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NASA’s future plans for space vehicles call for the ability to automatically rendezvous 

and dock (AR&D) with the International Space Station (ISS) and other targets.  This 

requires sensors and algorithms capable of determining the relative position and orientation 

(pose) between the target and chase vehicles under the drastically varying lighting conditions 

of low Earth orbit and beyond. To this end, Ball Aerospace has developed algorithms to 

produce six degree-of-freedom navigation data from 3D point clouds. The algorithms 

require a-priori knowledge of the target vehicle geometry and a range image of the target 

vehicle for in-flight pose determination (no visible or reflective targets are needed).  The 

algorithms have been incorporated into a simulation that includes a flash LIDAR model, 

orbital dynamics, vehicle thrust control, and a three-dimensional model of the ISS. The flash 

LIDAR is used as the only relative navigation sensor during AR&D. In this paper we present 

the results of the docking simulation, including the accuracy of the pose determination 

algorithms during a successful approach and docking with ISS.  

Nomenclature 

AR&D = autonomous rendezvous and docking 

CCD = charge coupled device 

ICP = iterative closest point 

ISS = International Space Station 

LIDAR = LIght Detection And Ranging 

PID = Proportional Integral Differential (controller) 

OSG = Open Scene Graph 

pose = relative position and orientation 

STORRM = Sensor Test for Orion RelNav Risk Mitigation 

I. Introduction 

ENDEZVOUS and docking are currently performed either manually, or in a highly cooperative manner that 

requires active hardware on both target and chase vehicles. The Sensor Test for Orion RelNav Risk Mitigation 

(STORRM) relative navigation sensor suite, flown in 2011 on STS-134, advanced the current state of the art in 

cooperative rendezvous and docking technology [1]. To enable autonomous rendezvous and docking (AR&D) with 

cooperative targets the STORRM sensor suite requires an active flash LIDAR unit on the chase vehicle and only 

passive reflectors on the target vehicle. The flash LIDAR used on the STORRM instrument produces range and 
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intensity images of the target.  In planning a sensor for semi- and non-cooperative AR&D, it is easy to see that these 

two sets of images are ideal data for these missions. 

When discussing AR&D it is important to clarify the differences between cooperative, semi-cooperative and 

non-cooperative AR&D.  Cooperative AR&D needs both vehicles to work together with one vehicle at least 

providing easy to decipher pose indications. Semi-cooperative AR&D assumes that there is some a-priori knowledge 

of the target vehicle geometry and that the target vehicle is in a constant torque and force state. This means that the 

vehicle may be spinning, or a torque rod may be powered in a steady-state condition, but the vehicle is not changing 

directions or actively avoiding the chase vehicle. Non-cooperative AR&D makes none of these assumptions and is 

the most general case. This paper covers the semi-cooperative case, though much of the work presented also applies 

to the non-cooperative case.   

In choosing a data source, the current sensor options for AR&D are the previously described LIDAR (which 

provides lighting-independent data) or visible cameras. Data from either of these sensors can be used to determine 

relative pose.  However, the primary drawbacks of visible cameras are lighting dependence and poor range 

determination performance at large distances. The weaknesses of the visible cameras can be avoided by using only 

the range data from the LIDAR.  An ideal solution might combine the visible and LIDAR sensors, but while sensor 

fusion is a current trend in Earth-based applications such as robotics, power and weight requirements for space 

missions seek to minimize sensor counts. If a LIDAR only solution is achievable it would be strongly preferred.  In 

terms of future mission planning, a working LIDAR-only pose determination solution validated for the ISS can also 

be extended to other problems such as servicing of existing space assets without reflective targets or rendezvous and 

landing on an asteroid.  

In this paper we present the results of an end-to-end study performed by Ball Aerospace to automatically determine 

relative pose based purely on range images. First, a flash LIDAR model was built to aid in algorithm testing.  This 

was tied into closed-loop simulations of AR&D. Then, two algorithms were written to meet the pose determination 

objectives: one for medium ranges to the target and one for short ranges. A brief overview of the methods and 

models is presented, followed by performance results for an ISS approach and docking. 

