of a specific layer, as convolutional or up-sampling layers, but refer

to the way other layers are arranged. These skip connections allow information to pass over

some layers, adding or concatenating the output of a layer to the output of a subsequent layer,

skipping intermediate ones. One of their main advantages is that they contribute to mitigating

the problem of gradient fading in DNNs. They can be easily recognised in the generator

architecture in figure 3 of paper 1, with the residual blocks recurrently used and a big skip

connection.

The elements mentioned above are examples of building blocks of NNs. The present overview

covers the elements adopted in the architectures used in this thesis. However, there is a large

dictionary of elements that can be used for different purposes, allowing NNs to deal with a

variety of complex tasks and problems [197]. For example, pooling layers such as Max Pooling

or Average Pooling layers are used to reduce the size of the input taking respectively the

maximum or average value within a kernel. Moreover, normalisation layers such as Batch

Normalisation normalise data with its mean and variance, which may contribute to reducing

the covariate shift problem [198] and smooth the objective function [199], although gradient

explosion issues during initialisation could be induced [200].

3.4 Generative Adversarial Networks

The previous section §3.3 briefly introduced some context about ML and described some im-

portant concepts about NNs and the architectures implemented in this work. These concepts

are employed to develop a GAN, which deserves special attention and is detailed in this section.

Predictive AI models can employ historical and current data to establish future predictions,

often in the form of values, categories or probabilities. On the other side, generative AI al-

gorithms aim to create new samples in formats such as text, images or audio. Generative

pre-trained transformers (GPTs) are a common approach for text generation. Other frequently

used examples of generative AI algorithms are variational autoencoders, which work with prob-

abilities in the latent space, and GANs [201].

GANs were introduced by Goodfellow and others in 2014 [202], who proposed them under

the need to improve techniques for generating synthetic data, such as images, videos, text or

music, that would be sufficiently realistic and useful for a variety of applications. Since then,

GANs have revolutionised ML, enabling significant advances in the generation of new instances
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Figure 3.5: Diagram of a GAN.

of data not contained within the original data set according to the learnt patterns.

Based on the game theory, a GAN is composed of two networks, named generator and

discriminator. Both networks are in competition against each other in a zero-sum game, with

their loss functions evaluating their respective performance through the content loss and giving

them a reward based on the bad performance of the opponent network, explaining the term

‘adversarial’ :

L = Lcontent + Ladversarial . (3.9)

The generator is the one used after training, capable of performing the task of interest for which

the GAN has been designed. The generator receives some random input and learns to deal with

it to generate an output fulfilling certain requirements. The purpose of the discriminator is just

to assist the generator during the training process and try to distinguish generated samples

from original data samples.

At the beginning of the training process, none of the networks are experts in its task. The

generator starts with difficulties in generating an output sample minimally similar to what

it should be. The discriminator, even if not yet an expert on its categorisation task, can

quickly distinguish original data samples from the poor-quality samples provided by a bad

generator. The generator is penalised and learns to generate more realistic samples in an effort

to minimize its loss function. The discriminator might start to find its task more difficult as the

generator becomes more professional. This pushes the discriminator to improve its capabilities

in classifying original and generated samples. At some point, the discriminator is confused in
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distinguishing original samples from high-quality generated samples while the generator cannot

further improve its performance. The loss functions report stable values and the training process

can be concluded. The discriminator is not needed anymore, while the weights of the layers of

the generator contain this learning feature capable of providing us with samples resembling the

original ones.

The generator of the 3D-GAN implemented in this thesis does not receive random inputs.

It is instead fed with wall measurements synchronised with the 3D velocity flow fields it must

provide, similar to how other DNN concepts have been used for flow estimation purposes from

the wall [139], [142], [143]. Both networks are trained on the basis of an adversarial loss,

describing how successful are the generator and the discriminator in their task, and a content

loss, reporting how accurate is the generator in preserving certain features of the original data

(in our case, minimising the reconstruction error). The loss functions are completely described

in equations (2.1)–(2.4) of paper 1. Furthermore, the tools aforementioned in section 3.3 are

combined and integrated into a GAN to create a network that is a DNN, makes use mostly of 3D-

convolutions, and has been designed and trained for the generation of a particular application

in the field of wall-bounded turbulence.

3.5 3D-GANs for flow estimation

One of the main contributions of this thesis is the implementation of a methodology employing

ML capable of making 3D flow field estimations from wall measurements. This methodology is

covered in detail in paper 1. After sections §3.1–3.4 introducing the framework on which this

approach is developed, this section covers certain details about the methodology that are not

covered in paper 1. Furthermore, a set of cases with poorer wall data availability is proposed

in paper 2. As the network is requested to do the same task, these cases are challenging the

methodology.

This work has been done employing—for training, testing and validation—data from a DNS

of a channel flow [203]. The solver is a pseudo-spectral code employing the wall-normal vorticity

and the laplacian of the wall-normal velocity on the formulation. It uses a Fourier discretisation

in the wall-parallel directions and a 7th-order compact finite differences in the wall-normal

direction. Time integration is done with a semi-implicit 3-step Runge Kutta procedure and the

non-linear terms are computed using a pseudo-spectral method. This algorithm is prepared to

employ GPUs to accelerate the simulation.
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This DNS simulates a channel flow at friction-based Reynolds number Reτ = 200. In papers

1 and 2 the dimensions of the channel are defined according to the half of the distance between

the channel walls h, with a length of πh in the streamwise direction and π/2h in the spanwise

direction. The 3D-GAN works directly on data with the same resolution as the DNS, with 64

points in both wall-parallel directions and 64 points from the wall to the centre of the channel.

Note that this grid sets equally-spaced points in the wall-parallel directions, but not in the

wall-normal direction.

The decision on the size of this channel was the result of a compromise. The channel must be

large enough to represent reasonably well the large scales. Large channels, on the other hand,

may require high storage capabilities and simulation time. Data-driven techniques require a

high number of samples, thus requiring running long simulations. The samples employed in

this dataset were sampled about every 0.5 eddy turn-over times, to reduce the correlation

between consecutive samples and reach statistical convergence. The eddy turn-over time is a

characteristic timescale that represents the time it takes for a large eddy to rotate or ‘turn

over’ once. It sets the timescale of the largest energy-containing turbulent structures. Given

these limitations and constraints, the channel was defined as smaller than common channels

with wall-parallel sizes (see for instance Ref. [204] where the channel has a length and a width

of 8πh and 3πh, respectively), but bigger than a minimal channel unit [205]. Figure 1 in

paper 1 shows the characterisation of this channel, with the wall-normal profiles of the mean

streamwise velocity and the standard deviation of the three velocity components. This figure

offers a comparison with other larger channels from the literature and a minimal channel unit

[205] at a similar Reτ . The most notable difference is found in the peak of the standard deviation

in the streamwise component, with an intermediate value between the minimal channel unit

and the larger channels. This curve seems slightly shifted to higher y+ values, mostly due to

the small differences in Reτ .

A key parameter for the choice of the dataset to be employed is the friction Reynolds number

Reτ . Different estimators, including linear estimators and DNNs, revealed that the reconstruc-

tion quality is acceptable up to a distance in wall-inner units that remains approximately

unchanged with Reτ [139], [143]. In fact, the capability to sense events at the wall is physically

limited by their size and wall-normal distance. In relation to this, as discussed in section 2.2,

wall-attached LSMs have a modulation effect of the near-wall cycle, while wall-detached LSMs

may participate in the formation of VLSMs, whose size does not change with Reτ . Thus, in a
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high Reτ channel flow (Reτ ≥ 1000), a good reconstruction accuracy might be only expected

very close to the wall. Hence, a low Reτ simplifies the simulation and the amount of data to

deal with, while its discussion would not differ much with respect to a high Reτ channel flow.

The network we use for flow estimation in its simplest implementation requires pressure and

both components of the wall-shear stresses at the wall. The three components of the velocity

at the 3D fluid domain are needed for training. The network works on fluctuating quantities

according to the Reynolds decomposition [206]. Furthermore, they are normalised with their

standard deviation, providing all of them with a similar dispersion, which may facilitate the

work of the network.

The details of the GANs used in this work are detailed in paper 1. The type of layers and

neurons employed in the 3D-GAN are those described in the previous sections of this chapter.

In particular, the generator network, shown in figure 3 of paper 1, employs convolutional layers,

parametric-ReLU activation functions and up-sampling layers. This last type is essential for the

extension of data in the wall-normal direction, from the wall planar input to the 3D domain,

while it keeps the domain size in both wall-parallel directions. In turn, the discriminator

network, described in figure 4 of paper 1, employs convolutional layers, Leaky-ReLU activation

functions, a flatten layer, two dense layers and a sigmoid activation function. Further details

about the training process are provided in paper 1.
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Chapter 4

A technique to measure instantaneous
convective heat transfer in
wall-bounded flows

This chapter explores the use of IR thermography as a non-intrusive measurement technique

for estimating wall-shear stresses in turbulent channel flows, which are essential for the DNNs

and GANs developed in this thesis (chapter 3, papers 1 and 2). The thesis builds on DNS

data but aims to demonstrate the feasibility of applying these algorithms to experimental data.

Wall-shear stress is a critical parameter in the GANs presented, yet obtaining 2D time-resolved

measurements non-intrusively remains challenging. To address this, the setup leverages IR

thermography with a heated thin-foil sensor to measure heat transfer. The Stanton number,

derived from heat transfer, correlates with the skin friction coefficient under certain conditions,

making it relevant to the current study. In this chapter, we introduce the use of IR thermography

to capture instantaneous temperature maps from a heated thin foil and apply energy balance

principles to extract the convective heat transfer coefficient. Simultaneous wall and flow field

measurements, such as those obtained via PIV, are essential for training and validating the

GAN models.

This chapter begins with a discussion on the physical relationship between convective heat

transfer and wall shear stress in §4.1, supporting the choice of this experimental approach.

Section 4.2 highlights prior work on IR thermography in wall-bounded flows. The characteristics

of the heated-thin-foil sensor, including its design, manufacturing, and data processing methods,

are covered in §4.3. It also outlines the experimental setup and data processing procedures,

with further details provided in paper 3. The utility of heat flux sensors to map the spatial

distribution of convective heat transfer across the sensor surface is explained.
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4.1 The link between wall-shear stress and convective heat transfer
coefficient

In chapter §2 it was seen how different studies evidenced the correlation between certain wall

quantities—such as the wall-shear stress—and other flow features near the wall. Hence, experi-

mental techniques to measure wall-shear maps are of interest to obtain pictures of the footprint

of the flow structures. However, the implementation of such an approach is extremely chal-

lenging with the available state-of-the-art technologies. In Ref. [207] a film wall-embedded

sensor of shear stresses was designed. Although measurements were successfully conducted,

certain important limitations were highlighted, such as the stability of mechanical properties,

the difficulties in sensing low shear modulus or the limitations due to the film frequency re-

sponse. Moreover, it is challenging to be manufactured. The liquid-crystal coating is a different

technique for wall shear stress sensing. In Ref. [208], it was compared with a near-wall PIV

measurements that provided more accurate results, although liquid-crystal coating offers full-

field accessibility.

From dimensional analysis, comparing the momentum and energy balance equations it is

possible to show that it exists a relation between the convective heat transfer coefficient and

the wall-shear, referred to as the ‘Reynolds Analogy’ [209]. It is based on the similarity between

momentum and internal energy profiles in a wall-bounded flow under steady state, zero-pressure-

gradient and unitary Prandlt number (equal thermal and momentum diffusivity). Both transfer

effects depend on similar equations, hence they should be represented with profiles with the

same shape, analogous to each other.

The Stanton number St relates the heat transfer to a fluid with its thermal capacity in

dimensionless terms. It can be expressed as

St =
hc

ρUcp
, (4.1)

where hc is the convective heat transfer coefficient, ρ and cp are respectively the density and

the specific heat of the fluid.

The wall-shear stress can be expressed in dimensionless form using the friction coefficient

cf = τw
1/2ρU2 and according to the Reynolds analogy, the Stanton number and cf are related

following (4.2).

St =
cf
2

. (4.2)
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In this way, hc (or St) could be directly linked to τw (or cf ). However, this approximation (4.2) is

only strictly valid for time-averaged wall-bounded flows with zero-pressure gradient conditions

(dP/dx = 0) and Pr = 1. If the last condition does not hold, the following correction should

be introduced:

St =
cf

2Pr0.6
. (4.3)

Away from the conditions for which the Reynolds analogy is valid, a strong relation still exists

between wall-shear and convective heat transfer. For instance, a recent research work employed

CNNs to estimate the heat transfer distributions, employing as input wall-shear stress maps

in wall-bounded turbulent flows [137]. The results by Ref. [137] suggest that if the flow field

can be estimated from wall shear measurements, this could also be possible from heat transfer

measurements. As with other examples, different studies analysed similar correlations before the

recent disruption of ML. Strong wall heat flux was found in correspondence of streamwise wall-

shear stress fluctuations in a channel flow according to the simulations by [210]. Correlations in

the near wall region of a channel with different quantities and derivatives were also a matter of

study, including pressure, momentum and thermal streaks [211], further supporting the present

choice of measuring the convective heat transfer coefficient hc.

4.2 Experimental background on IR thermography for wall-bounded
flows

Studies on wall-bounded flows involving heat transfer from the wall date back to before the

application of IR thermography. For example, thermocouples were employed to measure the

plate temperature over which the boundary layer developed, speeds were recorded with hot-

wire anemometers, and correlations were established [212]. This type of correlation was also

assessed by other experimental studies [213]. The first study measuring convective heat transfer

in a wall-bounded flow, employing IR thermography was that by Thomann and Frisk [214]

already in the sixties. If one considers time-resolved heat transfer measurement in a turbulent

wall-bounded flow, IR cameras were first employed by Hetsroni & Rozenblit, who measured

instantaneous heat transfer maps of a heated plate to study its thermal interaction with a

particle-laden turbulent flow [215]. The IR instrumentation consisted of an IR scanner with an

electronic control unit, a precursor system of the IR cameras that we use today for this type of

experiment.

Similar problems have been addressed experimentally, making use of IR thermography to
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read the temperature at the surface with synchronised PIV measurements for the flow velocity

[216], [217]. This type of experiment may have certain limitations due to the sensor properties,

the hardware and the noise affecting the acquisition. It may require the use of a low heat

capacity heated sensor as thin as a few microns to make the temperature fluctuations evident,

avoiding dampening by the thermal inertia of the material and lateral conduction [218], [219].

Despite this, these implementations might still be limited to low Reynolds numbers. Given the

temperature measurements, the heat transfer coefficient can be obtained with a procedure in-

cluding data filtering to clean noise and solving the energy balance problem for the heat transfer

sensor [219]. A POD-based filter was shown to reduce the noise level from the measurements

to retrieve the temperature fluctuations, indeed very small due to the high frequencies in tur-

bulent flows, particularly in air flows [220]. A similar filtering approach was recently used in

experiments synchronised with PIV to assess the correlation between heat transfer and turbu-

lent structures on the turbulent flow developed over a ribbed surface [120]. At UC3M, recently,

synchronised measurements have been developed to study the turbulent boundary layer in a

water tunnel facility [221].

4.3 Sensor for IR: implementation and thermal model

The recent literature of IR thermography studies reviewed in section §4.2 highlights certain

limitations and aspects to take into account when designing an experiment with this technology.

A foil installed on the wall at the region of interest can be employed as a heat transfer sensor,

enabling IR thermography to capture the foil temperature distribution needed to estimate the

heat flux along the surface. In the heated thin foil sensor, a thermally thin foil is heated by a

heat source and cooled by the flow [222].

The convective heat transfer coefficient is obtained from a local energy balance along the foil,

considering all input and output thermal fluxes, so as heat sources or sinks within the foil, as

sketched in figure 4.1. A simple mean to introduce the foil heating is through the Joule effect,

connecting the foil to a power supply to discharge a constant current through it. The power

introduced by the Joule effect V I can be considered to be uniformly generated throughout the

foil surface area A, leading to a local heat input uniform in space and constant in time. To

that end, it is convenient to employ a metal foil such as CuNi (constantan) [221] or CrNi-Steel

alloys which ensure thermal conductivity and sufficient mechanical strength to keep shape and

size while heated.
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Figure 4.1: Heated Thin Foil thermal model

The fact that the foil is thermally thin is assessed through the Biot number, defined as

Bi =
hcaf
kf

, where af is the foil thickness and kf is the foil thermal conductivity. The Biot

number compares convective to conductive heat flux through the foil thickness. The foil is

considered thermally thin if Bi ≪ 1. It implies that the temperature is approximately constant

through the foil thickness. The Fourier number Fo, defined as αtchar
a2f

, with tchar being the

characteristic time scale, represents the ratio of heat conduction rate to heat storage rate in a

material, indicating how quickly temperature changes propagate through it. While it is not a

direct measure of thermal inertia, Fo ≫ 1 suggests that heat conduction dominates over heat

storage, making it useful for analysing unsteady heat transfer processes [222].

The convective heat transfer between the fluid and the foil can be quantified establishing an

energy balance considering the different heat fluxes and sources. Following the sketch in figure

4.1, conduction through the foil span, convection and radiation on both sides of the foil, the

unsteady variation of the foil temperature and the power input should be modelled:

cp,fρfaf
∂Tw

∂t
= ϕ

′′

J − ϕ
′′

cond − 2ϕ
′′

rad − ϕ
′′

conv,ext − hc(Tw − Taw) . (4.4)

Conduction occurs in a solid or fluid material with a temperature gradient. The tangential

conduction heat flux q′′cond along the foil is given by Fourier’s Law:

q′′cond = −kfaf∇Tw . (4.5)
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Note that it is expressed with the Laplacian formulation for a 2D conducting plane. Conduc-

tion in the thickness direction has been neglected under the thermally-thin-foil assumption.

Radiation should be also considered on both sides of the foil. With this mechanism, energy is

emitted as electromagnetic waves from all surfaces. It can be transferred between two surfaces

that are not in contact even if there is no medium in between. The heat flux emitted by a

surface is given by:

q′′rad = εσ
(
T 4
w − T 4

amb

)
, (4.6)

being σ the radiation Stefan-Boltzmann constant and ε the surface’s material emissivity, in the

range from 0 (no emission) to 1 (blackbody, perfect emitter). Note that the radiation heat

flux is added twice in equation (4.4), as it is emitted from both surfaces. This formulation

is valid if both sides of the foil are coated (or uncoated) and hence have the same emissivity.

Otherwise, different emissivity values for the two faces should be accounted for. Heat transfer

by convection occurs between a solid surface and a fluid in contact with the surface. The energy

is transferred by the diffusive random motion of particles and the advective motion of the fluid.

In natural convection, the flow is due to the buoyancy forces due to the thermal gradient and

the differences in the fluid density, while in forced convection the flow is powered by external

means. Convection can be expressed with Newton’s law of cooling:

q′′conv = hc(Tw − Taw) , (4.7)

which is proportional to the temperature difference between the wall Tw and the adiabatic

wall temperature Taw, and to the convective heat transfer coefficient hc, which may depend on

the fluid properties, type of convection, flow field or surface geometry. Convection should be

considered on both sides of the foil if exposed to a flow. The coefficient hc on the internal side

is the unknown of the energy balance. The (natural) convection on the foil external side should

be studied according to the experimental setup. For example, with a thin foil horizontal on the

top side of the channel, it could be modelled according to a natural convection cell developed

on a heated plane facing up [223], [224], with:

ϕ
′′

conv,ext = hext(Tw − Tamb) , (4.8)

where the average instantaneous temperature within the foil Tw is taken and the external

convection heat transfer coefficient hext is quantified as:

hext =
Nunc κair

WL
2W+2L

. (4.9)
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being W and L the geometrical dimensions of a rectangular foil. This quantity depends on the

thermal conductivity of air κair and a characteristic length, defined as the ratio between the

area of the thin foil exposed to this external convection A = WL and its perimeter 2W + 2L.

The Grashof number is defined as:

Gr = gζT

(
WL

2W+2L

)3
ν2

, (4.10)

where g is the gravitational acceleration and ζ is the coefficient of thermal expansion. For this

range of the value of the Pr Gr product, the Nusselt number of natural convection Nunc is

estimated as [223]:

Nunc = 0.54(Gr Pr)0.25 . (4.11)

Following equation 4.4 to estimate the convective heat transfer coefficient, two acquisitions

must be performed, one with heating off, to evaluate the adiabatic wall temperature and one

with heating on to measure a sequence of Tw maps. The above heat fluxes should be introduced

in the energy balance, so as the Joule effect heat source q
′′
J = V I/A, being V and I the voltage

and current intensity provided to the foil. Concerning the foil thermal inertia, this leads to the

foil being heated and/or cooled over time due to the temporal variation of the local convective

heat transfer coefficient. Such quenching term can be modelled as cp,fρfaf
∂Tw

∂t
where cp,f is the

foil heat capacity, ρf its density, and af its thickness.

The IR camera must be sensitive enough to capture these temperature oscillations related

to the channel flow turbulence. This depends on the characteristic frequency of the phenomena

f and the noise equivalent temperature difference NETD of the camera (hardware). This

condition is expresses in (4.12), adapted from Ref. [225]:

ϕ
′′
J − ϕ

′′

cond − 2ϕ
′′

rad − ϕ
′′
conv,ext − hc(Tw − Taw)

ρf cp,f af f NETD
≫ 1 . (4.12)

Several important considerations involving the setup might enhance the quality of the acqui-

sition. All materials do not emit and absorb radiation power in the same way, even if they are

at the same temperature—such as room temperature—because of their different emissivities.

Avoiding having different objects or tools next to the experimental setup, in particular those

whose position may enhance direct radiation over the foil, can help mitigate thermal reflections.

The same happens with the IR camera and the lens. The IR camera actually measures radiation

and obtains temperature maps from a calibration: focusing the camera with a small tilt angle,

not directly in front of the foil, can be beneficial to avoid self-reflections. Furthermore, depend-
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ing on how reflective the foil is, the foil might be coated. For example, if the IR experiment is

combined with PIV and the foil is in the field of view of the PIV camera(s), a black-matte coat-

ing on that side of the foil may significantly improve the quality with which PIV particles are

imaged. Also, a high emissivity paint coating on the face seen by the IR camera may facilitate

the data acquisition. However, this may increase the effective heat capacity of the foil [219]

leading to higher thermal inertia and an attenuation of temperature fluctuations. Whenever

applied, the emissivity of the paint needs to be accounted for in the thermal inertia and the

radiation modelling.