 

II. Methodology 

Approach analysis to the ISS found the pose determination solution spaces diverged into two ranges: a long to 

medium range and a short range. The division was found to occur naturally at the point where the target vehicle just 

filled the field-of-view (FOV). After that point clipping of the target vehicle occurs and, while some of the medium 

range algorithms can tolerate a small to moderate amount of clipping, they generally perform better when the entire 

target vehicle is visible.  

To test these algorithms a flash LIDAR model was built to generate range images. This same flash LIDAR model 

was also incorporated into a closed loop simulation to determine if the pose performance was sufficient for AR&D. 

The pose algorithms, flash LIDAR model, and simulation are described briefly below.  

A. Medium-Range Algorithm 

Several medium-range algorithms were tested, and the iterative closest point 
[2,3]

 tracking method is presented here. 

The method relies on matching the current range image to a model of the target vehicle so that an absolute pose can 

be determined to a known point on the vehicle. At long ranges the base algorithm works well, but it was found to 

produce incorrect pose at closer ranges. The cutoff was determined experimentally using the simulation described 

below, and occurred when approximately 20% of ISS was outside the FOV. Several modifications were made to the 

algorithm to enable operation at closer ranges, including cropping the reference model based on the last known 

relative pose. This improved the ability of the algorithm to converge on the correct solution by eliminating spurious 

points that could incorrectly influence the optimization process.   

While these results use a reference model, the method could be adapted to unknown targets by first scanning a target 

vehicle by circumnavigation (using a stand-off distance), followed by continued tracking of the object relative to the 

model built during the circumnavigation. Target vehicles could then be a damaged spacecraft, space debris, or an 

asteroid. During the initial scan of an unknown object, the ICP algorithm has been successfully used to refine the 



 

 

American Institute of Aeronautics and Astronautics 

 

 

3 

relative position of successive range images. The refined relative pose can then be used to correct the inertial 

navigation state.  

B. Short-Range Algorithm 

The determination of target pose at medium to long range distances is difficult, but is helped considerably by being 

able to see at least large parts of the target.  Computation time at distance is also reduced because only part of the 

CCD contains data so analysis can be done on reduced pixel counts.  However, as the docking vehicle approaches 

the target the view will begin to become clipped.  The beginning of significant view clipping marks the start of short 

range algorithms.   

Difficulties at short ranges include a full CCD of pixel returns (which reduces computational shortcut options), more 

rapidly changing features, and material textures that can add noise at close range.  However, the most difficult 

problem is that instead of navigating around an object we are now navigating along an object.  This change requires 

intra-object landmarks to be detected and used for close-in operations.  The databases and detection algorithms to do 

this take a noticeable jump in complexity. 

Initial efforts looked at using RANSAC [4] to find shapes in the 3D data.  The idea has merit as most manmade 

space structures are cylinders and planes.  Unfortunately, while moderately successful without much effort, the 

computation time was unacceptable at tens of seconds per analyzed frame.   

The next iteration looked to create one histogram per view, such as seen in the Fast Point Feature Histogram [5].  

Each view was processed into a single histogram and these were collected into a database of all the views deemed 

likely in a docking scenario.  In testing this was both more reliable than RANSAC and much faster to compute 

coming in at just a couple of seconds per frame.  However, this created a need for multiple, large databases that had 

to be swapped in and out of memory depending on the range to the target.  Indeed, as testing progressed it became 

clear that the number of databases and the reliance on model accuracy was becoming prohibitive for current space 

hardware limits.   