The implementation of a heated thin foil sensor for the measurement of time-resolved con-

vective heat transfer maps in a turbulent channel are presented in paper 3 where the challenges

related to temporal sampling, foil thickness and heating, and measurement uncertainty are dis-

cussed in detail.
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Chapter 5

Main contributions and conclusions

The introductory part of this thesis discusses the importance of studying wall-bounded flows

and their implications in different human-made devices. Particularly, there is an interest in

designing active flow control systems to enhance the efficiency of those devices. New flow-

sensing strategies need to be investigated to that end, a problem that has been the subject

of study of many research works in the last decades. The technological availability of non-

intrusive sensing techniques suitable for this kind of application makes it necessary to rely on

measurements of other quantities, that fortunately are related to the velocity field. Hence, the

flow field measurements for wall-bounded flow control applications might be indirect. A more

complete and reliable fluid state could be estimated through more complex sensing systems and

algorithms, which in turn could be used in a more efficient actuation system.

Furthermore, estimating the velocity field from these non-intrusive measurements can pro-

vide us with information about the physics involved, which is not a completely solved problem

yet. The successful flow estimation to some extent indicates the existence of a certain relation

between the patterns of the sensed quantities and the flow field. This information is crucial for

achieving a more complete understanding of turbulence in wall-bounded flows. For example,

this knowledge could be employed to get more efficient geometrical designs or actuation sys-

tems.

This thesis takes advantage of the recent disruption of data-driven techniques, aiming to

provide us with a series of advancements with regard to ai-based sensing of turbulent

wall-bounded flows. These novel tools can be employed to develop a 3D flow field estimator

based on instantaneous wall measurements, relying on the coexistence of wall and flow patterns

sharing certain similarities to be seen by the data-driven algorithms.
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5.1 Main highlights

Paper 1

One of the motivations of this thesis comes from the state-of-the-art research works address-

ing this type of flow estimation in wall-parallel planes. Successful flow reconstructions were

possible by employing novel concepts of DNNs, such as GANs. However, these models pre-

sented some limitations, such as the lack of a 3D flow estimation. The 3D flow estimation can

provide a more complete information set, not just because it has an additional dimension. It

can be employed to assess a characterisation of the flow patterns as turbulent coherent struc-

tures and their footprint. The fundamental hypothesis of this thesis is that similar NN concepts

working on a 3D domain may be capable of estimating the full velocity field.

The work covered in paper 1, making use of ML, is introduced in chapter 3 presenting

the 3D-GAN methodology for this purpose. This work showed the capability to do such flow

estimations at any wall-normal distance with a comparable accuracy to that of GANs for wall-

parallel flow estimations. Computationally, it overcomes certain limitations. A single network

can predict the 3D flow field, while multiple 2D networks are needed for a 3D characterisation.

In terms of computational resources, such as the number of trainable parameters or training

time, the 3D approach, of course, requires more resources, but fewer resources if one considers

the amount of information being provided.

These results are coherent with the analogous 2D estimations and other approaches covered

in the literature. The estimation accuracy changes with the wall distance, and the metrics for

the streamwise velocity component are slightly better than for the other two components.

Different estimation volumes were defined, being the biggest one the volume comprised

between the wall and the half-channel plane. This comparison reported different metrics for

each volume case at the same wall-normal distance, suggesting that a footprint of the flow

patterns on the wall may influence the quality of the estimator. The flow footprint, mainly

composed of small-scale features in the near-wall region, makes the correlation difficult in the

region populated with large scales far from the wall.

The flow fields must be also assessed concerning how precisely they respect the physics. The

original and estimated mean squared velocity fluctuations and shear stress have been compared,

showing a good agreement close to the wall, progressively lost towards the centre of the channel

with the lack of capability of the network to estimate the velocity fluctuations. Another issue
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compromising the physics is the continuity in the domain. Although the continuity equations

are not included in the model, the 3D-convolution operations introduce an advantage with

respect to the 2D approach, reporting a much lower standard deviation of divergence.

The main advantage of the 3D approach for the assessment of the reconstruction is the fact

that coherent structures can be identified and completely located in space. The accuracy (or

error) on the estimation at some wall-normal distance, previously mentioned, is not uniform

for this distance. This is an average for all the elements comprised. While those belonging to

a wall-attached event may have a strong footprint and have higher chances of being properly

estimated, those wall-detached ones might be unseen by the network. Both effects are combined;

not all wall-attached events are estimated with the same accuracy, being better reproduced if

they remain within the near-wall region in all their extension. At the same time, wall-attached

events with a deep penetration towards the outer region should be reproduced much better

than detached events at a similar wall-normal distance.

These trends are general for all types of coherent structures. However, if the estimation

of sweeps and ejections are evaluated separately and compared, some differences are found,

coherent with the physics that explains them. The higher presence of wall-attached sweeps,

generally smaller than ejections and hence concentrated in the near wall region, estimates sweeps

less undistorted in this region. On the other hand, wall-attached ejections are less quantitative

but much bigger and have more chances to populate regions far from the wall than sweeps.

The data-driven algorithm learns better these patterns and estimates ejections more accurately

than sweeps far from the wall.

Paper 2

Despite the potential of the 3D-GAN as a flow estimator, different aspects may limit a real

implementation of the methodology in a laboratory environment, a step needed to design a

prototype. This is, employing measured values, both for the velocities and for the wall-sensed

quantities, instead of samples from a simulation. One of the main challenges would be to install

that amount of sensors with the DNS resolution on the wall. The hypothesis introduced at this

point states that employing fewer sensors, which certainly may simplify the setup, would make

the estimation less accurate but the 3D-GAN would still be capable of estimating the flow to

some extent.

Different approaches introduced in paper 2 intend to reduce the number of sensors. One of

these approaches was to reduce the resolution of the sensor maps by increasing their spacing,
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in both streamwise and spanwise directions. Moreover, it was done by employing only one

of the three wall-sensed quantities, instead of the three of them. These two approaches were

combined, bringing a set of scenarios. It can be concluded that the estimator capability is not

only driven by the footprint of the structures, but also by how completely is that footprint

being sensed with an alternative sensor disposition. The three wall quantities considered do

not correlate with each of the velocity fluctuations in the same way, and as their patterns are

of different characteristic sizes, some patterns may be more susceptible to not being properly

sensed under a lower sensor resolution than other types of patterns.

Given this situation, a new hypothesis was brought, suggesting that an estimation improve-

ment is possible with the same number of sensors if those could sense a higher proportion of

the footprint under different streamwise and spanwise resolution configurations. Being patterns

generally streamwise elongated, a lower streamwise resolution was proposed in exchange for a

higher spanwise resolution. It was shown that the problem is sensitive to the sensor placement.

However, the alternative configuration was not capable of improving the capabilities of the

estimator, with an additional loss certainly marginal.

Another possible limitation for the 3D-GAN in an experimental environment and for other

analogous estimators is the presence of noise in the measurements. Its effect has been inves-

tigated by introducing Gaussian noise on the simulated data. The noise effect is minimal in

the viscous sublayer but further from the wall, it may introduce significant penalties, which are

more significant when more sensors are employed. This is combined with other effects as the

proportion of the footprint is being sensed with a given configuration. Closer to the centre of

the channel, where the estimation capability is already poor, noise has minimal implications.

Paper 3 and synchronised measurements

Simulated data sets can be employed to design a model, as in this case, a data-driven

estimator model. However, to achieve the real implementation of a model it is necessary to

test it relying on experimental data, validating that the model can work with measurements

taken with available acquisition technologies. This problem should overcome limitations due

to this step from simulated to experimental data sets. For example, the resolution with which

a certain parameter can be sampled might be lower, or the capability to take measurements

of certain quantities easily available from a simulation can be limited experimentally, due to

technical or technological reasons.

The wall shear stress is one of the wall quantities fed to the estimator, as in papers 1
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and 2. This was possible from simulated data, however with the technological developments

nowadays, the acquisition of shear stresses as mappings along a surface does not seem accessible.

Fortunately, the estimation of heat transfer mappings is possible, while the correlation between

wall shear stress and heat transfer has been studied long. This motivates the development of

an experimental campaign to measure heat transfer at the wall through IR thermography.

This experimental approach is however non-trivial. The previous applications of this sensing

technique in wall-bounded flows according to the literature reveal certain limitations and diffi-

culties in this regard. Despite the high-frequency and small fluctuations aimed to be measured,

another objective of this thesis is to develop a reliable wall heat transfer sensing strategy, suit-

able for wall-bounded flows, capable of overcoming the limitations there might be.

5.2 Future work

The main research direction for future development are outlined in the remainder of this section.

Future work emerging from this thesis can build upon the foundational results and method-

ologies developed. A promising direction involves addressing the limitations encountered, such

as the low Reynolds number used in the simulations. Refining computational models or ex-

perimental setups to handle higher Reynolds numbers could provide more intriguing results.

Integrating advanced ML algorithms or improved sensor technologies may also offer new insights

and enable the study of more complex systems. Expanding these methodologies to larger-scale,

real-world applications could validate the findings on a broader scale and increase the impact

of the research.

5.2.1 Development of more efficient estimation techniques

One of the main challenges was the high computational and memory demands required for

working with higher Reynolds numbers, both for data generation via DNS and for implementing

the 3D-GAN. This would be interesting to explore further, as it would allow testing the model

in a more turbulent environment with a wider range of eddies and flow structures. Although

the literature suggests that model accuracy may remain comparable under different channel

flows in inner scaling, direct comparisons could highlight additional implications.

The rapid evolution of AI and ML continues to transform R&D in different fields, and

this problem may benefit from alternative and newer NN architectures, which might offer new

capabilities and advanced performances. Testing novel architectures or making adjustments
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to the 3D-GAN, such as incorporating PINNs, could help overcome current limitations by

introducing physical constraints during training. These modifications might enable the network

to better handle the peculiarities of this flow-sensing problem.

This thesis is based on the physical relationship between the patterns exhibited by certain

quantities in the wall and in the fluid. Under this pretext, a similar methodology could be used

to study this flow estimation problem in different geometries, such as in pipe flows.

To develop new active flow control strategies, advanced flow-sensing sensing techniques might

be needed and may offer great potential. The estimated flow field could be employed by the

controller to determine the actuation to be commanded. An important feature of the 3D-GAN

is the fact that it can characterise turbulent structures in its 3D domain, not just to identify

the presence of a structure at a certain wall-normal distance with an unknown extent. In

turn, the computational cost associated with this network is substantially larger than that of

simpler models, as the amount of data is generated from each wall sample. All this would be

very valuable information to compute the actuation required. Nevertheless, this amount of 3D

data could be reduced, just by retaining the location and certain features of the patterns to

be targeted by the actuation. To that end, there are certain ML techniques as discussed in

chapter 3 that would allow us to obtain a low-dimensional manifold or a latent space with this

information. It is important to obtain this set of reduced information from flow data estimated

from wall measurements, as is the case of the 3D-GAN. If this reduced order model were directly

obtained from the current velocity field, the footprint filtering effect of the estimator would be

lost—the structures that are seen/unseen from wall samples. Finally, it might be interesting to

study the estimation of this low-dimensional space with the information needed for actuation

systems directly from wall measurements.

5.2.2 Addressing effects towards experimental flow sensing implementation

Another challenge that might be found in the real implementation of wall-sensing techniques

for active flow control applications is the need for quick response calculations. If the calculation

is not fast enough, the flow may undergo substantial changes when the actuation is computed

compared to when the wall information was sensed. Studying flow estimation problems with

a temporal shift between the sampling of the wall and the fluid information would allow us to

mitigate this problem with some time margin for the calculation. The flow estimation of the

3D-GAN could incorporate this temporal shift, such that the flow fields embody also a temporal

prediction.
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In this thesis, some aspects of the resolution with which sensors can be installed on a wall

are addressed. The setup can be simplified by employing fewer sensors, while their size or other

installation restrictions can enforce a sensor resolution lower than that in the DNS. Some effects

due to a poorer resolution have been studied from a general overview. However, it would be

interesting to address this problem by attending to specific sensor technologies that could be

mounted on the wall.

The potential of the 3D-GAN has been shown by employing different simulated wall-sensed

quantities. To advance towards a real prototype, it is needed to validate the methodology

employing experimental data. This includes the assessment of new challenges due to the shift

from simulated to experimental data sets. For instance, experimental data might be obtained

with poorer resolution, with a certain noise level, or without the periodic channel condition of

the DNS data set.

5.2.3 Experimental validation with synchronized PIV and IR measurements

This section suggests an experimental setup for the acquisition of synchronised measurements

of temperature and velocity fields. These data could be employed to validate data-driven-based

estimators such as the 3D-GAN. To that end, the techniques employed are IR thermography,

described in chapter 4, and PIV. The setup for the temperature measurements is certainly

particular, and paper 3 is a dedicated article describing the design of the heat transfer mea-

surement setup. This section covers the details of the synchronisation and an assessment of the

correlation between heat transfer and velocity measurements.

This campaign has been conducted in the channel flow facility at Politecnico di Torino, with

Reτ = 220 and a bulk airspeed of 4.95 m/s. The velocity measurements are taken at a frequency

of 15 Hz, limited by the maximum frequency of the laser hardware employed. The temperature

measurements are taken at 180 Hz since a high temporal resolution is needed to compute the

temporal derivatives and quantify the heat transfer. Although this difference in frequencies,

measurements are synchronised, with 12 phased temperature measurements for each velocity

measurement. The temperature measurements were taken with an Infratec Camera ImageIR®

6300Z, with a resolution of 640 × 512 pixels. Detailed information about this acquisition, the

heated thin foil system, the temperature filtering procedure and the heat transfer quantification

is provided in paper 3.

The methacrylate channel walls allow optical access to the flow section for the PIV acqui-
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LASER HEAD

PIV

SYNCHRONIZER

IR

Figure 5.1: Side view of the experimental setup, with synchronised acquisitions with the IR camera (top) and
the PIV camera (bottom). The black wall section represents the frame where the thin foil (red) is mounted

sition. The optics system develops a thin laser sheet that penetrates the channel through the

sides to illuminate the region of interest during the PIV acquisition time. The PIV camera

operates from the bottom part of the channel, with the laser sheet horizontally oriented, paral-

lel to the channel walls. Simultaneously, the IR camera measures the temperature at a heated

thin foil fitted on a frame flash mounted on the top wall, coincident with the position of the

modular wall it replaces. A schematic representation of the process and the camera layout is

shown in figure 5.1.

A camera Andor Zyla 5.5 has been used for planar PIV. It has a resolution of 2560× 2160

pixels, with pixel size equal to 6.5µm. The mounted lens has a focal length of 60 mm. The

flow is seeded with DEHS (Di(2-ethylhexyl)sebacate) particles for PIV purposes with 1.2 µm

diameter. The flow region of interest for PIV is illuminated with a Litron Laser Nano L 200-15

PIV, with power supply LPU550, providing 532 nm green light up to 200 mJ per pulse. The

maximum frequency is 15 Hz per laser head. A system of mirrors and lenses allows us to develop

a thin sheet (with thickness smaller than 1 mm) parallel to the wall at the desired distance.

Two cylindrical lenses with focal length f = −50 mm (divergent) expand the beam into a sheet.

Two spherical lenses with focal lengths f = 100 (convergent) and f = −75 mm (divergent)

make the sheet thin and uniform within the region of interest. The last mirror places the laser

sheet at a distance of about 30 wall units from the channel wall and the thin foil.
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Figure 5.2: Correlation maps of the streamwise velocity maps to the Stanton number in the centre of the foil
at different time phases. The central map corresponds to the same trigger for the velocity and the temper-
ature acquisition. The map on the left corresponds to three IR trigger periods in advance. The map on the
right corresponds to a delay of 5 IR trigger pulses.

Each image pair has been acquired with a time interval of 180 µs between the shooting

of the first and the second laser. The original images have been pre-processed with a POD-

based background removal algorithm [226]. These filtered images have been used for the PIV

processing, following an iterative multipass algorithm [227], [228]. It starts with a window size

of 64 × 64 pixels and follows with two additional iterations with a window size of 48 × 48

pixels, always with a window overlapping parameter equal to 0.75.

The correlation between both measurement sets has been evidenced with a temporal sequence

of pairs of streamwise velocity and heat transfer synchronised maps. The temporal correlation

has been computed for each point of the velocity map with respect to the Stanton number

in the centre of the foil. This leads to a map showing a region with a high correlation with

the central point. Besides, both adjacent regions in the spanwise direction report a negative

correlation. Regions with negative correlation are also present upstream and downstream of

the highly-correlated region. These patterns may also be useful for an estimator. The rest of

the domain reports fluctuating, rather low correlations.

Interestingly, this acquisition contains 12 temperature time-resolved maps for each velocity

map, each of them with a phasing of 180 Hz. Consequently, the correlation of a velocity map can

be assessed for the temperature acquisition with a coincident trigger or for that with a slightly

advanced or delayed trigger. Three examples are shown in figure 5.2, showing the shifting of the

correlation patterns with the phasing. When the Stanton maps correspond to instants before

the PIV image acquisition (3 × 1
180Hz

for the left map), the high correlation region is limited

to a small region downstream. When both triggers coincide, this region elongates and moves

upstream. It further moves upstream when the IR trigger is delayed (5 × 1
180Hz

for the right

map).
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The high temporal resolution requirement for the IR acquisition brought the possibility

of addressing correlation effects with not necessarily time-coincident quantities. This can be

interesting, for example, for flow control applications, as in a hypothetical case where the

actuation is computed for the state of a flow some instants ahead. It also reveals a difference

with respect to the data fed to the 3D-GAN in this thesis. The best correlation for instantaneous

measurements is found at a certain distance downstream. If one aims to predict the flow field

in time, it is further shifted downstream.

It has been shown that this setup configuration is capable of providing correlated measure-

ments through synchronised acquisitions. It deals with limitations, such as mounting both

camera systems providing them with their respective optical access without intercepting each

other, or the different difficulties in sensing heat transfer fluctuations (which are very small and

respond to high-frequency events) which require a careful experimental design as discussed in

paper 3. This experimental configuration can be employed to advance towards prototypes in

the flow estimation from wall measurements.

5.2.4 Going beyond the training dataset

Experimental measurements of the flow in 2D, as those described in section 5.2.3, could be

employed in a 2D-GAN for planar estimation. This task may benefit from the use of transfer

learning techniques from a pre-trained model with simulated data so that the model with ex-

perimental data begins the training process with the capability to recognise certain patterns

similar to those it should learn to find. This model will learn discrepancies between the simu-

lated and the experimental data, adapting to the experimental noise, measurement differences,

and other specific details of the experimental data. The model would need to deal with data

from a non-periodic channel flow. 2D flow fields acquired at various wall-normal distances

could be combined to train a 3D estimator, which might necessitate integrating alternative

NN approaches with the 3D-GAN. Additionally, a 3D estimator—such as the 3D-GAN—could

employ experimental data acquired from tomographic PIV.

Analogously, alternative experimental campaigns could be proposed to work with other wall

quantities than heat transfer. Those may have new challenges to be addressed for a successful

acquisition procedure. For instance, pressure probes could be installed along the wall surface to

obtain a synchronised data set employing a pressure scanner. The experimental setup proposed

in this thesis concentrates most challenges in the heated thin foil sensor and its processing,

while the foil coating facilitated the PIV acquisition. In this alternative campaign for pressure
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sensing, a possible challenge would be found in the PIV acquisition, with reflections and an

irregular surface with probes embedded.

Furthermore, the feasibility of conducting a similar experimental campaign on a channel at

a higher Reynolds number could be assessed. It would be useful to test the applicability of the

flow-sensing technique under turbulent scenarios closer to those encountered in human-made

devices. This may bring further complexities, such as higher frequency events and a higher

sampling frequency. With the experimental setup considered in the thesis, a higher flow speed

would require a higher acquisition frequency. It might be limited by the hardware of the camera,

although temporal resolution could be gained at the cost of some spatial resolution.
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Paper 1

Three-dimensional generative adversarial neural networks for turbu-
lent flow estimation from wall measurements

Antonio Cuéllar, Alejandro Güemes, Andrea Ianiro, Óscar Flores, Ricardo Vinuesa and Stefano

Discetti, Journal of Fluid Mechanics (2024), vol. 991, A1, doi:10.1017/jfm.2024.432

Different types of neural networks have been used to solve the flow sensing problem in

turbulent flows, namely to estimate velocity in wall-parallel planes from wall measurements.

Generative adversarial networks (GANs) are among the most promising methodologies, due

to their more accurate estimations and better perceptual quality. This work tackles this flow

sensing problem in the vicinity of the wall, addressing for the first time the reconstruction

of the entire three-dimensional (3-D) field with a single network, i.e. a 3-D GAN. With this

methodology, a single training and prediction process overcomes the limitation presented by the

former approaches based on the independent estimation of wall-parallel planes. The network

is capable of estimating the 3-D flow field with a level of error at each wall-normal distance

comparable to that reported from wall-parallel plane estimations and at a lower training cost

in terms of computational resources. The direct full 3-D reconstruction also unveils a direct

interpretation in terms of coherent structures. It is shown that the accuracy of the network

depends directly on the wall footprint of each individual turbulent structure. It is observed

that wall-attached structures are predicted more accurately than wall-detached ones, especially

at larger distances from the wall. Among wall-attached structures, smaller sweeps are recon-

structed better than small ejections, while large ejections are reconstructed better than large

sweeps as a consequence of their more intense footprint.

Keywords: Turbulent boundary layers, Channel Flow, Machine learning
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1 Introduction

The ubiquitous nature of turbulent flows motivates the need for control to enhance the perfor-

mance of a wide variety of devices. However, closed-loop control of turbulent flows (Choi, Moin

& Kim 1994 [58]) requires continuous monitoring of their state. It is of utmost importance to

be able to sense the flow state with minimal intrusiveness. Sometimes non-intrusive sensing is

the only option available. This is the case of wall-bounded flows, making it possible to embed

sensors within the wall. Non-intrusive sensing of turbulent flows has been the subject of several

studies in the past decades. Machine learning has revolutionized the field of fluid mechanics

(Brunton, Noack & Koumoutsakos 2020 [152]; Mendez et al. 2023 [229]), including both ex-

periments (Discetti & Liu 2022 [230]; Vinuesa, Brunton & McKeon 2023 [231]) and simulations

(Vinuesa & Brunton 2022 [164]). As such, the recent advances in machine learning and the

wealth of available computational resources offer new interesting avenues for flow sensing.

The estimation of flow velocity solely on the basis of wall measurements was first explored

using linear methods, such as linear stochastic estimation (LSE; Adrian 1996 [232]). The

use of LSE was successful for the reconstruction of large-scale wall-attached eddies (Baars,

Hutchins & Marusic 2016 [130]; Suzuki & Hasegawa 2017 [134]; Encinar, Lozano-Durán &

Jiménez 2018 [233]; Illingworth, Monty & Marusic 2018 [234]; Encinar & Jiménez 2019 [132]).

This methodology is capable of reconstructing a certain range of length scales of the structures

populating the vicinity of the wall (i.e. the buffer layer) with reasonable accuracy. In the region

farther from the wall, only large-scale motions are generally captured. These reconstructions

can be more sophisticated by supplementing the methodology with further instruments in order

to manipulate the filtering of scales, retaining and targeting the reconstruction over a broader

spectrum. For example, in the work by Encinar & Jiménez (2019) [132] with a turbulent

channel flow in a large computational domain at a high friction Reynolds number, the large-

scale structures containing about 50 % of the turbulent kinetic energy and tangential Reynolds

stresses are reconstructed successfully up to y/h ≈ 0.2, while only attached eddies of sizes of

the order of y are sensed in the logarithmic layer.

An alternative linear approach is the extended proper orthogonal decomposition (EPOD)

(Borée 2003 [118]), which can establish a correlation between input and output quantities

through the projection of their corresponding proper orthogonal decomposition (POD) modes

(Lumley 1967 [104]). Despite leveraging only linear correlation, EPOD presents the advantage

of being able to target specific significant features in a space of reduced dimensionality. A
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non-exhaustive list of examples of EPOD applications to the reconstruction of turbulent flows

includes the estimation of the low-dimensional characteristics of a transonic jet (Tinney, Ukei-

ley& Glauser 2008 [119]), wakes behind wall-mounted objects (Bourgeois, Noack& Martinuzzi

2013 [235]; Hosseini, Martinuzzi& Noack 2016 [236]), wing wakes (Chen, Raiola& Discetti 2022

[123]), turbulent channel flows (Discetti, Raiola& Ianiro 2018 [237]; Güemes, Discetti& Ianiro

2019 [139]) and even high-Reynolds-number pipe flows (Discetti et al. 2019 [238]). The limita-

tions in terms of reconstruction capabilities and spectrum range found with EPOD are similar

to those with LSE.

Lasagna et al. (2015 [145]) studied multiple-time-delay estimation techniques. Although

linear methods provide accurate estimations in the viscous layer, nonlinearities must be con-

sidered to extend the reconstruction into the buffer layer. Also, Chevalier et al. (2006 [126])

and Suzuki & Hasegawa (2017 [134]) highlighted the importance of incorporating nonlinear

terms to get a more accurate estimation with a Kalman filter. Following the seminal work by

Milano & Koumoutsakos (2002 [136]), neural networks emerge as an alternative able to cope

with nonlinear relations between sensor and flow features. Recently, deep-learning algorithms

have been leveraged for flow reconstruction from sensors. For example, the laminar wake of

a cylinder and the flow in a turbulent channel have been reconstructed successfully in two

dimensions from coarse measurements with convolutional neural networks (CNNs) (Fukami,

Fukagata & Taira 2019 [156], 2021 [239]). The performances of LSE and CNNs in estimation

from wall measurements in a turbulent channel flow have been compared by Nakamura, Fukami

& Fukagata (2022 [240]), reporting that linear models can provide comparable results at the

cost of establishing a nonlinear framework to combine and provide the inputs to the system.

Nevertheless, the use of nonlinearities through CNNs can be very effective and neural networks

seem more robust against noise than LSE. Burst events in the near-wall region such as ejections

and sweeps were studied by Jagodinski, Zhu & Verma (2023 [241]), with a three-dimensional

(3-D) CNN capable of predicting their intensities, and also providing information about the

dynamically critical phenomena without any prior knowledge. For the specific task of esti-

mation of flow velocity from wall sensors, Güemes et al. (2019 [139]) proposed using CNNs

to estimate temporal coefficients of the POD of velocity fields. This approach has shown to

be superior to EPOD, achieving better accuracy at larger distances from the wall. Guastoni

et al. (2021 [142]) compared the performances of estimators based on a fully convolutional

network (FCN) to estimate the velocity fluctuations directly, or to estimate the field through

POD modes (FCN-POD), using as input pressure and shear-stress fields at the wall. The FCN
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and FCN-POD have shown remarkable accuracy for wall distances up to 50 wall units at a

friction-based Reynolds number Reτ = 550. Recently, Guastoni et al. (2022 [242]) explored

this FCN architecture, but using the convective heat flux at the wall, reporting a 50 % error

reduction at 30 wall units.

An additional improvement has been achieved by Güemes et al. (2021 [143]) with an algo-

rithm based on generative adversarial networks (GANs; Goodfellow et al. 2014 [202]). This ar-

chitecture consists of two agents, a generator and a discriminator, which are trained to generate

data from a statistical distribution and to discriminate real from generated data, respectively.

Generator and discriminator networks compete in a zero-sum game during the training process,

i.e. the loss of one agent corresponds to the gain of the other, and vice versa. These GANs have

been applied for variegated tasks in fluid mechanics in the last years, including super-resolution

(Deng et al. 2019 [157]; Güemes, Sanmiguel Vila & Discetti 2022 [158]; Yu et al. 2022 [148])

and field predictions (Chen et al. 2020 [243]; Li et al. 2023 [244]).

In the work by Güemes et al. (2021 [143]), GANs are used to generate wall-parallel velocity

fields from wall measurements—pressure and wall-shear stresses. This architecture has shown

better performances than the FCN and FCN-POD architectures proposed earlier (Guastoni et

al. 2021 [142]); furthermore, it has shown remarkable robustness in the presence of coarse wall

measurements. This aspect is particularly relevant for the practical implementation in experi-

mental and real applications where the spatial resolution of the sensors might be a limitation.

The main shortcoming of the aforementioned studies is that the estimation is carried out

with planar data, i.e. the velocity is estimated on wall-parallel planes. An ad hoc network

must thus be trained for each wall-normal distance. However, turbulent boundary layers are

characterized by the presence of 3-D coherent features (Jiménez 2018 [205]), a fact that was first

realized in the visual identification of the near-wall streaks by Kline et al. (1967 [76]). These

structures follow a process of lift-up, oscillation and bursting, referred to as the near-wall energy

cycle (Hamilton, Kim & Waleffe 1995 [245],), responsible for maintaining turbulence near the

wall (Jiménez & Pinelli 1999 [246]). A similar cycle, albeit more complex and chaotic, was

later identified in the logarithmic layer (Flores & Jiménez 2010 [247]), involving a streamwise

velocity streak with a width proportional to its height that bursts quasi-periodically.

The search for organized motions and coherent structures in wall-bounded turbulent flows

has resulted in several families of structures. The definition of many of these structures is

based on instantaneous velocity fields, like the hairpin packets of Adrian (2007 [86]), or the
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more disorganized clusters of vortices of Del Álamo et al. (2006 [248]). Other structures, like

the very large streaks of the logarithmic and outer region, have been described in terms of both

two-point statistics (Hoyas & Jiménez 2006 [92]) and instantaneous visualizations (Hutchins

& Marusic 2007 [89]). Of particular interest here are the Q-structures defined by Lozano-

Durán, Flores & Jiménez (2012 [249]), which are based on a reinterpretation of the quadrant

analysis of Willmarth & Lu (1972 [250]) and Lu & Willmarth (1973 [251]) to define the 3-D

structures responsible of the turbulent transfer of momentum. These Q-structures are divided

into wall-detached and wall-attached Qs events, in a sense similar to the attached eddies of

Townsend (1961 [70]). As reported by Lozano-Durán et al. (2012 [249]), the detached Qs are

background stress fluctuations, typically small and isotropic, without any net contribution to

the mean stress. On the other hand, wall-attached Qs events are larger, and carry most of the

mean Reynolds stress. Sweeps (Q4) and ejections (Q2) are the most common wall-attached Qs,

appearing side by side in the logarithmic and outer regions.

It is reasonable to hypothesize that the nature of such coherent structures might have a

relation with the capability of the GAN to reconstruct them or not. Employing state-of-the-art

neural networks, the estimation of a full 3-D field from wall data requires the use of multiple

networks targeting the reconstruction of wall-parallel planes at different wall distances. This

implies bearing the computational cost of a cumbersome training of several networks, one for

each of the desired wall-normal distances. Furthermore, each network is designed to reconstruct

features at a certain distance from the wall, ignoring that the wall-shear stresses and pressure

distributions depend also on scales located outside the target plane. The two-dimensional (2-D)

reconstruction of an essentially 3-D problem complicates the interpretation of the actual scales

that can be reconstructed in this process, while the continuity between adjoining layers—in

terms of both absence of discontinuities within the field and mass conservation—is not nec-

essarily preserved. Some recent works tackle similar problems, also from a 3-D perspective,

such as the reconstruction of an unknown region of the flow through continuous assimilation

technique by Wang & Zaki (2022 [146]), the reconstruction of fields from flow measurements by

Yousif et al. (2023 [147]), and the reconstruction from surface measurements for free-surface

flows through a CNN by Xuan & Shen (2023 [150]).

This work aims to overcome the aforementioned limitations by leveraging for the first time

a full 3-D GAN architecture for 3-D velocity estimation from the wall. We employ a dataset

of 3-D direct numerical simulations (DNS) of a channel flow. The reconstruction capabilities
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Case y/h range Ny Nx Nz ∆y+min ∆y+max

A [0-1] 64 64 64 0.48 6.5
B [0-0.52] 48 64 64 0.48 5.0
C [0-0.21] 32 64 64 0.48 2.6
D [0.21-1] 32 64 64 2.8 6.5

Table 1. Details about the domain of the cases, as represented in figure 2.

of a 3-D GAN are assessed. Section 2 describes both the training dataset and the 3-D GAN

networks employed in the present study, while § 3 reports and discusses the results both in terms

of reconstruction error statistics and in terms of structure-specific reconstruction quality. The

physical interpretation of the results is given in terms of the framework of quadrant analysis in

three dimensions (Lozano-Durán et al. 2012 [249]). Finally, § 4 presents the conclusions of the

study.

2 Methodology

2.1 Dataset description

(a) (b)

Figure 1. Wall-normal profiles of (a) the mean streamwise velocity and (b) standard deviation σ of the three
velocity components. Data are presented in inner units and compared to other databases at a similar Reτ ≈
180, including a minimal channel unit (Jiménez 2018 [205]) and several bigger channels.

The dataset employed in this work consists of 3-D flow fields and shear and pressure fields

at the wall of a minimal-flow-unit channel flow. Our numerical simulations are performed

with a state-of-the-art pseudo-spectral code that uses a formulation based on the wall-normal

vorticity and the Laplacian of the wall-normal velocity, and a semi-implicit Runge–Kutta for

time integration (Vela-Mart́ın et al. 2021 [203]). The solver uses a Fourier discretization

66



Figure 2. Representation of the reconstructed volume of the channel in each case, as defined in table 1.

in the wall-parallel directions and seventh-order compact finite differences in the wall-normal

direction with spectral-like resolution (Lele 1992 [252]). The simulation domain is a periodic

channel with two parallel walls located 2h apart, with sizes πh and π/2h in the streamwise and

spanwise directions, respectively. This small channel fulfils the conditions established in the

work by Jiménez & Moin (1991 [253]), which defines the minimal channel unit able to sustain

turbulence.

In this work, we indicate with x, y, and z the streamwise, wall-normal and spanwise di-

rections, respectively, with their corresponding velocity fluctuations denoted by u, v and w.

Simulations are performed at a friction-based Reynolds number Reτ = uτh/ν ≈ 200, where ν

refers to the kinematic viscosity, and uτ =
√

τw/ρ indicates the friction velocity, with τw the

average wall-shear stress, and ρ the working-fluid density. The superscript + is used to express

a quantity in wall units. To ensure statistical convergence and to minimize the correlation

between the fields employed, data were sampled every ∆t+ ≈ 98, i.e. 0.5 eddy-turnover times.

The mean streamwise profile and the standard deviation of the velocity components are shown

in figure 1. Moreover, the mean-squared velocity fluctuations in inner units are plotted in fig-

ure 6, where they can be compared with those reported for similar channel flows at Reτ ≈ 180

(Abe, Kawamura & Matsuo 2001 [254]; Del Álamo & Jiménez 2003 [255]; Vreman & Kuerten

2014 [256]; Lee & Moser 2015 [204]).

Both the wall pressure pw and the wall-shear stress in the streamwise (τwx) and spanwise (τwz)

directions are used for the flow field estimations. The data are fed into the proposed network

on the same grid as the simulation. The streamwise and spanwise directions are discretized
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Residual block Trainable parameters
Case up-sampling scheme G D

A 0-6-12-18-24-30 9.0× 106 18.2× 106

B 0-5-10-15-20 8.0× 106 18.2× 106

C 6-12-18-24-30 8.0× 106 23.8× 106

D 0-7-14-21-28 8.0× 106 23.8× 106

2D-GAN 7.3× 105 8.0× 107

Table 2. Details on the implementation of the architectures. The column ‘Residual block up-sampling scheme’
indicates the indexes of the residual blocks that are followed by an up-sampling block. The number of train-
able parameters of the generator (G) and discriminator (D) networks are also reported. Cases A–D are com-
pared with the 2-D GAN from Güemes et al. (2021 [143]).

each with 64 equally spaced points, while the volume is discretized with 128 layers with variable

spacing from the wall to the mid-plane. This discretization provides a set of grid points with

a similar spacing to that found at Reτ = 180 in the work by Del Álamo & Jiménez (2003

[255]). The estimation capability of the 3-D fields was tested for volumes occupying the whole

wall-parallel domain, but with different ranges in the wall-normal direction, giving rise to a set

of test cases. These test cases are sketched in figure 2 and summarized in table 1, with Nx,

Ny and Nz indicating the size of the mesh along each direction, and ∆y+min and ∆y+max max

being respectively the minimum and maximum wall-normal lengths of each grid step within

the domain of each of the cases. Starting from the wall, cases A to C progressively reduce their

wall-normal top limit from y/h < 1 to y/h < 0.21 so as the number of x− z layers. Case D is

defined as the domain complementary to that of case C, i.e., covering wall-normal distances in

the range 0.21 < y/h < 1.

2.2 Generative adversarial networks

In this work, a GAN architecture is proposed to estimate 3-D velocity fields from wall measure-

ments of pressure and shear stresses. The implementation details of the proposed architecture

are presented below, being an extension to the 3-D space of the network proposed in the work

of Güemes et al. (2021 [143]).

A schematic view of the generator network G can be found in figure 3. The network is similar

to that proposed by Güemes et al. (2021 [143]), although with some modifications. It is fed with

wall measurements and consists of 16 residual blocks, containing convolutional layers with batch

normalization layers and parametric-ReLU. The classic ReLU activation function provides as

output f(x) = x for positive entries and f(x) = 0 (flat) for negative ones. Parametric-ReLU

does the same on the positive input values, while for negative entries it is defined as f(x) = ax,

where a is a parameter (He et al. 2015 [190]). In addition, sub-pixel convolution layers are
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used at the end for super-resolution purposes, adding more or fewer layers depending on the

resolution of the fed data. To deal with 3-D data, a third spatial dimension has been added to

the kernel of the convolutional layers. Since the present dataset does not require the network

to increase the resolution from the wall to the flow in the wall-parallel directions, the sub-

pixel convolutional layers present after the residual blocks in Güemes et al. (2021 [143]) have

been removed. Similarly, the batch-normalization layers were dropped since they were found

to substantially increase the computational cost without a direct impact on the accuracy (He

et al. 2016 [257]; Kim, Lee & Lee 2016 [258]).

The increase of the wall-normal thickness up to the desired output volume has been achieved

by using blocks composed of up-sampling layers followed by convolutional layers with parametric-

ReLU activation, which we will refer to as up-sampling blocks throughout this document. For

cases A, B and D, the first block is placed before the residual blocks. They increase the size of

the domain by a factor of 2 in all cases except for the first up-sampling block in case B, which

increases the size of the domain by a factor of 3. The rest of the up-sampling blocks are applied

after the residual blocks, whose indexes are specified in table 2, together with the number of

trainable parameters of the networks. The number of residual blocks, which has been increased

to 32 with respect to Güemes et al. (2021 [143]), and the criterion to decide when to apply the

up-sampling blocks, are analysed with a parametric study, for which a summary can be found

in Appendix A.

A schematic of the discriminator network D is presented in figure 4. This network is very

similar to that proposed by Güemes et al. (2021 [143]). The main difference is the change of

the convolutional kernel to the 3-D space, including this new dimension. It consists mainly

of a set of convolutional layers that progressively reduce the size of the domain and increase

the number of filters. Then, with a flatten layer and two fully-connected layers, the network

provides a single output in the range 0–1. Further details can be found in Appendix A. Ad-

ditionally, it is important to note that due to the wall-normal dimension of its input data,

one discriminator block was removed from cases C and D, which led to the counter-effect of

increasing the number of trainable parameters reported in table 2. This network makes use of

the leaky-ReLU activation function (Maas, Hannun & Ng 2013 [189]; He et al. 2015 [190]).

The training process has been defined for 20 epochs, although the predictions are computed

with the epoch where the validation loss stops decreasing, and the optimizer implements the

Adam algorithm (Kingma & Ba 2014 [259]) with learning rate 10−4. In total, 24 000 samples

69



Figure 3. (a) Sketch of the generator network. (b) The residual block and (c) the up-sampling block sub-
units, which are repeated recursively through network (a). The filter dimension is represented only in the net-
work input [pw, τwx

, τwz
] and output [u, v, w]. All other layers work over 64 filters, except the last layer, which

only has 3 filters coinciding with the output. The planar panels indicate the different layers of the network:
up-sampling (U), parametric-ReLU (PR), and convolution layers with kernel sizes 3 (C3) and 9 (C9), respec-
tively. Arrows indicate the flow of data through layers.
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Figure 4. Sketch of the discriminator network. The network receives as input the velocity-fluctuation fields.
The planar panels indicate the different layers of the network: the data passes through a set of convolutional
(C3) and leaky-ReLU (LR) layers, reducing the dimension of the domain in the x, y and z coordinates as the
number of filters increases progressively from 64 to 512. All these data are reshaped into a single vector with
the flatten (F) layer. The dimensionality is reduced, first with a D fully connected layer with 1024 elements as
output, and then with another D layer providing a single element, which is finally fed to a sigmoid (S) activa-
tion function.

have been used, keeping 4000 for validation and 4000 for testing. A random initial condition is

set and evolved during about 100 eddy-turnover times to eliminate transient effects. Samples

of the testing dataset are captured after approximately 100 eddy-turnover times from the last

snapshot of the validation dataset to minimize correlation with the training data.

As mentioned above, the networks operate with the velocity fluctuations [u, v, w]. As there

are significant differences in the mean values of the velocity components at the centre of the

channel and in the vicinity of the wall, the mean values used to compute the field of fluctuation

velocities have been obtained for each particular wall-normal distance y. In addition, to facili-

tate the training of the network, each fluctuating velocity component has been normalized with

its standard deviation at each wall-normal layer (see figure 1). Similarly, the wall measurements

[pw, τwx , τwz ] provided to the network have been normalized with their mean value and standard

deviation.

The training loss functions are defined as follows. The fluctuations of the velocity field

can be represented as u = [u, v, w], such that uDNS is the original field, and uGAN is the field

reconstructed by the generator network given its corresponding set of inputs [pw, τwx , τwz ]. With

these two definitions, using the normalized velocity fields, the content loss based on the mean-

squared error (MSE) is expressed as
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LMSE =
1

3NxNyNz

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

[
(uDNS(i, j, k)− uGAN(i, j, k))

2

+(vDNS(i, j, k)− vGAN(i, j, k))
2 + (wDNS(i, j, k)− wGAN(i, j, k))

2] ,

(2.1)

Using the binary cross-entropy, an adversarial loss is defined as:

Ladv = −E[logD(uGAN)] , (2.2)

to quantify the ability of the generator to mislead the discriminator, with E the mathematical

expectation operator, and D(·) the output of the discriminator network when it receives a flow

field as input—in this case, a GAN-generated flow field. This adversarial loss is combined with

the content loss to establish the loss function of the generator network as

LG = LMSE + 10−3Ladv . (2.3)

The loss function for the discriminator network, defined as

LD = −E[logD(uDNS)]− E[log(1−D(uGAN))] , (2.4)

also uses the binary cross-entropy to represent its ability to label correctly the real and generated

fields. To ensure stability during the training process, both the adversarial and discriminator

losses are perturbed by subtracting a random noise in the range 0–0.2. This technique, referred

to as label smoothing, makes it possible to reduce the vulnerability of the GAN by modifying

the ideal targets of the loss functions (Salimans et al. 2016 [260]).

3 Results

3.1 Reconstruction accuracy

The reconstruction accuracy is assessed in terms of the MSE of the prediction. The contribution

of each velocity component (u = [u, v, w]) to the metric presented in (2.1) has been computed

along the wall-normal direction, denoted asLu, Lv and Lw, respectively. In this case, the error

is computed using only one component at a time, and the factor of 3 in the denominator is

eliminated. As discussed in § 2.2, the training data have been normalized with their standard

deviation for each wall-normal distance. This procedure allows us a straightforward comparison

with the results of 2-D GAN architectures (Güemes et al. 2021 [143]). It must be remarked
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Figure 5. The MSE of the fluctuation velocity components (a) u, (b) v and (c) w for the 3-D GAN (contin-
uous lines) and the 2-D GAN at Reτ = 180 (symbols with dashed lines) as implemented by Güemes et al.
(2021 [143]). Velocity fluctuations are normalized with their standard deviation at each wall-normal coordi-
nate y+.

that flow reconstruction by Güemes et al. (2021 [143]) is based on an open-channel simulation;

nonetheless, the similar values of Reτ numbers provide a quite accurate reference.

The MSE for each velocity component is plotted with respect to the wall-normal distance for

the selected network architectures of each case A–D in figure 5, and numerical data of the error

at the wall distances used in the 2-D approach are collected in table 3 for comparison. They

have been computed for the velocity fluctuations normalized with their standard deviation at

each wall-normal coordinate y+, allowing us to compare the accuracy of this network with the

analogous 2-D study. Some general comments can be raised at first sight.