After a number of algorithm iterations it was seen that something akin to a Pyramid of Images [6] approach was 

efficient.  By mixing in a combination of global and local features the pyramid could be guided to each successive 

level, making it both an efficient and reliable method for our purposes.  Specifically, each range image that is 

collected is segmented into a 3x3 grid.  Within the 9 grids a number of features are calculated.  These features range 

in complexity from simple pixel counts to moderately higher order features using slopes and normals.  At the coarse 

3x3 grid level the features are not required to be accurate.  Instead, they must merely be indicative.  Grid regions 

that meet assigned criteria are then further segmented into their own 3x3 grid and additional features that tend to be 

more discriminative are calculated for these smaller regions.   Features in the smaller region that meet their criteria 

are then used in the final pose calculation.  The criteria range from simple value thresholds to spatial relationships, 

but all are straightforward to calculate since processing power is at a premium. 

By starting with a coarse grid, then calculating higher order (and more discriminative) features only on subsets of 

these larger grids, processing time can be compressed to 25+ Hz even on the limited processing power of space 

qualified hardware.  Figure 1 outlines the general steps taken to narrow down the segments of the image that the 

processing time is spent on.  Pose estimation results for out-of-plane angles typically seen in testing are show in 

Figure 2.  The errors are low and the results are typically robust, but there are occasional poses that produce 

moderately larger errors for the algorithms as seen by the red squares in Figure 2.  While these errors are much 

higher than the mean error they are still relatively low. 
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Figure 1: Left: The raw range image is received.  Middle: The image is broken into a 3x3 grid and features are 

calculated for each region.  Right: Regions that are indicative of key areas are further segmented into 3x3 

regions and higher order features are calculated.  Small regions that pass their criteria are used to estimate pose. 

 

Figure 2: Pose estimation errors for the X and Y angles.  Mean errors are 0.037 degrees with standard deviations 

of 0.045 for both angles. 

C. Flash LIDAR Model Description 

A way to simulate a flash LIDAR unit was necessary in order to generate arbitrary views of target spacecraft for 

algorithm testing and to generate target spacecraft databases. To fulfill this need a model was built based on the 

OpenGL language due to its availability and the pervasiveness of hardware support on graphics cards in nearly all 

modern computers.  An interface was then written between Matlab and OpenGL so that the algorithms could 

navigate around the structure by inputting a pose and receiving the resulting model view. The readily available 

optimized software and hardware acceleration make for an adaptable model that runs at greater than 30Hz on a 

modern desktop (3.2 GHz Intel Xeon with a Nvidia Quadro FX 1800 graphics card) when producing 256 by 256 

range images. The infrastructure is in place to provide realistic noise models, but these have not yet been used for 

this effort. Perfect range images have been used for the simulations shown in this paper.  

D. AR&D Simulation  

Flight control algorithms for semi-cooperative autonomous rendezvous and docking (AR&D) are tested using a 

MATLAB-based, non-real-time, closed-loop simulation that features an OSG-based LIDAR camera model and 

includes standard attitude and orbit dynamics models for both the chaser and target vehicles. Figure 3 illustrates the 

functional flow of the closed-loop AR&D simulation.  
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Figure 3. Semi-cooperative AR&D non-real-time, closed-loop simulation featuring an OpenGL-based LIDAR 

model and 6-DOF dynamics and control.  

 

Vehicle dynamics (truth models) for the chaser and target vehicles are comprised of a 13 x 13 gravity geopotential 
model, atmospheric drag model assuming constant density, and rigid-body attitude dynamics using Euler equations. 

The LIDAR sensor is simulated using an OSG-based camera model and point cloud target vehicle data bases. The 

simulation user may select either ISS or Hubble Space Telescope point cloud models. The OSG camera model forms 

LIDAR return signals (i.e., range data) based on (truth model) relative position and attitude between the chase and 

target vehicles along with the target vehicle point cloud model. 