1. As expected, and also reported in the 2-D analysis (Güemes et al. 2021 [143]), the regions

closer to the wall show a lower L. This result is not surprising: at small wall distances the
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y+ Case Lu Lv Lw

A 0.043 0.076 0.088
B 0.038 0.066 0.074
C 0.027 0.044 0.050

15

2D-GAN 0.013 0.018 0.019
A 0.137 0.214 0.205
B 0.118 0.190 0.179
C 0.095 0.152 0.143

30

2D-GAN 0.061 0.097 0.084
A 0.306 0.440 0.429
B 0.277 0.411 0.395
D 0.356 0.505 0.494

50

2D-GAN 0.185 0.289 0.268
A 0.639 0.788 0.782
B 0.619 0.779 0.771
D 0.665 0.815 0.813

100

2D-GAN 0.524 0.684 0.687

Table 3. The MSE for the three velocity components and for each case, at different wall distances. The re-
sults are compared with the 2-D analysis by Güemes et al. (2021 [143]). These quantities correspond to veloc-
ity fluctuations normalized with their standard deviation at each wall-normal coordinate y+.

velocity fields show high correlation with the wall-shear and pressure distributions, thus

simplifying the estimation task for the GAN, independently on the architecture.

2. The streamwise velocity fluctuation u always reports a slightly lower L than v and w for

all the tested cases. This is due to the stronger correlation of the streamwise wall-shear

stress.

3. The 3-D GAN provides a slightly higher L than the 2-D case. This was foreseeable: the

3-D architecture proposed here is establishing a mapping to a full 3-D domain, with only

a slight increase in the number of parameters in the generator with respect to the 2-D

architecture, as can be seen in table 2. Furthermore, there is a considerable reduction in

the number of trainable parameters in the discriminator. If we consider Lu = 0.2, then the

reconstructed region with an error below this threshold is reduced from approximately 50

to slightly less than 40 wall units when switching from a 2-D to a 3-D GAN architecture.

In test case A, part of the effort in training is directed to estimating structures located

far from the wall, thus reducing the accuracy of the estimation. For this reason, cases B and

C were proposed to check whether reducing the wall-normal extension of the reconstructed

domain would increase the accuracy of the network. Comparing the L values of cases A, B

and C in table 3, it is observed that there is some progressive improvement with these volume

reductions, although it is only marginal. For example, the error Lu at y+ = 100 is 2% lower

when switching from case A to case B, i.e. reducing by a factor of 2 the size of the volume
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to be estimated. This fact can also be observed in figure 5(a), where the Lu values for all

the cases can be compared directly. Similar conclusions can be drawn from the other velocity

components. The improvement between cases is marginal. The quality of the reconstruction

of one region seems thus to be minimally affected by the inclusion of other regions within the

volume to be estimated. This suggests that the quality of the reconstruction is driven mainly

by the existence of a footprint of the flow in a certain region of the channel. In Appendix B,

we have included a comparison with LSE, EPOD and a deep neural network that replicates

the generator of case A and provides an estimation of the effect of the discriminator. The

accuracy improvement of the 3-D GAN with respect to the LSE and the EPOD is substantial,

while the effect of the adversarial training does not seem to be very significant. Nevertheless,

previous works with 2-D estimations (Güemes et al. 2021 [143]) have shown that the superiority

of the adversarial training is more significant if input data with poorer resolution are fed to

the network. We hypothesize that a similar scenario might occur also for the 3-D estimation;

nonetheless, exploring this aspect falls outside the scope of this work.

Case D, targeting only the outer region, is included to understand the effect of excluding

the layers having a higher correlation with wall quantities from the reconstruction process.

The main hypothesis is that during training, the filters of the convolutional kernels may focus

on filtering small-scale features that populate the near-wall region. Comparing the plots for

cases A and D in figure 5, it is found that the L level in case D is even higher than in case

A. While this might be surprising at first glance, a reason for this may reside in the difficulty

of establishing the mapping from the large scale in the outer region to the footprint at the

wall when such footprint is overwhelmingly populated by the imprint of near-wall small-scale

features. Convolution kernels stride all along the domain, and when the flow field contains

wall-attached events with a higher correlation, the performance far from the wall seems to be

slightly enhanced. In case A, the estimator is able to establish a mapping for such small-scale

features to 3-D structures, while for case D, such information, being uncorrelated with the 3-D

flow features in the reconstruction target domain, is seen as random noise. This result reveals

the importance of the wall footprint of the flow on the reconstruction accuracy.

Moreover, figure 6 shows the evolution of the mean-squared velocity fluctuations and the

u+v+ shear stress of the reconstructed (case A) velocity fields with the wall-normal distance.

As expected, far from the wall, the attenuation becomes more significant, while the accuracy

is reasonable up to approximately 30 wall units, where the losses with respect to the DNS are
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Figure 6. Mean-squared velocity fluctuations and shear-stress. Given in wall-inner units.

equal to 4.0% for u2, 9.7% for v2, 12.8% for w2 and 6.9% for |uv|. It is important to remark

that the network is not trained to reproduce these quantities, as the loss function is based on

the MSE and the adversarial loss. The losses reported in these quantities also may explain the

MSE trends in figure 5, where the error grows with the wall-normal distance as the network

generates more attenuated velocity fields. The fact that the kernels in the convolutional layers

progressively stride along the domain implies that although the continuity equation might not be

imposed as a penalty to the training of the network, the 3-D methodology exhibits an advantage

with respect to the 2-D estimation. To assess this point, we compared the divergence of the flow

fields obtained with the 3-D GAN with the divergence obtained from the velocity derivatives of

three neighbouring planes estimated with 2-D GANs following Güemes et al. (2021 [143]). The

standard deviation of the divergence, computed at both y+ = 20 and y+ = 70, is approximately

6 times smaller when employing the 3-D GAN.

An additional assessment of the results is made by comparing the instantaneous flow fields

obtained from the predictions with those from the DNS. As an example, figure 7 shows 2-D

planes of u at three different wall-normal distances, of an individual snapshot, according to case

C. This case is selected for this example as it exhibits the best performance. In this test case,

the attenuation of the velocity fluctuations is not significant. Up to the distances contained

within case C, it is indeed possible to establish accurate correlations. On the contrary, the

attenuation of the velocity field close to the centre of the channel is quite high (see figure 6). At

y+ = 10, it is difficult to find significant differences between the original and the reconstructed
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Figure 7. Instantaneous velocity fluctuations: u (left), v (centre) and w (right). From each pair of rows, the
top row is the original field from the DNS, and the bottom row is the field reconstructed with the GAN, for
case C. Different pairs of rows represent 2-D planes at different wall-normal distances, with (a) y+ = 10, (b)
y+ = 20 and (c) y+ = 40. Instantaneous values beyond ±3σ are saturated for flow visualization purposes.
Velocity fluctuations are normalized with their standard deviation at each wall-normal coordinate y+.
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Figure 8. Instantaneous three-dimensional representation of the uv field, for (a) original and (b) prediction
from case C and (c) original and (d) prediction from case A. Isosurfaces correspond to the 1.5 and −1.5 levels
of uv respectively, in yellow for quadrants Q1 and Q3, and in pink for Q2 and Q4.

fields, with the smallest details of these patterns also being present. Farther away from the

wall, at y+ = 20, the estimation of the network is still very good, although small differences

start to arise. At y+ = 40, the large-scale turbulent patterns are well preserved, but the small

ones are filtered or strongly attenuated.

In general, it can be observed that, regardless of the wall-normal location, the GAN esti-

mator is able to represent well structures elongated in the streamwise direction (i.e. near-wall

streaks), likely due to their stronger imprint at the wall. On the other hand, the u fields at

y+ = 40 are also populated by smaller structures that do not seem to extend to planes at

smaller wall-normal distances, thus indicating that these structures are detached. From a qual-

itative inspection, the detached structures suffer stronger filtering in the reconstruction process.

Analogous considerations can be drawn from observation of the v and w components.

3.2 Coherent structure reconstruction procedure

Further insight into the relation between reconstruction accuracy and features of the coherent

structures is provided by observing isosurfaces of the product uv (the so-called uvsters; Lozano-
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Figure 9. Quadrant map with the categorization of the turbulent motions as Qs events.

Durán et al. 2012 [249]) reported in figure 8. Again, a sample of case C has been selected to

compare the original structures (figure 8a) with the reconstructed ones (figure 8b). In both

representations, structures of different sizes are observed, mainly aligned with the flow. The

larger structures appear to be qualitatively well represented, while some of the smaller ones are

filtered out or not well reproduced. Furthermore, it can be observed that the structures located

farther from the wall are more intensively attenuated in the reconstruction process. Moreover,

the majority of the structures and the volume identified within a structure are either sweeps or

ejections.

The same procedure is followed for an instantaneous field reconstructed under case A, leading

to figures 8(c) and 8(d), respectively. Similar phenomena are observed with some remarks. With

a substantially larger volume, many more structures populate the original field. However, the

reconstructed structures mainly appear close to the wall. Detached structures are filtered,

while attached ones can be partially truncated in their regions farther away from the wall.

Nevertheless, this instantaneous field also reveals that the filtering does not seem to be a simple

function of the wall distance. Some of the attached structures recovered in the reconstructed

field extend up far from the wall, and even up to the middle of the channel or beyond. This

would not be possible if all types of structures were expected to be reconstructed up to a

similar extent at any wall distance. The region far from the wall is depopulated using the

same threshold for the isosurfaces, as the magnitude of the fluctuation velocities is strongly

attenuated in this region.

For a quantitative assessment of the relation between coherent-structure features and re-

construction accuracy, here we follow an approach similar to that used by Lozano-Durán et

al. (2012 [249]), based on a 3-D extension of the quadrant analysis (Willmarth & Lu 1972
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[250]; Lu & Willmarth 1973 [251]), where turbulent structures are classified according to the

quadrants defined in figure 9. A binary matrix on the same grid of the domain is built. The

matrix contains ones in those points corresponding to a spatial position located inside a coher-

ent structure, and zeros otherwise. Grid points where fluctuation velocities meet the following

condition are within a structure

|τ(x, y, z)| > Hu′(y)v′(y) , (3.1)

where τ(x, y, z) = −u(x, y, z)v(x, y, z), the prime superscripts (′) indicate root-mean-squared

quantities, and H is the hyperbolic hole size, selected to be equal to 1.75. This is the same

structure-identification threshold as in Lozano-Durán et al. (2012 [249]), for which sweeps and

ejections were reported to fill only 8 % of the volume of their channel, although these structures

contained around 60 % of the total Reynolds stress at all wall-normal distances. Without any

sign criterion, this condition is used for the identification of all types of structures. Moreover,

the signs of u(y) and v(y) are to be considered to make a quantitative distinction between

sweeps (Q4) and ejections (Q2) as essential multi-scale objects of the turbulent cascade model

that produce turbulent energy and transfer momentum.

The cells activated by (3.1) are gathered into structures through a connectivity procedure.

Two cells are considered to be within the same structure if they share a face, a side or a vertex

(26 orthogonal neighbours), or if they are indirectly connected to other cells. Some of the

structures are fragmented by the sides of the periodic domain. To account for this issue, a

replica of the domain based on periodicity has been enforced on all sides. To avoid repetitions,

only those structures whose centroid remains within the original domain are considered for

the statistics. Besides, structures with volume smaller than 10−5h3 have been removed from

our collection, to concentrate the statistical analysis on structures with a significant volume.

Further conditions have been set to remove other small structures that are not necessarily

included in the previous condition. Structures that are so small that they occupy only one

cell—regardless of their position along y and the cell size ∆y+—and those whose centroid falls

within the first wall-normal cell have been removed. Finally, structures that are contained

within a bounding box of a size of one cell in any of the directions have been removed as well.

For example, a structure comprising two adjoint cells delimited within a bounding box with

two-cell size in one of the directions, but only one-cell size in the other two directions, would be

discarded for the statistics. These restrictions still keep small-scale structures in the database,

but eliminate those that are contaminated by the resolution errors of the simulation.
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Volume of structues Number of structures
Absolute [h3] Relative % Total Attached %

Qs
Target 0.70 14.3% 14.5 68.9%
Prediction 0.80 15.9% 13.3 77.4%

Q1s
Target 0.01 0.3% 3.85 90.3%
Prediction 0.01 0.3% 3.80 90.7%

Q2s
Target 0.46 9.3% 5.24 81.0%
Prediction 0.58 11.8% 4.59 89.4%

Q3s
Target 0.04 0.8% 3.10 68.4%
Prediction 0.01 0.2% 3.12 69.5%

Q4s
Target 0.10 2.0% 7.41 81.5%
Prediction 0.16 3.2% 7.11 85.2%

Table 4. Information about the structures identified with (3.1), (Qs) without any sign criterion on u and v
and (Q1s-Q4s) for each quadrant. The DNS original data and the 3D-GAN prediction (case A) are compared
with some statistics over the 4 000 testing snapshots, considering the average volume occupied by structures
per snapshot, their proportion of volume over the domain, the average number of structures in each snapshot
and the proportion of structures that are attached.

A statistical analysis on test case A has been carried out considering the different quadrants

(see table 4). The figures reported by Lozano-Durán et al. (2012 [249]) can be used as a

reference, although it must be remarked that discrepancies arise due to the differences in the

fluid properties, the Reynolds number or the extension of the volume from the wall considered.

The volume of a whole domain of case A is 4.93h3. The structures identified with (3.1) and

the hyperbolic hole size used as threshold occupy only a small fraction of it, although they

contain the most energetic part, able to develop and sustain turbulence. Note that the criterion

established with this equation makes Qs (first row in table 4) not to be explicitly the sum of

all individual Q1s, Q2s, Q3s, Q4s events—when no sign criterion is being applied over u′ and

v′ , without any distinction among different type of events. As seen with the instantaneous

snapshots in figure 8, these statistics from 4000 samples tell us that Q1s and Q3s (see figure

9) are less numerous than negative Qs, both in volume and in units – these structures account

for just 2 % in volume and 7 % in units in the work by Lozano-Durán et al. (2012 [249]). In

addition, this analysis reveals that most of the volume fulfilling (3.1) belongs to Q2 structures,

with Q4s occupying significantly less volume, while in unit terms the population of Q4s is

approximately 50 % higher than that of Q2s. Individual Q2s, although fewer in number, are

much bigger than Q4s. Structures have been considered as attached if ymin/h ≤ 0.1 (figures

10a,d,g), where ymin refers to the location of the closest point to the wall within a structure, and

ymax to the farthest one. All types of structures are notably attached in more than 60% of the

cases, with Q3s the most prone structures to be detached, and Q1s to be attached. Table 4 also

offers a comparison between the target data from the DNS and the reconstruction from the 3-D

81



GAN. There are no large discrepancies between target and prediction, with all the comments

already mentioned applying to both of them. However, statistics are better preserved for Q1s

and Q3s than for Q2s and Q4s. As expected, the GAN tends to generate slightly fewer Q2

and Q4 structures, a difference due mainly to wall-detached structures that are not predicted.

However, these generated structures are bigger and occupy a larger volume than the original

ones. As discussed below, not all the volume in the predicted structures is contained within

the original ones.

3.3 Statistical analysis methodology

A statistical analysis of the reconstruction fidelity of flow structures is carried out, with the

previous condition (3.1) applied to the 4000 samples outside the training set. The structures

found in the DNS- and GAN-generated domain pairs have been compared and matched. For

each ith (or jth) structure, it is possible to compute its true volume vT,i (or predicted volume

vP,i) as

vTi
=
∑
x,y,z

Ti ◦ V , (3.2)

vPj
=
∑
x,y,z

Pj ◦ V , (3.3)

where the matrices Ti and Pi represent the target (DNS) and the prediction (GAN) domains

for the ith structure, respectively, containing ones where the structure is present, and zeros

elsewhere. Here, V is a matrix of the same dimensions containing the volume assigned to each

cell. In a similar way, combining these two previous expressions, the overlap volume of two

structures i and j within the true and predicted fields, respectively, is

vTi,Pj
=
∑
x,y,z

Ti ◦ Pj ◦ V . (3.4)

It must be considered that during the reconstruction process, the connectivity of regions

is not necessarily preserved. This gives rise to a portfolio of possible scenarios. For instance,

an original structure could be split into two or more structures in the reconstruction; small

structures, on the other hand, could be merged in the estimated flow fields. Moreover, the

threshold in (3.1) is based on the reconstructed velocity fluctuations, thus it can be lower than

in the original fields. Hence all possible contributions from different structures overlapping with
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a single structure from the other dataset are gathered as follows:

v̂Ti,P =

∑
j vTi,Pj

vTi

, (3.5)

v̂T,Pj
=

∑
i vTi,Pj

vPj

. (3.6)

With the hat marked used to indicate the ratio, these metrics give the overlapped volume

proportion of each structure i from the target set or j from the prediction set and are defined

in such a way as some structures either split or coalesce. These structures are classified into

intervals according to their domain in the y direction, bounded by ymin and ymax. Given the

matching proportion of all the structures of each target-DNS and prediction-GAN set falling in

each interval (a, b) of ymin and each interval (c, d) of ymax, according to their individual bounds

(respectively ymin,i and ymax,i, or ymin,j and ymax,j), their average matching proportions Xt and

Xp are computed:

Xt,(a,b − c,d) = v̂Ti,P ∀ isuch thata < ymin,i/h < b, c < ymax,i/h < d , (3.7)

Xp,(a,b − c,d) = v̂T,Pj
∀ jsuch thata < ymin,j/h < b, c < ymax,j/h < d . (3.8)

Additionally, out of all these categories onto which the structures are classified according to their

minimum and maximum heights, those contained within the top 95 % of the joint probability

density function ( joint p.d.f.) have been identified with black dots in figures 10 and 11 to

characterize the predominant structures in the flow.

3.4 Analysis of the joint probability density functions of reconstructed structures

The interpretation of the quantities defined in the previous subsection is as follows: Xt is the

proportion of the volume of the structures from the target set represented within the recon-

structed structures; Xp is the proportion of the volume of reconstructed structures matching

the original ones. These quantities Xt and Xp are represented in figure 10 for each categorized

bin and for cases A, B and C.

In figures 10(a,b,c) (for Xt), the joint p.d.f. is compiled for the target structures, and

in figures 10(d,e,f) (for Xp), the joint p.d.f. is compiled for the predicted structures. The

joint p.d.f. for the target structures indicates that the family of wall-attached structures (i.e.

ymin ≤ 0.1h) dominates the population, while wall-detached structures with ymin ≥ 0.1h do not

extend far from the wall. Overall, the joint p.d.f.s are qualitatively similar to those obtained

by Lozano-Durán et al. (2012 [249]) at higher Reynolds numbers, except for the wall-detached
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Figure 10. Maps of average density per bin of the matching quantities for cases (a,d,g) A, (b,e,h) B and
(c,f ,i) C, for the different metrics proposed. Dotted bins represent the top 95 % of the joint p.d.f. of the
structures over that target or prediction set, respectively. Note that the scales in both axes are not uniform.
Maps of average density per bin of the matching quantities for cases A (left column), B (centre column) and
C (right column) for the different metrics proposed. Dotted bins represent the top 95% of the j.p.d.f. of the
structures over that target or prediction set respectively. Note that the scales in both axes are not uniform.
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structures, which in the latter have ymax − ymin approximately independent of ymin. This

difference could be explained as an effect of the low friction Reynolds number, especially since

the detached structures in Lozano-Durán et al. (2012 [249]) are linked to the dissipation process

in the logarithmic and outer regions. Note that the bin highlighted at the top-right corner for

the original set of structures is likely linked not to detached structures, but to tall attached

structures rising from the opposite wall and extending beyond the middle of the channel.

Compared to the joint p.d.f. of the predicted set, the wall-detached structures of the original

set extend farther from the wall. This suggests that the 3-D GAN may be losing the farthest

region from the wall of some of the reconstructed structures, consistent with the flow visual-

izations presented in figure 8. The best reconstruction is reported in all cases for the shortest

wall-attached structures. The values of Xt and Xp for wall-attached structures reduce progres-

sively as ymax/h increases. This trend is repeated for other columns of bins with ymin/h ≥ 0.10,

although the metrics are lower than for the wall-attached structures. The wall-detached struc-

tures that are contained within the top 95 % of the joint p.d.f. are reconstructed with modest

values of Xt and Xp, approximately 0.5. The structures with poorer matching between the

target and predicted sets (i.e. Xt and Xp smaller than 0.25) are relatively far from the wall,

and do not belong to the 95 % of the joint p.d.f.s – suggesting that there are very few of them.

Several reasons may justify this performance: we expect a lower prediction ability from the

3-D GAN for wall-detached structures, for structures extending to higher ymax/h and for types

of structures that are not particularly common, with the computational resources available in

the training process having been used to target other patterns within the flow.

The joint p.d.f.s for figure 10(b,e,h) and figure 10(c,f ,i), which do not consider those regions

in case A with few structures and poorer reconstructions, show smaller differences between

the original and predicted sets of structures. In these cases, the top rows of bins in figure

10(b,c,e,f ,h,i) are expected to include structures extending beyond its ymax/h limit, cutting

them and considering their respective reconstruction accuracy only up to its respective limit.

As was also observed in figure 5 with the error trends, these metrics Xt and Xp also indicate a

slightly improved prediction ability with the reductions in the volume of the domain considered.

With these distributions of average matching proportions Xt and Xp in each interval, a novel

perspective on what the network is capable of reconstructing is given. The reconstructed volume

of wall-attached structures is generally preserved (high Xt) and undistorted (high Xp) for wall-

attached coherent structures. Even though the reconstruction precision in terms of volume
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and shape of the coherent structure seems to reduce progressively for increasing ymax/h, the

values of Xt and Xp for wall-attached structures are still higher than for any other bin with

ymin/h > 0.1 if ymax/h < 0.5. It can be argued that the reduction in reconstruction accuracy

for increasing wall-normal distance is due prevalently to the progressively decreasing number

of wall-attached structures, which should have an impact on the training of the 3-D GAN.

The increase in reconstruction fidelity when reducing the wall-normal thickness of the volume

of the domain (i.e. cases B and C in figure 10) is in line with the hypothesis that the estimator

focuses its effort in reconstructing features extending down to the wall. A marginal increase in

Xt is observed in bins corresponding to the same region for decreasing wall-normal thickness

of the reconstructed volume. It can be hypothesized that the prevalence of wall-attached over

detached—thus poorly correlated with flow quantities—structures in cases B and C simplifies

the training of the network and improves its accuracy. Structures extending beyond the ymax

limit of each case are collected within the top row of bins of each plot in figure 10, and their

reconstruction accuracy is slightly increased when the volume of the domain is reducedymax

although they are cut and a part of them is not being considered.

The Xt and Xp distributions share some similarities, with the ideas mentioned above. The

main difference between them is the fact that the average matching proportions are slightly

higher for Xt than for Xp. From Xt, it is seen that with the behaviour just mentioned, the

structures predicted by the network do not contain the whole volume of the original ones,

denoting some loss of accuracy. Moreover, Xp tells us that the reconstructed structures contain

not only sections within the original structures but also regions out of them. With both metrics

and their physical meaning, the combined effect of these two losses together is shown as XtXp

in figure 10. The superior reconstruction of these wall-attached structures must be highlighted,

with a progressive loss with the wall-normal size ∆y. The small structures lying right over

the diagonal report a lower overall score than the attached ones, but higher than other wall-

detached structures.

According to (3.1), turbulent structures are defined independently of the sign ofu(y) and

v(y)), but imposing signs on them, the structures can be classified following the quadrant anal-

ysis (Lozano-Durán et al. 2012 [249]), with sweeps and ejections being of special interest. The

maps shown in figure 11 allow us to compare and establish further conclusions and differences in

the performance of the 3-D GAN when reconstructing sweeps and ejections. In all the cases, the

left column of wall-attached structures is fully contained within the top 95 % of the joint p.d.f.,
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Figure 11. Maps of Xt and Xp for case A, considering only ejections-Q2 in (a,b) and only sweeps-Q4 in (c,d),
analogous to those in figures 10(a) and 10(d) containing all structures together. Dotted bins represent the top
95 % of the joint p.d.f. of the structures over that target or prediction set, respectively. Profile (e) of average
matching proportion Xp for case A, for the left column of bins (ymax/h < 0.10), comparing cases considering
all the identified structures (figure 10d), only ejections (figure 11b) and only sweeps (figure 11d).
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with their Xt or Xp magnitude decreasing progressively with increasing ymax/h, as expected.

In none of them is the family of wall-detached structures with small ∆y lying right above the

diagonal a significant proportion of the population of structures. Hence these numerous struc-

tures highlighted in figure 10 may be mainly Q1 and Q3 structures. Moreover, at this threshold

of the joint p.d.f., other structures that may be considered as attached although they are not in

the leftmost column, are included in this top joint p.d.f. set. In terms of ymin/h, they extend

from below 0.21 following this categorization in bins, while a very similar limit of 0.20 was set

as the threshold to classify structures as attached or detached by (Lozano-Durán et al. 2012

[249]). However, in terms of ymax/h, the joint p.d.f. cut does not extend up to 1—which is the

case for ymin/h < 0.1 bins. For both sweeps and ejections, these numerous structures do not

extend beyond the 0.52 limit for Xt or beyond the 0.33 limit for Xp. This indicates that the

network can reconstruct wall-attached sweeps and ejections with reasonable fidelity, although

the part farther from the wall may be partially lost or even generated with poorer accuracy.

One of the main aspects reflected in figure 10 is the fact that more accurate reconstructions

are reported for wall-attached structures, which are the most quantitative ones. The same

is true for the distributions with sweeps and ejections as seen in figures 11(a)–11(d). For

some of the bins right above the diagonal with wall-detached structures with small ∆y, the

quantities Xt and Xp reported are higher than for those bins of wall-attached structures with

high ∆y. Nevertheless, these wall-detached structures, as ejections (figures 11a,b) or sweeps

(figures 11c,d), are not a big part of the population of structures, such that the training process

may not focus substantially on them.

The distributions of Xt and Xp shown in figure 11 for ejections and sweeps are qualitatively

similar, although some differences can be established. Considering Xt for those bins within

the region highlighted by the joint p.d.f., the metric is always higher for ejections than for

sweeps, although they follow the same trends. The 3-D GAN can reconstruct wall-attached

structures, generally and statistically preserving ejections slightly better than sweeps. One

possible reason would be that the correlation with the wall measurements used is stronger with

ejections, emerging from the wall, than with sweeps, which travel towards the wall. This could

not be explained with the pressure measurements, which may be quite antisymmetric for both

types of structures, according to studies assessing this correlation, such as the one by Sanmiguel

Vila & Flores (2018 [261]). Nevertheless, this is not the case for the wall-shear stresses, also

used as input data.
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Regarding Xp, it is difficult to establish such a distinction between Q2 and Q4 structures.

To compare these variations in Xp along the structures with ymin/h < 0.1 more easily, figure

11(e) provides a different view. Wall-attached sweeps are less distorted than ejections and

all structures overall when structures with short wall-normal heights are considered (up to

ymax/h < 0.3). This trend is inverted for taller wall-attached sweeps (ymax/h > 0.5), reporting

substantially lower Xp, with these sweeps being more distorted than ejections with similar y

size. Although the quantities are very similar and follow the same trends, the footprint impact

of sweeps over the wall is stronger for the short structures close to the wall.

In addition to this, the change of trend experienced might also be explained from a statistical

point of view. Ejections are lower in number than sweeps (see table 4), but occupy a much

larger volume, while most sweeps and ejections are wall-attached. If most sweeps are attached

but much smaller than ejections, then there may be less volume far from the wall occupied by

wall-attached sweeps than by wall-attached ejections. There are some big sweeps extending

from near the wall to the mid-plane, but they are not very frequent in the dataset, or not as

much as big wall-attached ejections. Hence the 3-D GAN may learn better the patterns of those

ejections, which are much more common. On the other side, close to the wall, wall-attached

sweeps might be much more common than wall-attached ejections, so that the opposite happens.

4 Conclusions

A direct 3-D reconstruction from wall quantities with 3-D generative adversarial networks

(GANs) has been proposed and demonstrated. The flow estimator builds on the successful

reconstruction by Güemes et al. (2021 [143]) using a mapping from wall-shear stress and

wall-pressure to 2-D wall-parallel velocity fields, and extends it to a full 3-D estimation. This

extension comes with an affordable increase in the number of parameters and computational

cost of the training if compared to the 2-D architecture estimating a single plane. The main

advantage is a direct full reconstruction of the flow topology, without the need for training

multiple networks for planar reconstruction. The argument for the reduction of the number

of network parameters is the concept of parameter sharing, according to which the filters of

the convolutional layers are shared among different wall-normal distances. Besides, the recon-

struction based on this methodology, in which the main element of the network is the 3-D

convolutional layer, ensures continuity within the reconstructed domains. In contrast, a pro-

cedure based on merging independently reconstructed 2-D planar domains could give rise to
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discontinuities.

The algorithm is tested on channel flow data at friction Reynolds number 200. The results

in terms of reconstruction accuracy of the velocity fluctuations show a similar trend to the case

of the 2-D single-plane estimators, with lower error on the streamwise velocity component with

respect to the spanwise and wall-normal components. The error is in all cases slightly larger

than in the reference case of the 2-D estimator with a similar Reynolds number. This was

expected due to the comparably lower number of parameters per output node used in the 3-D

estimator.

We also observe that a reduction in the target volume size does not always correspond to

an improvement in accuracy. The estimator trained with test case D, which contained only the

region with y/h > 0.21, performed worse in terms of reconstruction accuracy than the estimator

of case A, whose target was the entire volume. This can be explained by the difficulty of the

network to ignore the parts of the wall fields that were related only to structures located in

y/h < 0.21 when trying to reconstruct the outer region of test case D. While in case A, a

large portion of the network parameters is trained to establish the mapping between near-wall

features and wall quantities, in case D, the estimator should learn to filter out the portion

of wall quantities that is due to near-wall structures and at the same time is uncorrelated

with the structures in the target volume. Due to the modulation effect of large scales on the

near-wall cycle, there is an inevitable loss of accuracy in this process. While this might be

frustrating in view of training neural networks that target the reconstruction of far-from-the-

wall structures—which might be interesting for control purposes—the higher performance of

2-D estimation with respect to case D hints at the possibility of accuracy improvement by

increasing the number of parameters for this task.

The estimators for each of the cases, regardless of the reconstruction domain, seem to target

specific features of the flow. In particular, wall-attached structures are reproduced with high

fidelity at least up to y/h = 0.5 (i.e. 100 wall units), while a significant fraction of detached

structures is filtered out in the process. This is a desirable feature since wall-attached structures

carry the bulk of Reynolds stresses, and it was somewhat foreseeable due to their stronger wall

footprint. We thus envision higher difficulty in predicting detached structures.

Furthermore, there are some differences in the prediction quality depending on the type

of structure in relation to the footprint that they produce. Among wall-attached structures

extending only in the near-wall region, sweeps are estimated slightly better than ejections.
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However, the opposite situation is found between wall-attached sweeps and ejections that extend

up to the middle of the channel or close to it. The footprint of the structures to be reproduced

is a key aspect in this process.

Sweeps and ejections dominate other types of structures. Although some of them, mainly

wall-detached ones, are filtered by the GAN, the statistics of the identified structures in terms

of volume and quantity are reasonably well preserved. There are more sweeps than ejections,

but ejections are much bigger and occupy most of the volume identified as a structure according

to the hyperbolic hole size employed.
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Appendix A. Criteria for the design of the generator network

The networks proposed in this work have been trained on an NVIDIA RTX-3090 GPU. In

addition to the necessary modifications to unlock mapping 2-D fields to 3-D domains, some

changes to the network architecture were proposed in order to optimize it and obtain a more
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accurate flow estimation.

An important degree of freedom in defining the generator network is the position of the

up-sampling layers, a tool commonly used for super-resolution purposes to make it possible

to match the lower-resolution input with the higher-resolution output. Often, these layers are

placed at the beginning, in the first layer or before the bulk of residual blocks (Dong et al.

2015 [159]; Wang et al. 2015 [262]), which would allow the following convolution layers to

operate in a wider domain. Other authors prefer to define a gradual positioning of these layers

(Osendorfer, Soyer & van der Smagt 2014 [263]). These two approaches, and in particular the

first one, have the inconvenience that they produce models with 3-D convolutional layers much

heavier than if the up-sampling layers were placed at the end of the network, which is another

alternative (Shi et al. 2016 [264]). This latter option is found in the studies by Ledig et al.

(2017 [160]) and Güemes et al. (2021 [143]). Concerning convolution layers, these become more

complex and computationally demanding, depending not only on the size of the domain but

also on the number of filters included. If the up-sampling layers are gradually placed with a

moderate number of convolution filters, and a large number of filters is used only at the end

for a few convolution operations, then the required computational resources can be maintained

or even substantially reduced.

Case A was first studied with a network comprising 16 residual blocks and all the up-

sampling blocks after them. The convolutions in the residual blocks had 64 filters, and those in

the up-sampling blocks had 256. As alternative architectures, several options have been tested,

placing these up-sampling blocks not at the end, but right after specific residual blocks (as in

figure 3 and table 2), which makes the convolution layers operate over broader domains in y.

However, this change required convolution operations in up-sampling blocks to have 64 filters

instead of 256, simplifying them and reducing the amount of trainable parameters. Indeed,

this simplification is such that with the same machine and memory limitations, it allows us to

increase the number of residual blocks further, from 16 to 32. This type of architecture is finally

selected, as it reports a lower L error (2.1) even using less trainable parameters and requiring

a comparable training time. This arrangement is a balance between different aspects, placing

them progressively to allow convolutions to operate over wider domains than if they were at

the end, while maintaining an efficient use of the computational resources. Both models can be

compared in figure 12(a) and in table 5.

In view of the results from case A and their physical analysis and interpretation, cases B
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Figure 12. The MSE of the streamwise fluctuation velocity component u for test cases (a) A and (b) C, with
alternative network architectures.

Residual Filters per block Residual block Trainable parameters
Blocks Residual Up-samp. up-samp. scheme G D

16 64 256 All at the end 13.6× 106 18.2× 106

32 64 64 0-6-12-18-24-30 9.0× 106 18.2× 106

Table 5. Details on the implementation of alternative architectures for case A. The ‘Residual block up-
sampling scheme’ column indicates the indexes of the residual blocks that are followed by an up-sampling
block.
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Residual Filters per block Residual block Trainable parameters
Blocks Residual Up-samp. up-samp. scheme G D

32 64 64 6-12-18-24-30 8.0× 106 23.8× 106

48 64 64 8-16-24-32-40 11.6× 106 23.8× 106

56 64 64 10-20-30-40-50 13.3× 106 23.8× 106

Table 6. Details on the implementation of alternative architectures for case C. The ‘Residual block up-
sampling scheme’ column indicates the indexes of the residual blocks that are followed by an up-sampling
block.

and C were proposed. Case B needs a special implementation, as the network needs to provide

output data with 48 layers in the wall-normal direction, which is not a power of 2. Hence the

first up-sampling layer increases this size from 1 to 3, and the subsequent ones continue as

powers of 2 up to 48. For the rest of the set-up, the selected architectures for these two cases

follow the same structure, with 32 residual blocks in total. Also, case D was proposed as the

second half of the layers originally in case A not included in case C, concentrating the resources

in this region of the domain. Although the reconstructed volume in case D is larger than in

case C, both have 32 layers in the wall-normal direction (see table 1).

As for the discriminator, the same structure is followed in all the cases, as depicted in figure 4.

Pairs of 3D-convolution layers with increasing number of filters [64, 64, 128, 128, 256, 256, 512,

512] are used. From each pair, the first ones preserve the dimensions, and the second ones

reduce the size of the data domain in the dimensions assigned to x, y and z, the first time by

a factor of 4 and thereafter by a factor of 2.

An additional change was proposed. The depth of the network can be easily modified by

setting more or fewer residual blocks, such as the aforementioned change from 16 to 32 which

showed an improvement in reconstruction terms. In this sensitivity analysis, case C was further

trained with 48 and with 56 residual blocks, with up-sampling blocks gradually placed every

8 and every 10 residual blocks respectively. These architectures and their performances can

be compared in figure 12(b) and in table 6. They show a very moderate error reduction with

respect to the previous situation with 32 blocks, with the curves practically overlapping each

other, at the cost of using a substantially larger number of trainable parameters and taking

longer to train. Without any remarkable improvements, these changes are discarded and the

networks remain with 32 residual blocks for all cases.
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Appendix B. Comparison of the 3D-GAN with other methodologies

In §1, GANs were set as the baseline for this work among other 2D estimation techniques.

Along the discussion of the results of this work, the accuracy of the proposed methodology is

compared to that of 2D-GANs in terms of MSE. In this appendix, we provide a comparison

of the performance of this network (refer to case A, from the wall to the mid-plane of the

channel) with alternative techniques, i.e. LSE and EPOD as linear techniques, and a deep

neural network (DNN) in the ML framework. For the comparison with the 2D-GAN, it was

convenient to compare the MSE of the velocity fluctuations normalised with their respective

standard deviation at each wall-normal distance, as this normalization process is needed for both

processes. For the comparisons we are providing here, this normalization is not needed as the

performances are obtained from the same dataset, and the results expressed here in inner units

could be more meaningful and easier to analyse. As well as for the 3D-GAN, 16 000 samples

are used to establish the correlation and 4000 to test the capabilities of each methodology.

B.1 3D-GAN vs LSE

One of the most often used techniques in the literature for flow estimation from wall mea-

surements and other flow estimation purposes is linear stochastic estimation. The 3D-GAN

convolutional filters act over multi-dimensional matrices, guaranteeing domain continuity. In

LSE, the estimator works independently for the estimation of different points, and in partic-

ular, must be different for each wall-normal distance and for each velocity component to be

estimated.

In this case, the number of sensors ns is 12288, as three quantities are measured on a 64×64

grid. Each of the quantities x′ to be estimated can be computed through the projection of the

vector E[ns × 1] containing all the sensor measurements onto the vector L[1 × ns] containing

all the correlation coefficients:

x′ = LE . (B1)

Multiple samples are needed to compute the coefficients of L. To that end, multiple sensor

entries are concatenated, defining a matrix where each column corresponds to a sample as

follows:

E = [E1|E2|...|Et] . (B2)

Given the known values of the quantities xi assigned to each set of sensor data Ei, the coefficients
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in L are obtained from this linear system:

L
(
EET

)
= [x1, x2, ..., xt]E

T . (B3)

Once the coefficients that establish the correlation between the wall measurements and a

velocity component at some point are known, the estimator (B1) can be used with new sensor

inputs. It has been tested with 4 000 samples. The output has been compared with the fields of

the DNS to compare its performance with the 3D-GAN. The MSE of the 3 velocity fluctuations

[u+, v+, w+] is shown in figure 13.

It is evident that the 3D-GAN outperforms the LSE estimator. The errors are very low close

to the wall. The three velocity components experience a peak with a maximum error around

y+ ≈ 80 − 90 with the 3D-GAN. With the LSE, these error peaks are larger and are shifted

towards the wall, particularly for u+, which has a substantially higher standard deviation (see

figure 1). The errors of both techniques stabilize around similar values near the mid-plane of

the channel.

The use of the 3D-GAN has a clear benefit on the estimation of u+, for which the highest

errors are reported, with a maximum error almost 3 times lower with respect to the peak in

LSE. The errors for the v+ component, which has the lower standard deviation distribution

along y+, are significantly lower than for u+ and the benefit between the 3D-GAN and the LSE

is not so remarkable, although still important. The error of w+ and its error reduction observed

between the two methodologies are in an intermediate position between u+ and v+.

Note that in the present analysis, we are not using the spectral formulation of the linear

stochastic estimation (SLES), which explicitly avoids spurious correlations between orthogonal

Fourier modes (Encinar & Jiménez 2019[132]). This choice is motivated by the interest in

applying this technique to real-world applications, where the assumption of periodicity in the

wall-parallel directions would be difficult to justify.

B.2 3D-GAN vs EPOD

The results obtained and previously discussed with the 3D-GAN are compared here with the

performance of the EPOD estimator, whose methodology is described here.

The data of the velocity fluctuations, given in a multidimensional matrix, is rearranged in a

2D matrix XU , with one row for each sample (16 000 in this case), with the velocity components

assigned to each of the points in space along the columns. The same procedure is done with
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Figure 13. The MSE of the fluctuation velocity components (a) u+, (b) v+ and (c) w+ of the 3-D GAN case
A (solid line), the LSE (dashed line) and the EPOD (dot-dashed line). Results are given in wall-inner units.

the data from the wall probes, cast in the matrix Xpr. All this information is reduced in

modes following the singular value decomposition (SVD), with the temporal information of

each sample in Ψ and the spatial information in Φ, leading to:

XU = ΨUΣUΦ
T
U ;

Xpr = ΨprΣprΦ
T
pr .

 (B4)

These matrices have been cropped, retaining the most energetic 7 200 modes to remove those

modes with low energy content that introduce noise in the problem. This threshold coincides

with the 99% of the energy contained in XU .

The final objective is to obtain the estimated (denoted with ∗) velocity fluctuations X∗
U

for a different set of samples, given those probe measurements. To that end, the temporal

coefficients Ψ∗
U associated with those samples are estimated and projected onto the spatial

basis ΣUΦU established previously as

X∗
U = Ψ∗

UΣUΦ
T
U . (B5)

The temporal modes of the velocity field are obtained by projecting the temporal modes of the

probes of the samples to be estimated onto the temporal correlation matrix Ξ of the probes

and the velocity field:

Ψ∗
U = Ψ∗

prΞ = Ψ∗
prΨ

T
prΨU . (B6)

Again, the estimation of the 3-D GAN seems more faithful than that of the EPOD, as seen

in figure 13. The behaviour of the error curve of the EPOD is very similar to that of the
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Figure 14. Difference of the MSEs of the fluctuation velocity components u+, v+ and w+ of the 3-D GAN
and the DNN. Results are given in wall-inner units.

LSE, with the peak at a very similar y+ and a small increment of error. The 3-D GAN, which

incorporates nonlinearities in the problem, not only is capable of estimating the flow with a

higher accuracy than these two linear techniques but also shifts the peak of maximum error

away from the wall. This comparison shows the importance of performing the estimation with

a nonlinear operator if accuracy farther from the wall is sought.

B.3 3D-GAN vs DNN

The performance of the 3D-GAN is also compared with a simpler concept of NN. To that end,

this DNN replicates the generator network G while it neglects the discriminator D. Its loss

function is solely based on the MSE, as in (2.1), with zero contribution from the adversarial

loss (2.2).

The difference in the error between these two methodologies is in general moderately low

(figure 14). The main benefit of the 3D-GAN is observed in the estimation of the streamwise

velocity fluctuations. Although in some regions (approximately y+ ≈ [40 − 110]) the DNN

estimates u+ better than the 3D-GAN, the overall performance of the 3D-GAN is superior with

a clear advantage in terms of accuracy in the near-wall region and in the outer region, i.e. the

most challenging one. The improvement is much less relevant for the estimation of v+ and w+.

To provide a quantitative comparison of these results, the integrals of the area enclosed between

these curves and the horizontal axis have been computed in the range y+ = [0 − 200]. The

biggest benefit is found for u+ reporting −0.8027. For v+ there is a small benefit of −0.0131,

and for w+ a small penalization of +0.1424.
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Paper 2

Some effects of limited wall-sensor availability on flow estimation with
3D-GAN

Antonio Cuéllar, Andrea Ianiro, and Stefano Discetti, Theoretical and Computational Fluid

Dynamics (2024), doi:10.1007/s00162-024-00718-w

In this work we assess the impact of the limited availability of wall-embedded sensors on the

full 3D estimation of the flow field in a turbulent channel with Reτ = 200. The estimation tech-

nique is based on a 3D generative adversarial network (3D-GAN). We recently demonstrated

that 3D-GANs are capable of estimating fields with good accuracy by employing fully-resolved

wall quantities (pressure and streamwise/spanwise wall shear stress on a grid with DNS resolu-

tion). However, the practical implementation in an experimental setting is challenging due to

the large number of sensors required. In this work, we aim to estimate the flow fields with sub-

stantially fewer sensors. The impact of the reduction of the number of sensors on the quality of

the flow reconstruction is assessed in terms of accuracy degradation and spectral length-scales

involved. It is found that the accuracy degradation is mainly due to the spatial undersampling

of scales, rather than the reduction of the number of sensors per se. We explore the performance

of the estimator in case only one wall quantity is available. When a large number of sensors

is available, pressure measurements provide more accurate flow field estimations. Conversely,

the elongated patterns of the streamwise wall shear stress make this quantity the most suitable

when only few sensors are available. As a further step towards a real application, the effect

of sensor noise is also quantified. It is shown that configurations with fewer sensors are less

sensitive to measurement noise.

Keywords Turbulent boundary layers, machine learning, channel flow, wall measurements
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1 Introduction

In this work we challenge the methodology proposed in Ref. [265] for one-shot 3D flow estima-

tion from wall quantities in scenarios with realistic limitations of practical applications. Limited

number of sensors, choice of their distribution, measurement noise, and limited physical data

information are the main aspects we address in this study.

Many studies have focused on flow control since the work by Prandtl in 1904, where the basics

of the physics of boundary layer theory and separation were introduced [266], and great efforts

are still being made in this area. Flow control could allow us to design more efficient devices

aiming at different purposes, such as maximization of mixing, noise reduction or suppression,

heat transfer, lift enhancement, delayed laminar-to-turbulent transition, or skin friction reduc-

tion [49].

The control of skin friction in wall-bounded flows is a key element for several energy-intensive

industries (e.g. aviation), where the reduction of the viscous drag through turbulence control

could lead to important savings. Several surface modifications such as LEBUs (large eddy

break-up devices) and riblets have been shown to reduce the skin friction drag [52], [53]. How-

ever, passive devices cannot be tuned specifically for each operating condition; as such, active

flow control is investigated as an alternative to passive flow control [54], [55]. Active flow con-

trol in a closed-loop arrangement allows to design actuation mechanisms specially designed for

the control of a given state of the flow or specific flow features, e.g., coherent structures. With

this regard, a more detailed comprehension of the flow allowed to shift the actuating techniques

under study from energetically expensive brute-force approaches towards small amplitude forc-

ing [56] to control coherent structures, with significant savings also in terms of mass and size.

However, to build a closed-loop flow-control system we need the availability of sufficiently fast

and accurate sensing and actuation devices. Hence, it is of utmost importance to research and

develop sensing systems for flow control purposes.

The requirement of low intrusiveness sets the need to embed sensors within the wall. Space–time

correlation within boundary layers can be exploited for this purpose. The existence of strong

correlations among the motions within turbulent boundary layers was first discovered using

point measurements with hot wires [267], [268]. In particular, linear techniques have been

widely used to establish a correlation between the wall measurements and the turbulent flow

field. The linear stochastic estimation (LSE) [130], [132], [232] searches for a linear transfer

function from the wall to the flow fields. Other approaches focus on the existence of coherent
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structures within the flow and aim at identifying a linear relation between coherent flow features

and their wall signature. Since the development of the attached-eddy model by Townsend [72],

large eddies attached to the wall are considered to be among the dominant energy-containing

motions in wall-bounded turbulent flows. Some preliminary descriptions of the large eddies

reported an anisotropic behaviour consistent with the presence of counter-rotating vortex pairs

[65]. The presence of these characteristic events with certain coherence and spatio-temporal

dependence amidst the randomness of turbulence made it possible to address this problem from

a statistical point of view. One of the main tools for the identification of coherent structures

in turbulence has been the proper orthogonal decomposition [POD, 269]. Reference [66] first

employed POD for the decomposition of wall-bounded turbulence. Obtaining a low-order de-

composition of wall-bounded turbulence allows us to have a compact description of the most

energetic features of the flow which might have a distinct wall signature. A remarkable exam-

ple of this approach for flow estimation is represented by the extended POD (EPOD) [118],

[139], [237] which is found to have a comparable reconstruction accuracy with respect to LSE.

Although faithful flow estimations in the vicinity of the wall can be obtained with these linear

techniques, they are limited as far as the physics involved contains non-linear events, explaining

why some studies coped with this problem by combining linear methodologies with the intro-

duction of non-linearities. When dealing with multiple-time-delay estimation of a turbulent

channel flow, faithful linear estimations were established within the viscous layer, while nonlin-

earities enabled accurate estimations even in the buffer region [145]. With a similar reasoning,

Kalman-filter-based estimators extended to account for non-linearities and introduced non-

linear forcing were shown to outperform the traditional linear estimators [126], [134]. Recently,

different resolvent-based approaches have been applied for estimation purposes, including the

space-time flow statistics estimation from limited data [270]. The resolvent-based estimation of

the non-linear forcing terms improved the estimation obtained with Kalman filter-based estima-

tors [271]. This type of methodology was also used for velocity and pressure estimation in the

flow from measurements of pressure and shear stress at the wall [272]. Likewise, resolvent-mode

and resolvent-based approaches have been applied to estimate the flow from velocity sensors

arranged in given planes of the domain [273].

The capability of machine learning to deal with non-linear problems leaves this branch of

methodologies in an outstanding position to describe the non-linear relations needed to estimate

the flow within a turbulent boundary layer. Convolutional neural networks (CNNs), thanks

to the use of convolutional filters, can detect patterns within image data at multiple scales.
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Analogously to POD, CNNs can identify patterns within the flow and have been exploited for

instance for encoding purposes [114]. The use of convolutional filters within a CNN was shown to

have better reconstruction capabilities than EPOD for the task of instantaneous field estimation

[139]. While Ref. [139] employed CNNs to estimate the POD coefficients of the flow fields, later

works successfully employed fully-convolutional networks (FCNs) [142], [242] to reconstruct the

flow fields on planes at a certain distance from the wall. These neural networks are capable

of making instantaneous reconstructions of the fluctuation velocity field in wall-parallel planes

providing them with wall measurements of quantities such as the wall pressure, the wall shear

stresses or the heat transfer through the wall. Alternatively, field predictions in other physical

configurations have been targeted by CNNs with generative adversarial training, referred to as

generative adversarial networks (GANs) [244]. GANs have shown to be very effective also for

resolution enhancement purposes [148], [157], [158]. The implementation of GANs allowed us

to estimate the turbulent field of a channel flow from coarse wall measurements at the same

instant [143], reporting an outstanding performance under low-resolution wall-data input and

better prediction capabilities than FCNs.

3D convolutional networks have been explored for the purpose of 3D reconstructions of free-

surface flows [150] and turbulent channels [148] employing surface and flow field measurements,

respectively. We recently extended the instantaneous flow estimation in wall-parallel planes

though a GAN [143] to a full 3D estimation with 3D-GANs [265]. This alternative concep-

tualization of the problem overcomes the need to develop individual planar reconstructions at

different wall-normal distances to get a full reconstruction, and produces benefits such as the

reduction of trainable parameters in relative terms, or the generation of a 3D field without

discontinuities. The availability of 3D fields could be directly used to study coherent turbu-

lent structures. The analysis conducted over the predicted set of Q-events [265] highlighted

that the capability of the network to reconstruct the field at a certain location depends both

on the distance to the wall and on the wall footprint of the specific structure to reconstruct.

Wall-attached sweeps and ejections that penetrate deep towards the centre of the channel can

be reasonably well predicted by the 3D-GAN, while detached coherent events might be unseen.

The capabilities of the methodology were also compared with traditional linear techniques,

such as LSE or EPOD, showing clear advantages over them. The level of error was significantly

reduced and the region from the wall to the point with maximum error was clearly extended.

The interested reader can refer to Ref. [265] for an extensive performance assessment against

linear techniques.
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Another concern in flow control studies involves the number and positioning of the sensors.

Fewer sensors would be preferred as the computations executed before any actuation or decision

may be accelerated, while more sensors might provide a more detailed description of the state of

the flow if they are placed efficiently. Even if the flow field to be controlled is a high-dimensional

system, coherent structures could be represented on a latent low-dimensional attractor, enabling

sparse sensing [179]. Recently developed systems for optimal placement of sensors and actuators

have been demonstrated to provide substantially better performances than random placement

approaches [274].

The practical implementation of this type of technology for the development of active control

strategies might raise questions about its technical complexity or even its feasibility. To get an

accuracy comparable to that in Ref. [265], two shear-stress and one pressure sensors must be

embedded in the wall within a grid 64 × 64 points (streamwise × spanwise) arranged within

an area equal to πh (streamwise) × πh/2 (spanwise), with h the half-channel height. Setting

this case as a baseline, the objective of this work is to define alternative cases with a reduced

amount of sensors and limited physical data information to assess how the performance of

the 3D-GAN estimator degrades. Moreover, this work contains an assessment considering

noise in measurements, a common issue in instrumental applications with sensors. After this

introduction, §2 presents the methodology followed in this work, §3 reports and discusses the

results obtained and §4 summarizes this manuscript highlighting the main conclusions and the

most remarkable aspects.

2 Methodology

This work focuses on the reconstruction of the flow field within a turbulent channel. The dataset

includes both wall and flow fields and it is the same dataset employed in Ref. [265], here briefly

described in Sect. 2.1. To study the effect of limited sensor number, reduced physical quantity

availability, and measurement noise, the information at the wall is subsampled and/or corrupted

as described in Sects. 2.1.1 and 2.1.2.

2.1 Turbulent channel flow dataset and sensors in the wall

The dataset has been generated with a DNS [203] of a periodic turbulent channel flow with

friction Reynolds number Reτ = 200, with dimensions [πh× 2h× (π/2)h]—respectively in the

streamwise, wall-normal, and spanwise directions, indicated respectively with x, y and z. It

contains the three velocity components of the flow field with 64 equispaced points both along
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the streamwise and spanwise directions, and 64 points in the wall-normal direction from one

of the walls to the mid-plane (consider only half of the channel). Moreover, it contains wall

measurements of pressure pw and streamwise and spanwise wall shear stresses τwx and τwz . The

configuration used in the present work is equivalent to that of Case A of Ref. [265], estimating

the flow field of half channel, from the wall to the mid-plane, as represented in Fig. 1. The

components of the velocity fluctuations at each wall-normal position are identified as [u, v, w],

using the + symbol to indicate quantities expressed in inner scaling.

Fig. 1 Representation of the region from the bottom wall to the mid-plane that is reconstructed providing
wall measurements of the bottom wall

(a) (b)

Fig. 2 Wall-normal profiles of (left) the mean streamwise velocity and (right) standard deviation σ of the
three velocity components. This figure is adapted from Cuéllar et al., ‘Three-dimensional generative adversar-
ial networks for turbulent flow estimation from wall measurements’, doi:10.1017/jfm.2024.432, licensed under
CC BY 4.0, Ref. [265]

The wall-normal profiles of the channel are represented in Fig. 2. According to the literature,

despite being small compared to some other databases, the present channel is big enough to

contain self-sustained turbulence [253], [255]. Further details comparing this channel with

similar channels at Reτ = 180 can be found in Ref. [265].
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Table 1 Number of sensors and retained variance with respect to the DNS resolution on each sensor arrange-
ment on the wall

Sensor arrangement 64× 64 32× 32 16× 64 16× 16 8× 32 8× 8
Number of sensors 212 · 3 210 · 3 210 · 3 28 · 3 28 · 3 26 · 3
Retained variance pw 100% 96.6% 90.0% 85.3% 69.8% 59.7%
Retained variance τwx 100% 96.9% 98.3% 86.9% 92.0% 63.1%
Retained variance τwz 100% 90.0% 89.9% 68.9% 70.1% 43.2%

2.1.1 Downsampling procedure

In this work, we are proposing different grid arrangements for the wall sensors used in the

training and estimation process. Table 1 summarizes the different cases proposed in relation to

the number of sensors used in each of them and the percentage of retained variance with respect

to that of the DNS for each wall quantity. The variance is reduced because the downsampled

fields employ bigger sensors which average the measurements of four contiguous sensors in the

higher-resolution case, thus filtering smaller turbulent features. The final objective for all cases

is to estimate the entire 3D flow field of the half channel, in its full resolution of 64× 64× 64

gridpoints. The sensor resolution, on the other hand, is progressively downsampled in powers

of two, leading to these three new cases: 32× 32, 16× 16 and 8× 8 (streamwise × spanwise),

as seen in Fig. 3. It represents the patterns’ size in relation to the spacing between sensors

and illustrates the effect of spatial averaging. Each downsampling step reduces the number

of sensors by 75%. The case with full resolution of the wall sensors (64 × 64) is included for

reference. It is worth remarking that each test case is trained separately with different random

seeds of the weights. This ensures that the effect of sensor number reduction is properly isolated.

The corresponding downsampled sensor inputs are computed with an average pooling filter

applied to the original DNS wall data. This is done to maintain full coverage of the wall but

with progressively larger (and not overlapped) sensors. This introduces an additional challenge

of progressive amplitude modulation of the smallest scales observed in the wall patterns.

Additional cases are proposed in which measurements from wall sensors are not downsampled

by the same factor along x and z. This is particularly interesting as streamwise-elongated

patterns are dominant. An increment in the spanwise sampling resolution could provide further

information about the different elongated streaks that are seen along an array of sensors in this

direction. On the contrary, increasing the sampling resolution along x might just provide

more information about only one or a few streaks. Smart sensor placement techniques have

been shown to use the same amount of sensors more efficiently [179], [274]. The methodology
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Fig 3 Instantaneous representation of wall quantities with different sampling levels. From left to right, wall
pressure pw, streamwise and spanwise wall shear stress τwx , τwz , respectively. From top to bottom, full resolu-
tion 64× 64, and progressive isotropic downsampling of factor 2, 4, and 8.

proposed here is not a smart sensor placement but tries to compare homogeneous sensor patterns

with the same number of sensors providing full coverage of the domain considered in this

problem. In line with this asymmetric downsampling, two additional cases are proposed, with

corresponding baseline with the same number of sensors but symmetric distribution: 16 × 64

(being 32 × 32 as baseline) and 8 × 32 (with 16 × 16 as a reference for comparison). A visual

representation of this downsampling scheme can be seen in Fig. 4.

To consider the case of limited physical data information we also explore the effect of employ-

ing sensors capable of measuring only one physical quantity—only τwx , τwz or pw. Furthermore,

we address jointly the effect of the lack of availability of high sensor resolution in the wall,

together with that of different quantities.
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Fig. 4 Instantaneous representation of wall quantities with different sampling levels. From left to right, wall
pressure pw, streamwise and spanwise wall shear stress τwx , τwz , respectively. From top to bottom, on even
lines the cases with asymmetric sensor distribution, and on odd lines their corresponding baseline cases

2.1.2 Noise modelling

In real applications, measurement noise in the sensors must be considered. To simulate this

effect affecting wall measurements, random Gaussian noise is added to pw, τwx and τwz . Two

levels of noise are tested on the four cases with the same number of sensors in both directions.

The standard deviation of the noise δ is set to 1% and 3% of the standard deviation of each of

the wall-measured quantities. Recall that the downsampling is applied in terms of an average

pooling layer directly applied to the sensed data. For these cases, the level of noise is thus

increased according to
√
N (see Table 2) to account for the smoothing effect of the averag

pooling. No bias error is considered for simplicity.

To estimate the effect of noise on the reconstruction quality, isolating training and recon-

struction processes, the networks, previously trained with the clean DNS data, are fed with the
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Table 2 Number of sensors used per downsampled cell.

Sensor arrangement 64× 64 32× 32 16× 16 8× 8

N 1 4 16 64

wall fields with added noise. Results are reported in Sect. §3.4 where the performance is also

compared with that of the reconstruction without noise in the input data.

2.2 Generative adversarial network

The flow estimation is carried out with a GAN. The architecture comprises two networks, the

generator G and the discriminator D. The generator is fed with 2D instantaneous sensor fields

and provides the three 3D fields of u, v and w at the same time instant. The discriminator

is used solely during the training process. It is fed with flow fields—either the original ones

from the DNS or those generated by G—and must classify them accordingly. The two networks

are trained adversarially. The loss function introduces a penalty based on the adversarial loss,

quantifying how good is the performance of each network in the “game” it is playing against

the other. At the end of the training process, G should be capable of generating turbulent flow

fields with a level of accuracy such that D is confused, having difficulty in classifying fields as

original or generated.

The GAN architecture we used is based on the field estimator in wall-parallel planes devel-

oped in Ref. [143]. It was extended to 3D in Ref. [265], with 64 × 64 sensor-grid inputs onto

G. In this work, the architecture is adapted to accommodate different input sizes (see sketch in

Fig. 5). Upsampling layers are applied to make the size of the output of G match the expected

64×64×64 resolution of the half-channel field. Along the y direction, the domain needs to grow

from a unique wall-parallel layer to 64, for which six upsampling layers of factor 2 are employed

[265]. Instead, along both x and z, the sizes of the domain need to be widened by a factor

defined as the ratio of the output (64) and the corresponding input sizes (64 − 32 − 16 − 8).

This step is done with a single layer introduced after the first convolution filter of the 3D-GAN

network in [265]. Alternatively, an additional procedure to increase the resolution of the wall

measurements before feeding them to the 3D-GAN could be considered. However, CNNs can be

used with super-resolution purposes [160], and the architecture employed in G may jointly allow

to increase the resolution and predict the flow field from wall measurements at once. The use

of the same architecture for the different test cases, without the need of additional networks or

any other type of implementation, and having used the same amount of trainable parameters,
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further allows us to establish a fairer comparison between them.

Fig. 5 Diagram of the generator network. The network contains convolutional layers (C3 and C9 with kernel
size 3 or 9 respectively), parametric-ReLU (PR) and upsampling layers acting on the wall-normal direction
(U-y) and in both wall parallel directions (U-x,z). The residual block and the up-sampling block are recur-
sively repeated. This figure is adapted from Cuéllar et al., ‘Three-dimensional generative adversarial networks
for turbulent flow estimation from wall measurements’, doi:10.1017/jfm.2024.432, licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/), Ref. [265]

Moreover, the network is a deep neural network consisting of convolutional layers and PReLU

activation functions [190]. They are arranged along 32 residual blocks with skip connections.

The six upsampling layers to widen the domain in the y direction are spread along the depth

of the network, and are followed by an additional convolutional filter. After all the residual

blocks, there is a global skip connection and a final convolution layer with three output filters

representing the [u, v, w] velocity fluctuations respectively.

The discriminator receives the fields of [u, v, w] with resolution 64× 64× 64, and the size of

the domain is progressively reduced, first with a set of convolutional filters with striding, and

then with two fully-connected layers, with 1024 and 1 neuron as output. Finally, a sigmoid

activation function is used to classify the field providing an output in the [0−1] range. A sketch

of the discriminator network D is presented in figure 4 of reference [265].

The loss function of each network is composed of two terms. One aims to improve its own

performance in terms of fitting the training data, while the other introduces a penalty based

109



on the performance of the other network (the so-called adversarial loss). The loss function of

G contains the MSE of the generated velocity field with respect to the original field from the

DNS (LMSE), and the binary cross-entropy as adversarial loss:

LG = LMSE − 10−3E[logD(uGAN)] , (1)

where E is the expectation operator and D(uGAN) represents the output of D when it receives

a GAN-generated velocity field.

The loss function for D is defined as the sum of two terms: its own expectation when it

receives a DNS field as content loss and the expectation when it receives a generated field as

adversarial loss:

LD = −E[logD(uDNS)]− E[log(1−D(uGAN))] . (2)

During training, all DNS nodes are assigned the same weight in the loss, regardless of their

corresponding volume (the mesh is finer close to the wall). We observed in our previous work

[265] that the accuracy of the flow reconstruction is mainly driven by the existence of certain

relations between wall and flow data. Consequently, introducing weights based on the volume

of each DNS cell does not have a significant impact on training, and might even result in a

detrimental effect on the accuracy, especially in the near-wall region.

3 Results

The mean-squared error (MSE) is used to evaluate the performance of G in estimating the

fluctuation velocity fields. It is computed independently for each component [u, v, w] and for

each y+ coordinate and discussed in the following for the cases under study according to:

MSE(u+
i , y

+) =
1

NsNxNz

ΣsΣxΣz(u
+
i,DNS(i, j, k)− u+

i,GAN(i, j, k))
2 (3)

where u+
i represents each possible velocity component [u+, v+, w+] with the subscript DNS

or GAN to represent respectively the original and the reconstructed velocity fields, Ns is the

number of samples in the testing set and Nx and Nz are the number of grid points along x and

z, respectively.

Additionally, an integral error ε metric (4) based on the MSE has been defined to facilitate

a quick comparison between the performance of different cases, merging in a single number

the effect of each component and the distance to the wall. Table 3 collects the metric for the
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Table 3 Integral error ε for the different cases proposed.

3 sensor types 1 sensor type 3 sensors + noise
Grid pw τwx

τwz
1% 3%

64× 64 0.207 0.224 0.232 0.242 0.219 0.234
32× 32 0.211 0.233 0.241 0.254 0.222 0.239
16× 64 0.214 - - - - -
16× 16 0.227 0.272 0.2664 0.321 0.228 0.232
8× 32 0.229 - - - - -
8× 8 0.262 0.318 0.293 0.357 0.262 0.262

different cases considered in this work:

ε =
1

200

∫ y+=200

y+=0

MSE(u) +MSE(v) +MSE(w)

[rms(u) + rms(v) + rms(w)]2
dy+ . (4)

Results are also discussed with a spectral analysis of the wall-sensed scales and the velocity

scales.

3.1 Estimation with same downsampling factor in x and z

The performance of the four cases with the same downsampling factor in both directions can

be compared in Fig. 6.

Figure 6 MSE reported for each velocity component and input-resolution case as a function of the wall-normal
distance ( , 64×64; , 32×32; , 16×16; , 8×8). The results are expressed in wall-inner units
based on the friction velocity uτ .

First of all, it should be remarked that all the curves observed in Fig. 6 have a similar

behaviour. The error is very low in the vicinity of the wall, it reaches a maximum and then

decreases. Practically no differences in error are observed at the centre of the channel. As the

sensor resolution becomes coarser, the position of the maximum error shifts towards the wall,

especially for u+. For all these cases, the MSE of u+ is the highest, with maximum values of
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about uτ and even 2uτ for 8× 8. The MSE of w+ is in an intermediate position, with the MSE

of v+ being the lowest. This is in line with the magnitudes of the standard deviation of the

velocity fluctuations, as reported in Ref. [265].

As expected, the error increases progressively as the wall measurements become coarser

—following cases with the same downsampling factor along both x and z directions. However,

the additional error introduced between cases is not the same. From a qualitative observation

of Fig. 3, one could notice that the smallest patterns observed with the 64 × 64 resolution

are nearly preserved for the downsampled set with 32× 32 sensors. Significant scale losses are

instead observed for the 16× 16, and in particular, for the 8× 8 resolutions. Figure 6 confirms

that the 32 × 32 wall input generates a slightly higher error than that with 64 × 64 sensors,

while these jumps increase when the resolution is further reduced. These jumps are in line

with the behaviour of the integral error ε reported in Table 3. This effect should be assessed

in relation with the distance between sensors (see Table 4) and the Power Spectral Density

(PSD) of the measured patterns at the wall (Fig. 7). On the one hand, regarding the spacing

between the sensors, the minimum characteristic sizes of the streamwise and spanwise patterns

expected to be retained are twice the spacing distances reported in Table 4, according to the

Nyquist-Shannon sampling theorem. Except for some of the smallest and low-energetic patterns

observed in the 64×64 maps in Fig. 3, the sensor spacing for the 32×32 arrangement (see Table

4) fulfils this condition for most of the relevant flow scales. This might explain why the loss in

accuracy reported in Fig. 6 between the 64×64 and 32×32 arrangements is minimum—despite

the strong reduction in the number of sensors from 12288 to 3072. Instead, the 16× 16 sensor

spacing leaves an important proportion of the patterns out of the threshold; this effect is further

exacerbated for 8× 8 sensors. Similarly, Table 1 shows how the retained variance with respect

to the original resolution, as an indicator of the contained energy, is quite similar for the cases

with 64×64 and 32×32 sensors, while it is reduced more noticeably for 16×16 and 8×8 sensors.

These reductions in the number of sensors determine an inadequate sampling of relevant flow

scales, losing patterns that seem to be important for the reconstruction of the 3D flow field, in

particular for the u component.

On the other hand, the spectrum maps shown in Fig. 7 (top row) also denote that large

patterns—both along x and z—dominate for the three measured quantities, and those of τwx

are particularly elongated in the streamwise direction. The pw and τwx spectra are quite well

conserved, with some degree of distortion growing with the downsampling factor, but still
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Table 4 Spacing between gridpoints in the wall of the channel for each resolution configuration employed.

64 32 16 8

∆x/h 0.049 0.098 0.196 0.393
∆x+ 9.82 19.63 39.27 78.54
∆z/h 0.025 0.049 0.098 0.196
∆z+ 4.91 9.82 19.63 39.27

Fig. 7 Premultiplied PSD maps of the wall-sensed pw (left), τwx (centre) and τwz (right). Cases with different
sensor arrangements (top row: coloured , 64 × 64; , 32 × 32; , 16 × 16; , 8 × 8; central and
bottom rows: coloured , 64 × 64 and 32 × 32; , 16 × 64 and 8 × 32) are compared along each row
according to the legend. The contour levels correspond to 10%, 50% and 90% of the maximum PSD level in
the original 64× 64 map

moderate for 16× 16. The fact that both the 8× 8 λ+
x and λ+

z minimum wavelenghts penetrate

within the contoured region (10% threshold) of the 64× 64 map truly constraints the original

spectral distribution for this case. The preservation of the τwz maps is worse, mainly because the

distribution of its characteristic scales reveals shorter and thinner patterns than for the other

quantities. The downsampling has an effect on the minimum wavelength sampled. For what

concerns the case with 32 × 32 resolution the effect is mainly felt in the streamwise direction.

For the 16 × 16 resolution, the minimum wavelengths penetrate within the contoured region

both in the streamwise and the spanwise direction. This effect is of course stronger for the

8× 8 resolution. Beyond this limitation, the contoured lines within their respective limits look

distorted to a greater extent than for the other two quantities. This discussion suggests that

the penalty of these downsampled sensor arrangements affects the field reconstructions more
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significantly with regard to the role of τwz .

Fig. 8 Premultiplied PSD maps of the streamwise velocity component u+ at three different wall-normal dis-
tances. The estimations from different number of sensors (contoured lines: , 64× 64; , 32× 32; ,
16×16; , 8×8) are compared with the spectrum of the DNS (coloured contour: ). The contour levels
correspond to 10%, 50% and 90% of the maximum PSD level in the DNS u+ field

Moreover, the spectral length-scales of the streamwise velocity component that the 3D-GAN

is able to reconstruct from the different input sensor arrangements are reported in Fig. 8. In

the different wall-parallel sections of the channel analyzed, the dominant patterns present in

the original DNS field are as elongated as πh, with a width of about 100− 150 wall inner units.

At a distance of 15 wall units away from the wall, the spectra look quite well preserved, with

a certain attenuation for the 8× 8 arrangement. The spectrum for 16× 16 is nearly coincident

with both finer resolutions, even if its MSE (u+) at this distance from the wall is substantially

larger (see Fig. 6). At y+ = 50 the spectral maps have a significant additional distortion,

with an important part of the spectral power not recovered: no point in the map gets the 90%

threshold even at the 64× 64 resolution; this effect is more intense for coarser wall data. The

attenuation is such that the 64× 64 map loses almost 50% of the spectral power contained in

the DNS data. The attenuation observed at y+ = 100 is even strengthened, leading to a loss

of more than 70%. A more detailed quantification of this attenuation is reported in Table 5.

Being S the premultiplied power spectral density map of the predicted field, and Ŝ that of the

original field, the overall attenuation is 1− Σ(S)

Σ(Ŝ)
, and the highest spectral intensity attenuation

is 1− max(S)

max(Ŝ)
. These results show the robustness of the 3D-GAN when using significantly fewer

sensors than in the baseline configuration. The attenuation at 8 × 8 with respect to the full

resolution is evident, but the reconstruction is certainly satisfactory if one considers that it

employs only 1.5% the number of sensors in the 64 × 64 arrangement. It must be remarked,

however, that for regions further from the wall the reconstruction error is mainly driven by the

lower correlation of velocity fluctuations with wall quantities, thus the effect of reducing the
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number of sensors is much less relevant.

Table 5 Attenuation of the u+ field spectrum with respect to the DNS at y+ = [15, 50, 100].

Overall attenuation Highest spectral intensity attenuation
64× 64 32× 32 16× 16 8× 8 64× 64 32× 32 16× 16 8× 8

5.8% 4.3% 11.3% 39.6% y+ = 15 0.0% 0.0% 0.3% 8.2%
46.0% 47.0% 57.9% 70.3% y+ = 50 18.3% 11.8% 22.3% 24.7%
71.5% 72.2% 81.7% 83.0% y+ = 100 33.4% 30.7% 54.4% 44.9%

Additionally, the turbulent structures have been analyzed. Individual Q-events have been

identified with the 3D-quadrant analysis [249] based on the planar quadrant analysis for the

identification of turbulent structures [250], [251]. Structures are defined according to a hyper-

bolic hole size equal to H=1.75 following:

| − u(x, y, z)v(x, y, z)| > Hu′(y)v′(y) , (5)

where u′(y) and v′(y) represent the root-mean-squared of each velocity component at a given

wall distance y. These events have been bounded by their range in the wall-normal direction,

being ymin and ymax the minimum and maximum distance from the wall of the points forming a

structure, respectively. Wall-attached structures (setting the threshold at y+min ≤ 20) represent

the vast majority of the population of turbulent structures. For each wall-attached structure

in the DNS dataset, the proportion of its volume V that is overlapped with analogous Q-events

from the corresponding estimated (3D-GAN) field has been computed.

Structures have been classified in bins according to their ymax. For each bin, the average

volume matching proportion Xt of all its structures has been computed as the average of the

average overlap proportion V of all these structures [265]. Figure 9 shows two main effects

regarding Xt. Overall, wall-attached structures are preserved better the closer to the wall they

remain, while those that extend towards the center of the channel have more chances to lose

a bigger part of them in the reconstruction process. Besides, it shows the trend due to the

effect of the number of sensors used. In line with some previous comments, the quality of the

estimation becomes worse as fewer sensors are employed for the whole ymax/h span. However,

the trend is not uniform, with the configuration with 32× 32 sensors suffering a small penalty

with respect to 64× 64, while Q-events generated with cases with further downsampling report

more significant losses in terms of Xt. This is probably due to the aforementioned effect of the

downsampling on the wall spectra and the length-scales that each sensor set is able to measure.
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Fig. 9 Evolution of the overall matching proportion Xt of the wall-attached structures in the DNS fields
with those from the generated fields. Structures are categorized into different groups according to their span
ymax/h.

3.2 Estimation with different downsampling factor in x and z

Alternative cases were proposed applying different downsampling factors along directions x and

z (see Fig. 4). The MSE of the two new cases can be observed in Fig. 10, where they are

compared with their respective cases with the same number of sensors with equal downsampling

factors in x and z. As seen in Table 1, the 16×64 arrangement has the same number of sensors

as the 32× 32 arrangement, while the same holds for the cases with 8× 32 and 16× 16 sensors.

Fig. 10 MSE comparison for each velocity component as a function of the wall-normal distance for cases with
the same number of sensors ( , 32 × 32; × , 16 × 64; , 16 × 16; × , 8 × 32). The results are
expressed in wall-inner units based on the friction velocity uτ .

The difference in error between these two pairs of cases is quite small. It is seen how the

sensor arrangements with the same downsampling factor in x and z indeed work slightly better
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than those with different downsampling factors, against the hypothesis introduced in §2—except

for the estimation of u+ with 210 · 33 sensors in the range of y+ ≈ [15 − 30]. As in the DNS

grid, all cases with the same downsampling factor already have twice as much resolution inz

as in x. On the other hand, in the alternative arrangements, the resolution in z is 8 times

as in x. There might be a ratio between the resolution along both directions for which the

error is minimized. Although a ratio of 8 might seem a bit extreme for this optimum scenario,

the penalty in terms of error is not very significant. Besides, given the quantization of this

additional penalty as reported in Fig. 10, under the scenario of a physical implementation of

this technology, these alternative arrangements could even be considered if they were preferred

for any practical purpose against arrangements with same downsampling factor, at the cost of

a slightly poorer estimation performance. Similar conclusions could be drawn from the integral

error ε (see Table 3), where both cases report a very moderate increment with respect to the

cases with the same number of sensors.

The spectrum of the three wall measurement quantities for these two pairs of cases can be

compared in the central and bottom rows of Fig. 7. In both pw spectra, the distortion of the

contoured lines of the alternative arrangements with respect to those with same downsampling

factor is not very significant. However, the downsampling factor of 8 applied on x in 8 × 32

highlights spectral losses of streamwise scales—as previously reported in the 8×8 arrangement.

Regarding the τwx , quantity for which scales are particularly elongated, none of these arrange-

ments seems to be significantly penalized and the contoured lines are quite overlapped. Instead,

the preservation of the scales in the τwz map is not as good, as this spectrum contains smaller

scales that might not be bounded by the minimum wavelengths. The increment in resolution in

z in these two alternative arrangements with respect to those with same downsampling factor

enables a reduction of the loss of the small τwz spanwise scales previously reported in Sect. 3.1.

Indeed, in the 16 × 64 case, the increment in the spanwise resolution with respect to 32 × 32,

allows us to partially recover a peak in the spectrum around λ+
x ≈ 200 and λ+

z ≈ 50 that was

only reported in the original 64× 64 spectrum map. Nevertheless, this is possible at the cost of

losing further small streamwise patterns. In relation to the retained variance reported in Table

1, it is seen that the retained variance of the patterns of τwx , particularly elongated, is better

conserved with 16×64 and 8×32 than on their respectives cases 32×32 and 16×16. However,

this difference is much smaller than the loss reported for the retained variance of pw.
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Fig. 11 MSE comparison of each velocity component between cases using only one type of sensor with the
64× 64 resolution: , pw, τwx

, τwz
(baseline); , pw; , τwx

; , τwz
.

3.3 Reconstruction with one type of sensor

Often, in realistic scenarios only one of the wall quantities might be accessible. In this section, we

analyse the effect of reducing the availability of the wall-measured quantities. Figure 11 shows

a comparison of the MSE reported when the 3D-GAN is fed only with pressure, streamwise or

spanwise wall shear stress, arranged in the 64 × 64 resolution. The error of the baseline case

with the three types of sensors is shown here for reference.

These results show that the relative importance of each of these three wall quantities for the

flow field reconstruction is not the same. Besides, their relation with each velocity component is

different. Close to the wall, the streamwise and spanwise velocity components show a stronger

relation with the streamwise and spanwise wall shear stresses, respectively. However, the MSE

corresponding to the wall pressure becomes lower beyond y+ ≈ 25 for u+ and beyond y+ ≈ 10

for w+. Instead, pw shows a slightly better capability to estimate v+ throughout the domain.

A similar procedure is followed for the downsampled resolutions proposed in Fig. 3. To

simplify it, we compare the MSE of the fluctuation velocity u+, defined as the sum of the MSE

of u+, v+, and w+, instead of for each of its components separately. The results for the four

cases are plotted in Fig. 12.

For the 64× 64 resolution, it is observed that the pressure sensors offer the best estimation

performance throughout most of the domain. Only in the vicinity of the wall, up to y+ ≈ 15,

τwx provides a slightly smaller MSE. This finding is similar to that for the MSE of u+ shown

in Fig. 11. As the MSE of u+ for the case using only τwx reports a clear advantage close to

the wall against the other two quantities, its influence prevails (64 × 64 in Fig. 12) when the
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Fig. 12 MSE comparison between cases using only one type of sensor with different resolutions: ,
pw, τwx , τwz (baseline); , pw; , τwx ; , τwz .

MSE of the other velocity components are included (cases in which τwx does not provide the

lowest MSE but the differences between cases employing different wall-measured quantities are

less significant).

No significant changes are reported for the 32×32 resolution, apart from a slight increase in

the magnitude of the MSE. This effect was also shown in Fig. 6, where the three wall quantities

were employed. However, differences are found for the cases with the lowest number of sensors.

Having a limited number of sensors appear to be particularly detrimental for estimation using

solely pressure. The estimation based on τwx , on the other hand, is still reasonably good in the

near-wall region. With 16 × 16 sensors, the pressure is not able to provide a lower MSE than

τwx until beyond y+ = 30. With 8× 8 sensors, τwx provides the lower MSE throughout the way

along from the wall to the mid-plane of the channel. As observed qualitatively in Fig. 3 and

quantitatively in figure Fig. 7, τwx exhibits large-scale patterns, which might explain why this

quantity can provide us with better field estimations under a coarse grid arrangement when

only one type of sensor is used.
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The MSE of τwz for these two coarser resolutions has very significant increments with respect

to the two finer resolutions, even if with 64×64 sensors it already provided the worst estimation.

This might be due to the fact that the patterns in τwz are smaller, while the downsampling

procedure preserves better the patterns of the other two quantities.

3.4 Effect of sensor noise

This section covers an analysis consisting on the quantification of the flow field estimation MSE

when noise is applied over the three wall-sensed quantities.

Figure 13 shows the MSE profiles of the three velocity components (columns) for each reso-

lution considered (rows), comparing this metric for the values ofδ = [0%, 1%, 3%]. As expected,

the MSE of the reconstructed fields increases with the noise added to the sensors. The curves

follow a similar profile, with very low values in the vicinity of the wall, progressively increasing

with the distance from the wall up to a maximum, and then reduced and stabilized towards

the centre of the channel. For the three values of δ considered, the MSE levels are very similar

in the closest and in the farthest regions to the wall, while the differences in the region in be-

tween these two are more evident. All this discussion applies to the three velocity components,

although the differences in MSE for u+ are more significant.

In relation with the input resolution, the main conclusion is the fact that the effect of δ is

minimized with the downsampling factor. For the sensor arrangement 32× 322 few differences

are reported with respect to 64 × 64; the shifts between the curves of each δ are still very

significant, and the level of error with 32× 32 sensors is slightly higher than for 64× 64. With

further downsampling, 16 × 16 sensors shows more moderate increments of the MSE curves

with increasing δ. This effect is even strengthened at 8 × 8, where the curves of each level of

δ are nearly overlapped throughout the domain of the channel flow. In other words, all this

discussion implies that, as the sensor arrangement becomes coarser, the MSE grows faster for

δ = 0% than for δ = 1%, and even more than for δ = 3%. As a remarkable example, comparing

curves with δ = 3% (more evident for u+), the MSE for 16 × 16 is higher than for 32 × 32

and 64× 64 only close to the wall and close to the centre of the channel, but in the rest of the

channel and in particular, in the region of the peak, the MSE is significantly lower for 16× 16

sensors. The same trends with the sensor resolution are reported in Table 3 according to the

integral error ε.
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4 Conclusion

The 3D-GAN developed in Ref. [265] has been tested under coarser grids of input sensors at

the wall, willing to estimate the flow of half channel at the same resolution as in the original

grid. This is a challenge for the methodology, allowing us to assess its performance when less

data are available. This analysis quantifies the additional uncertainty introduced when fewer

sensors are installed, which would definitely be a trade-off between simplicity and accuracy

to analyze under a practical implementation scenario. The robustness of the 3D-GAN under

these scenarios is demonstrated by the fact that the penalization reported under coarser wall

measurements is not directly proportional to the reduction in the number of sensors employed,

but rather depends on their capability to represent wall patterns.

When a progressive downsampling to the sensor grid is applied in both streamwise and

spanwise directions in powers of 2, the three velocity components experience an increasing MSE

metric over the whole half channel. Nevertheless, the error introduced with each downsampling

step is not linearly dependent on the number of sensors. The quality of the reconstruction

seems to be directly affected by the characteristic length-scales of the measured quantities, and

which of them remain present with each of the sensor arrangements. The MSE for a wall input

of 32×32 is almost equivalent to that of 64×64 sensors—the DNS resolution. Nevertheless, the

smaller scales lost with any further downsampling seem to affect the accuracy of the estimator.

The largest scales that remain in the wall after the coarsening process still carry very important

information for the flow reconstruction. Although the attenuation experienced in the estimated

fields becomes relevant, the largest scales present in the channel flow are still sensed.

The aforementioned cases are compared as they are downsampled in the same way along

x and z. A comparison between this sensor arrangement setting and a different one with

different downsampling in the two directions is established. The main hypothesis was that

the structures are mostly elongated in the streamwise direction, thus it is more relevant to

sample them properly in the spanwise direction. The results show, however, that no significant

improvements are achieved with this alternative setting.

The reconstruction employing only one type of sensor revealed that each of the wall quan-

tities considered does not contribute in the same way to the reconstruction of each velocity

component. Moreover, the implications due to the lack of availability of sensor resolution are

addressed. In general, pressure measurements would provide better flow reconstructions than

the wall shear stresses if data could be sampled at sufficiently high spatial resolution. However,
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this choice might bring an important penalization on the estimation of u+ close to the wall,

where τwx performs remarkably better. Instead, when the resolution of the sensors is lower,

τwx is preferred. We address this to its wall patterns being significantly larger, thus a higher

proportion of its energetic spectrum is preserved in the downsampled data.

Finally, the robustness of the 3D-GAN is assessed concerning the noise present in the sensing

process at the wall, which would be present in a practical implementation of this methodology.

As the amount of noise considered in the sensors increases, the accuracy of predictions is

reduced. The reduction in accuracy is not the same for all the sensor arrangements considered.

Finer resolutions are more affected by the noise introduced, while the 3D-GAN is more robust

to noise under coarser wall inputs.
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Fig. 13 MSE comparison between cases with different noise levels in the wall input , δ = 0%; , δ =
1%; , δ = 3%; for each velocity component and resolution case.
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Paper 3

Measuring time-resolved heat transfer fluctuations on a heated-thin
foil in a turbulent channel airflow

Antonio Cuéllar, Enrico Amico, Jacopo Serpieri, Gioacchino Cafiero, Woutijn J. Baars, Stefano

Discetti and Andrea Ianiro, Under review (2024), Preprint arXiv: 2410.12778 [physics.flu-dyn]

We present an experimental setup to perform time-resolved convective heat transfer mea-

surements in a turbulent channel flow with air as the working fluid. We employ a heated thin

foil coupled with high-speed infrared thermography. The measurement technique is challenged

by the thermal inertia of the foil, the high frequency of turbulent fluctuations, and the mea-

surement noise of the infrared camera. We discuss in detail the advantages and drawbacks of

all the design choices that were made, thereby providing a successful implementation strat-

egy to obtain high-quality data. This experimental approach could be useful for experimental

studies employing wall-based measurements of turbulence, such as flow control applications in

wall-bounded turbulence.

Keywords Turbulent channel flow, Wall-based sensor, Infrared thermography
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1. Introduction

In this work, we present an experimental setup for the acquisition of time-resolved measurements

of the convective heat transfer coefficient on the wall of a turbulent channel. Measurements

are based on the unsteady heated thin foil sensor [218], [219] coupled with infrared (IR) ther-

mography as a temperature transducer. This technical design note responds to a challenge of

measurements in air flows. Due to the foil thermal inertia and the characteristic frequencies of

the problem, the measurement of the small amplitude temperature fluctuations requires careful

image processing, including spatial, temporal and feature-based filtering. We critically discuss

all the design choices made, together with the details of image processing to obtain high-quality

instantaneous measurements of the Stanton number in air with this technique.

IR thermography has been applied in different experimental setups to study heat transfer

by a wall-bounded grazing flow. Following the seminal work by Hetsroni and Rozenblit [215],

Gurka et al. [216] conducted synchronised measurements of particle image velocimetry (PIV)

and heat transfer on a hot foil applied to a turbulent wall-bounded water flow. A heated

thin foil was employed on a similar boundary layer problem in water with high-frequency IR

measurements in synchronization with PIV [221]. Similar experiments with air as the working

fluid are challenged by lower fluctuations of the foil temperature and heat transfer, and higher

frequency content of said fluctuations. Both of these aspects require a push towards thermally

thinner and tailored processing of the images. The first challenge is merely technological. On

the other hand, image conditioning requires careful consideration of the choice of the processing

strategy, considering that the signal-to-noise ratio can easily be below 1.

The heated thin foil sensor is based on measuring the convection between the fluid and a

heated foil through an energy balance (equation 1), as sketched in figure 1. It assesses the

temporal temperature variation as an unsteady term with the contribution of the different

instantaneous heat fluxes and sources, where cp is the specific heat capacity, ρ is its density and

a is its thickness.

cpρa
∂Tw

∂t
= ϕ

′′

J − ϕ
′′

cond − 2ϕ
′′

rad − ϕ
′′

conv,ext − hc(Tw − Taw) . (1)

The symbol (′′) denotes that heat fluxes are expressed per unit area of the thin foil. These terms

include the heat input provided to the sensor (in most cases produced by the Joule effect) ϕ
′′
J ,

the conduction within the foil ϕ
′′

cond, the radiation ϕ
′′

rad emitted from both sides of the foil, and

the convection, to be treated separately for the side exposed to the flow, equal to hc(Tw − Taw)
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and for the side not exposed to the flow ϕ
′′
conv,ext, where natural convection may develop. The

convective heat flux between the flow and the wall depends on the convection heat transfer

coefficient hc, which is the quantity to be determined, and on the local wall temperature Tw

and the adiabatic wall temperature Taw, which are both measured with the IR camera. All the

terms in equation 1 are typically modelled following conduction and radiation laws, along with

empirical correlations (see, e.g. those reported in [275]).

V

I

ϕ
′′

J

ϕ
′′

cond

ϕ
′′

conv,ext

hc(Tw − Taw)

ϕ
′′

rad

Figure 1. Sketch of the electric circuit mounted on the sensor and the heat fluxes on the energy balance of the
thin foil.

The thermal model relies on the assumption that the foil is thermally thin, such that the

temperature on the internal side of the foil (considered in the model) is equal to that on

the external side (measured temperature). This approximation is valid if the Biot number,

Bi = hca
κ

≪ 1 (where κ is the foil thermal conductivity). Additionally, the Fourier number

Fo = αtchar
a2

(with tchar being the characteristic time of the problem) compares the heat flux

and the rate of thermal energy storage, requiring Fo ≫ 1 to perform unsteady heat transfer

measurements [222]. Both requirements are met in the case of the experimental setup presented

in our current work, by ensuring the film thickness a is small enough.

This experimental approach presents a series of challenges that must be carefully managed

to ensure accurate results. Provided that the available IR camera is capable of an acquisition

frequency large enough to temporally resolve the flow scales involved in the problem, several

difficulties are still to be faced. First of all, the IR camera must be sensitive enough to detect

the wall temperature fluctuations. While most of the terms are mainly steady, the temporal

variations of hc lead to temperature fluctuations of the foil, which are damped by the foil thermal
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inertia on the left-hand side of equation (1). Secondly, the fluctuations to be measured must be

compared to the Noise Equivalent Temperature Difference (NETD) of the camera to evaluate

the IR sensor suitability [225]. The characteristic time—or the characteristic frequency—of

the problem is a property of the flow and can be estimated. For instance, from dimensional

analysis, it can be quantified as the ratio of the characteristic length and the characteristic

velocity. Given such characteristic time, one may want to increase temperature fluctuations in

case they are too small to be detected. Therefore, from equation 1 it is possible to argue that

one can either increase the foil heating or choose a foil thin enough to amplify the temperature

fluctuations. The thickness of the foil is a critical factor, however, it can not be chosen ad

libitum as the foil needs to be manufacturable, robust enough to be implemented and sustain

pressure and shear fluctuations without deforming, and ideally be cost-effective. In addition, the

heating applied must be small enough to avoid perturbing the flow with undesired buoyancy

forcing. Excessive heating could increase the Richardson number (ratio of natural to forced

convection), potentially disturbing the results. Moreover, for IR measurements, a layer of

paint is often applied to enhance the accuracy of temperature measurements by increasing the

surface emissivity. This alters the thermal properties of the material and thus may distort the

measurements if not properly accounted for [276]. A proper balance between these factors is

essential for reliable outcomes.

Different models have been developed to address these complexities [218], [222], [276], [277].

However, for measurements in air flows, the temperature fluctuations are often of the same order

(or smaller) than the NETD, thus making image preprocessing crucial. Techniques like Proper

Orthogonal Decomposition (POD) or autoencoders can suppress noise in very low signal-to-

noise ratio conditions [220], [278]. Additional techniques, such as bad pixel removal to eliminate

outliers and detrending procedures to counteract increasing mean temperatures in the system,

further improve data quality [221].

The remainder of this article contains a description of the experimental setup in section 2,

a discussion of the results in section 3, the uncertainty is quantified in section 4 and the key

findings are summarized in section 5.
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2. Experimental setup

2.1 Channel Flow and Experimental Setup

The experiments of this work were performed in the Channel Flow facility of the aerodynam-

ics laboratory at Politecnico di Torino. The walls of the channel are made of poly-methyl-

methacrylate, defining an internal cross-section of 35 × 420 mm2 with a length of 10 m. The

channel operates with air in an open-return wind tunnel configuration. The inlet section is

composed of an electric pump followed by a small divergent section, a settling chamber and a

convergent nozzle upstream of the channel entrance. To trigger transition to turbulence, two

thin turbulator strips with zig-zag-shaped leading edges are placed at the end of the convergent

on both channel walls along the spanwise direction. To ensure flow stability, a slightly divergent

duct is installed at the outlet of the channel. The channel walls are made of modular sections

which allow a custom layout to install suitable devices needed to carry out the experimental

campaigns. A schematic representation of the channel is reported in figure 2.

PUMP

TEST SECTION

𝑥 𝑥 = 6 m

𝑥 = 10 m

FOIL

Figure 2. Sketch of the channel flow facility at Politecnico di Torino, with the thin foil (red) mounted on the
top wall of the channel.

The experiments reported in this technical note have been conducted in a turbulent regime

with bulk airspeed U∞ = 4.95m/s. The Reynolds number based on the outer quantities is

equal to Re = U∞h
ν

= 5800, where h is the half channel height, equal to 17.5 mm and ν the air

kinematic viscosity. Accordingly, the friction-based Reynolds number Reτ = uτh
ν

= 220, with

uτ =
√

τw
ρ

the friction velocity defined as the square root of the ratio between the wall skin

friction τw and the fluid density ρ. The friction velocity is characterised by employing 16 static

pressure ports distributed along the channel test section to quantify the pressure gradient. The

static pressure measurements are carried out using a 16-channel DSA pressure scanner, with a

maximum pressure range of 2500 Pa and a 0.05% full-scale accuracy. A linear fitting is applied

to obtain the pressure gradient, which is then employed to determine the value of the wall

friction [279].
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2.2 Heat transfer measurements

A heated-thin-foil heat transfer sensor has been designed and mounted on the upper wall of

the channel (see figure 3) by means of a frame embedded in the top wall, coincident with

the position of the modular wall it replaces. This design choice minimizes the flow disturbance

caused by buoyancy effects. Indeed, the intensity of natural convection for a heated plate facing

downward is lower than when facing upward [280].

The sensor frame was 3D printed with PLA material. The thin foil is inserted on the frame

through two groves at its leading and trailing edge positions, 150 mm apart. The sensing area

has a width W = 100 mm and it spans a length L = 150 mm along the channel wall. On the

external part of the frame, four fixed bars are mounted, holding two copper block pairs, one

for each end of the thin foil. Each pair of copper blocks forms a clamp that retains the thin

foil in between. The thin foil is heated through Joule effect. For this purpose, a DC power

supply is connected to the copper blocks. The higher electrical resistance of the CrNi-Steel

alloy with respect to that of the copper, together with the small thickness of the thin foil (5

µm) with respect to that of the copper blocks (1 cm) ensures that the electric potential drop

through the copper is negligible with respect to that through the thin foil. The copper blocks

can thus be considered at practically constant voltage, ensuring uniform voltage and current in

the spanwise direction. To minimize contact resistance between the copper blocks and the foil,

a thin engraving in the copper block face in contact with the foil is filled with a 1 mm indium

wire. The voltage differential applied to the foil is thus assumed to be equal to that between

the copper blocks at the foil edges and it is measured with a voltmeter in contact with the

copper blocks. The different parameters of the problem employed for this model are collected

in table 1. Voltage and current are not included as several power levels are considered in this

work.

To ensure foil tension, a spring is mounted around each bar, pushing apart the sensor frame

and the copper blocks, thus tightening the thin foil. The frame adjusts the thin foil, subjecting it

to tensile stresses to keep it flat and prevent any misalignment with the rest of the channel wall.

The thin foil is made of 1.4310 CrNi-Steel alloy (Cr 16–18% and Ni 7–9%) able to withstand a

nominal tensile stress F > 1500 N/mm2. Kapton® tape is used for sealing around the sensor

and avoiding any air leakage perturbing the flow. To assess a suitable foil thickness two foils

are tested, with af = 5 µm and 10 µm, respectively.

An IR camera is employed as a temperature transducer to measure the temperature on the
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Figure 3. Isometric view of the external side of the sensor, with the thin foil (red) mounted on the frame.

Table 1. Values used in the thermal model of the sensor

Quantity Symbol Value Units

Heat capacity (foil) cp,f 500 ± 5 J/(kg K)
Heat capacity (paint) cp,p 5000 ± 50 J/(kg K)
Density (foil) ρf 7900 ± 50 kg/m3

Density (paint) ρp 1300 ± 50 kg/m3

Therm. cond. (foil) κf 17 ± 2 W/(m K)
Therm. cond. (paint) κp 1.4 ± 0.1 W/(m K)
Area (Joule) A∗ 0.0254 ± 0.001 m2

Foil length L 0.15 ± 0.0005 m
Foil width W 0.1 ± 0.0005 m
Emissivity (paint) ϵ 0.95 ± 0.02 –
Ambient temperature Tamb 19 ºC

external side of this sensor. To enhance IR temperature measurements, given the low emissivity

of steel, the external side of the thin foil is sprayed with high-emissivity matt black paint.

The IR camera used in this experiment as temperature detector is an Infratec Camera

ImageIR® 6300Z, with a resolution of 640 × 512 pixels. The temperature resolution (NETD)

of the IR camera at 30◦C is 0.03 K, and its calibration accuracy is ±2 K. The camera is mounted

at a distance of 30 cm from the foil, with a focal length of 18 mm. This leads to a resolution of

0.21 mm/pixel along the sensor. An integration time equal to 2900 µs was set according to the

configuration requirements of the camera hardware for the range of temperatures considered for

this experiment. The IR camera sampling frequency was set to fs = 180 Hz to ensure sufficient

temporal resolution needed. This leads to a temporal separation between snapshots of less than

1/16th of an eddy turnover time h/uτ . Considering a convection velocity of near-wall streaks of

about 11uτ [281] and the characteristic length of the sensor L, the sampling rate is sufficiently
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large so that 12 snapshots cover the convective time of the flow over the streamwise length of

the sensor.

As a standard procedure of the heated-thin-foil sensor to obtain the adiabatic wall tempera-

ture, an acquisition run without power input is carried out. Then, the electrical input is turned

on to take the measurements of the temperature maps of the experiment.

The different heat fluxes in the thin foil are modelled to compute the heat transfer coefficient

between the foil and the channel flow from the energy balance (1). The unsteady and conductive

terms have been corrected to account for the effect of the paint [282], [283], as shown in equations

(2) and (4) respectively, assuming a coating thickness ap = 20 µm on each side of the foil and

using the foil (f) and paint (p) properties:

cpρa
∂Tw

dt
= (cp,fρfaf + cp,pρpap)

∂Tw

dt
. (2)

The Joule effect term is given by:

ϕ
′′

J =
V I

A∗ , (3)

where V and I, respectively, are the voltage and the intensity of the current applied, and A∗ is

the area through which the current is discharged. Note that this area does not coincide with the

flow exposed area of the sensor, as the entire thin foil between the two pairs of copper blocks

must be considered.

The conduction heat flux experienced through the foil is computed as:

ϕ
′′

cond = − (κfaf + κpap)∇2Tw , (4)

where κf and κa are the thermal conductivities. The nabla operator ∇ considers the second

derivatives of the temperature maps along both principal directions of the plane of the foil.

For the quantification of the radiation effect, the emissivity ϵ of the surfaces of the thin foil

should be introduced in the model. As both sides are covered with matt black paint, a high

value (0.95) is taken—the external side is painted to improve its emissivity for IR acquisition

purposes, and the internal side is painted to avoid reflections on synchronized PIV acquisition

not described in this work. Applying Stefan-Boltzmann’s law, radiation is modelled as:

ϕ
′′

rad = σϵ(T 4
w − T 4

amb) , (5)

being σ the Stefan-Boltzmann constant and Tamb the ambient temperature in the laboratory
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during the experimental acquisition used as a reference for radiation.

2.3 Image preprocessing

Due to the low signal-to-noise ratio, preprocessing of the images is paramount. The following

steps are implemented:

• The effect of the heating of the foil frame and of the natural convection cells rising from the

external side of the thin foil was visible on the sequence of original images, characterised

by large patterns (characteristic length-scale of the order of the width of the thin foil)

and low-frequency temperature oscillations. Due to the low-frequency nature of natural

convection, a high-pass filter can be applied, removing it from the fields. To avoid filtering

any actual feature within the turbulent flow, features whose characteristic time is at least

12 times larger than one eddy turnover time (h/uτ ) have been removed, thus, with a cutoff

frequency of 0.9 Hz for this case. The filter cannot suppress characteristic patterns of the

channel turbulence, as with a convection velocity of near-wall streaks of about 11uτ [281],

the filter would suppress structures with a characteristic length greater than at least 130 h,

which is much larger than the size of the very large scale motions expected in the channel

flow. Consequently, the term ϕ
′′
conv,ext in (1) should be neglected for the calculation of hc.

The order of this effect can be quantified according to a horizontal heated plate facing up.

• The temperature fluctuations expected in the thin foil are of a comparable order of mag-

nitude to the IR camera noise, necessitating additional filtering. A 3D-Gaussian filtering

(in the image plane and in time) with a smoothing kernel has been applied to smooth

the data. In both directions in the image plane, the size of the kernel is 2 (∆x+ ≈ 6),

contributing to dampening fluctuations with the size of a single pixel. The size of the

kernel in the temporal dimension is 0.5, to evidence transitions and temporal fluctuations.

• Furthermore, a feature-based filtering, analogous to that done in Ref. [220] can be applied.

The temperature maps can be decomposed in POD modes and a low-order reconstruction

with only the most energetic modes can be employed to remove incoherent features. The

number of the modes to be retained has been identified with the elbow method [284].

• To reduce field noise, due to minor non-uniformity in the gains the of IR camera sensing

elements, an additional Gaussian filtering can be applied with an elongated kernel in the

spanwise direction. This measure is taken to filter out residual striped patterns due to the

acquisition mechanism of the IR camera, which scans the sensor in rows.
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3. Results

The experimental campaign to test this experimental configuration has been done by acquiring

datasets of 12000 samples at 180 Hz, tuning the Joule effect power input to different levels to

explore the balance between sufficiently strong thermal fluctuations and spurious effects due to

natural convection. Following the model from section 2.2 and the data filtering recipe of section

2.3, the convective heat transfer coefficient hc has been quantified.

3.1 Results of the thermal model

(a) (b) (c)

(d) (e) (f)

Figure 4. Maps of the thermal model at different filtering and processing stages in sequential order for an
instantaneous field: (a) original, (b) high pass output, (c) 3D-Gaussian output, (d) POD output, (e) 3D-
Gaussian output, (f) Stanton number map.

Figure 5. Original sequence of instantaneous temperature fluctuations of a pixel and removed low-frequency
events.

The filtering sequence for an individual sample is depicted in figure 4. These results corre-

spond to measurements with a foil with 5 µm thickness. The input current is set to 8.0 A with a

voltage supply of 5.0 V, resulting in a foil temperature of about 35 K above room temperature.

Although each filtering step may attenuate the temperature fluctuations, it is seen that the level
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of noise is progressively reduced. The high-pass filter has successfully removed the convective

cells and other constant or low-frequency events not related to the local channel turbulence, as

shown in figure 5. However, the level of noise at this stage is still quite high. Some streamwise

patterns start being observed after the 3D-Gaussian filter. For further smoothing, the POD

filter cuts the noisy tail of modes with about 50% of the energy contained after the Gaussian

filter. A Gaussian filter with actuation in the spanwise direction removes the remaining thin

striped patterns. The resulting temperature map is used according to the energy balance in

equation (1) to compute hc, or the Stanton number St = hc

ρU∞cp
in non-dimensional terms, em-

ploying the fluid density ρ and specific heat capacity cp. As seen in figure 4 (f), the outcome of

this procedure results in instantaneous heat transfer maps with patterns that show a relation

with the wall-bounded turbulence expected in the channel. These patterns are elongated and

nearly aligned in the streamwise direction, with lengths in the range ∆x+ = [500− 1000] and a

span of ∆z+ = [50 − 100], with the superscript + indicating normalization with inner scaling.

These values are similar to those reported in Ref. [255].

3.2 Effect of heating

A sensitivity analysis of the power input effect is conducted, heating the foil about 15, 25 and

35 K above room temperature. Stronger heating leads to the development of more pronounced

convective cells. As a result, the magnitude removed with the high pass filter increases with

the power input, as shown in the sequences in figure 6.

Figure 6. A sequence of low-frequency temperature fluctuations removed from a pixel with the high pass fil-
ter.

Examples of filtered Tw and St maps for these configurations are shown in figure 7. The

temperature maps have been processed in the same manner for each power input level, with

the POD filter threshold tailored to each case using the elbow method. Low heating levels

make the temperature fluctuations less pronounced, while heating contributes to amplifying
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(a) (b) (c)

(d) (e) (f)

Figure 7. Instantaneous temperature map after the filtering process (top) and Stanton number map (bottom)
at different heating conditions: from left to right (a) and (d) 3.2 V - 5.0 A (about 15 K), (b) and (e) 4.0 V -
6.5 A (about 25 K), (c) and (f) 5.0 V - 8.0 A (about 35 K, same as figure 4e− f).

the signal. Once filtered, the temperature sequence for the lowest heating level (as in figure 7

a) retains 53% of the variance than in the case with the highest power input (as in figure 7 c).

The intermediate case retains 73% of its variance.

Beyond the differences in how pronounced those temperature fluctuations are, Tw maps show

differences in their patterns that strongly influence the St patterns, as seen in the bottom row of

figure 7. For the lowest heating level, the Stanton number patterns are still quite noisy and, from

a qualitative inspection, seem less consistent with the physics of coherent structures in the near-

wall region [281]. This sequence might necessitate further filtering, which may introduce more

uncertainty. Further heating can magnify the temperature fluctuations, making the approach

less susceptible to noise and facilitating obtaining patterns with physical meaning, as seen both

in the Tw and St maps. When the foil is heated 25 K, the peaks are more evident than when it

is heated 35 K. However, a higher level of heating shows less noisy Stanton number maps, with

physical patterns being clearly identified. Quantitatively, the variance of these sequences can

give a measure of the relative noise level among them. The intermediate and highest heating

levels respectively retain 43% and 25% of the variance of the case with the lowest heating level.

It must be considered though that natural convection is stronger in this latter case (although

it is simple to filter with the strategy outlined in section 2.3) and that the thermal expansion

of the foil might produce undesired deformations.
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3.3 Effect of foil thickness

We also conducted tests with a foil of thickness 10 µm. This comparison is performed using

a similar heating to the case with higher heating (30 K) and the same filtering procedure and

settings. Although the requirements of small Biot and large Fourier numbers are still fulfilled,

this sensor may have less sensitivity to the larger thermal inertia. A higher mass increases

the thermal inertia and conduction, affecting the response time to temperature changes and

distorting the temperature distribution on the surface. The map of filtered Tw and that of St

at a given time instant of the sequence are shown in figure 8, with the foil heated to a middle

point between the cases in figures 7 (centre and right). The temperature fluctuation map shows

some patterns with shapes comparable to those with the 5 µm foil with the highest heating

level that reasonably might represent near-wall turbulence. However, the magnitude of the

peaks of these fluctuations is lower. More importantly, although not observed in a single map,

a visual inspection of a temporal sequence shows slower temperature changes. This may affect

the quantification of heat transfer, as temporal derivatives are directly involved. The St map

shows that the strongest fluctuations are well pronounced. However, other patterns, mainly

representing noise rather than the wall-bounded turbulence physics in the near-wall region,

remain stronger than those observed the 5 µm foil. In light of these findings, one might expect

that using a foil thinner than 5 µm would further reduce those effects.

(a)

(b)

Figure 8. Instantaneous temperature map after the filtering process (a) and Stanton number map (b) from a
10 µm foil heated about 30 K with 3.7 V - 10.0 A.
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4. Uncertainty quantification

The uncertainty of the model has been quantified with a Monte Carlo approach. The uncer-

tainties indicated in table 1 have been considered to define a 99% confidence interval on a

Gaussian distribution to generate multiple random combinations of these inputs. For the tem-

perature maps and the ambient temperature, the NETD has been considered to be uniformly

distributed through the POD modes and the Gaussian filters, thus the actual noise variance has

been assumed as the NETD2 times the percentage of POD modes retained and the pixelwise

contribution of Gaussian filters. As such, the measurement uncertainty of fluctuating St fields

was quantified to be equal to 21.3%, 13.8%, 9.4%, respectively for the cases (a), (b), and (c),

of figure 7. For the 10 µm foil, as reported in figure 8, it is equal to 11.6%. Despite having the

same uncertainties for the voltage, current and thickness, the higher quantities introduce less

relative uncertainty than for the 5 µm foil while the larger thickness magnifies the uncertainty

contribution of the temporal derivatives. These results support the choice of increased foil

heating and smaller foil thickness as a means of improving measurement quality.

5. Conclusions

The heat transfer fluctuations in an air channel flow are quantified through the energy balance of

a heated thin foil embedded in the wall. Temperature measurements are conducted employing

IR thermography. The main challenges in tackling this experiment are the presence of high-

frequency events to be captured, the noise of the experimental equipment and the thermal

inertia and conduction of the foil. These heat transfer measurements have been made possible

through the balance between different aspects and components of the problem, showing also

examples of less convenient configurations. Some critical factors are the black matt coating,

the power input and the foil thickness. Additionally, a filtering process is capable of isolating

the characteristic turbulent phenomena of the channel from other effects and removing the high

level of noise contained in the original temperature acquisitions. The impact of some parameters

of the problem on this filtering process has been analysed. Summarising, the main guidelines

obtained from this paper are the following:

• It is recommended to remove spurious natural convection effects with high-pass filtering.

It was shown that the natural convection effects could be suppressed for different heating

levels, leading to similar results for all the conditions analysed in this note.

• Measurement noise can be successfully removed with a feature-based POD filter coupled
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with a Gaussian filter to improve the data smoothness.

• Foil thickness should be minimized whenever possible; measurement results are found to

be weakly dependent on foil thickness provided the heating is strong enough to ensure

sufficient signal-to-noise ratio. Note that when dealing with very thin foils, the presence

of a thin layer of paint on the foil (necessary to enable precise IR measurements) must be

taken into account when estimating the foil thermal inertia.

Supplementary material Data and codes will be available upon publication.
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[242] L. Guastoni, A. G. Balasubramanian, A. Güemes, et al., Non-intrusive sensing in turbulent boundary
layers via deep fully-convolutional neural networks, 2022. arXiv: 2208.06024 [physics.flu-dyn].

[243] D. Chen, X. Gao, C. Xu, et al., “FlowGAN: A conditional generative adversarial network for flow pre-
diction in various conditions,” in 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI), IEEE, 2020, pp. 315–322.

[244] T. Li, M. Buzzicotti, L. Biferale, and F. Bonaccorso, “Generative adversarial networks to infer velocity
components in rotating turbulent flows,” Eur. Phys. J. E, vol. 46, no. 5, p. 31, 2023.

[245] J. M. Hamilton, J. Kim, and F. Waleffe, “Regeneration mechanisms of near-wall turbulence structures,”
J. Fluid Mech., vol. 287, pp. 317–348, 1995.
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