LIDAR return signals pass from the sensor model into the on-board processor model, where an ortho-rectification 

algorithm generates 3D relative position measurements for each pixel in the camera focal plane. Next, the ICP 

algorithm processes the relative position measurements into pose estimates (i.e., relative position and orientation 

between the two vehicles), which are passed through a median filter to reduce signal noise. Chase vehicle attitude 

control maintains its local vertical local horizontal (LVLH) orientation as it closes on the target vehicle. Chase 

vehicle position relative to the target vehicle is controlled by a Clohessy-Wiltshire algorithm during far-field 

operations and by a standard proportional-integral-derivative (PID) controller for near-field operations, especially 

once the chase vehicle enters the final approach corridor. The simulation user may select the range at which the 

transition between far-field and near-field operations occurs. Lastly, desired thrust is computed and passed into the 

actuator model, which computes the resulting thrust-induced change in velocity and closes the loop by updating the 

chase vehicle’s velocity in the vehicle dynamics model. 
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III. Results  

The above algorithms and simulator were combined, and analysis was run starting at 100m to the docking ring until 

only the inside of the docking ring is visible (approx. 1.5m). At this point insufficient features exist in our current 

model to determine pose. The simulation is initialized in a perfect state and the chase vehicle performs a maneuver 

to intercept the target vehicle based on the initial perfect knowledge. The measured relative pose is then used with 

the PID controller to guide the chase vehicle to the docking ring of the target vehicle. The relative position of the 

chase and target vehicles are shown in Figure 4. The relative position calculation is quite accurate, with typical 

errors less than 0.2 meters. Error plots for both position and orientation are shown in Figure 5.  

 

 

Figure 4. Relative position of chase and target vehicles. 

 

The computed pose is very good except for a region between 65 and 115 seconds, where the ICP algorithm begins to 

break down as the ISS gets closer to filling the field of view. The region from 0 to 65 seconds where noise is very 

small is the initial ICP algorithm used when ISS is fully contained within the FOV or minimal clipping of the solar 

panels is present. The algorithm accuracy is reduced once significant portions of ISS are outside the FOV, and minor 

modifications were made to the algorithm to produce a working solution. This modified algorithm produces more 

noise between 65 and 115 seconds. The modified algorithm fails to produce usable results at ranges closer than 

approximately 7 meters, at which point the close range algorithm is used. As expected, this algorithm produces very 

good estimates of the range to the docking ring. The accuracy in the image plane is slightly worse due in part to the 

lack of features on the current ISS model within the docking ring (the docking cross is missing in our model). The 

point at which the in-plane position begins to drift (approx. 150s) is where only the edges of the docking ring petals 

are visible, and the FOV is dominated by a featureless pressure bulkhead. The addition of features within the 

docking ring to our model is a topic of future work that should improve the accuracy of the relative position 

computation. Despite the errors observed, the docking simulation shows good tracking to the center of the docking 

ring until all three petals are not visible (approximately 155s in the simulation) and the separation distance is 

approximately 2 meters. 
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Figure 5. Relative orientation of chase and target vehicles.  

 

The computed relative orientation exhibits low noise with the exception of the region where the modified ICP 

algorithm is necessary. Even at distances of 100m to the docking ring the relative orientation is predicted to within a 

small fraction of a degree in all axes. During the final 7m of approach (115s to 160s in the simulation) the noise is 

very low as the close range algorithms are capable of determining feature positions more accurately as features 

become better resolved at shorter ranges. The rotation about the flash LIDAR viewing vector is not determined for 

the final 7m since insufficient features are visible to determine this rotation (the docking ring has 120 deg 

symmetry). Instead, the algorithm maintains the current rotation about the viewing vector and shows no rotation 

error in Figure 5 (red curve) during this portion of flight since this rotation is not computed.  
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Computed relative position is filtered as described in the AR&D Simulation section above, and relative velocity is 

calculated from the filtered relative position estimate. Relative velocity is an important part of the PID controller and 

the small noise in the relative velocity is amplified in the thrust control. Figure 6 shows the computed relative 

velocity and the resulting thrust commands. This is a simple simulation intended only to prove the effectiveness of 

the pose algorithms (very simple control method and very simple navigation filtering). Showing a successful 

docking demonstrates that the pose algorithms are effective, even in the absence of knowledge of target vehicle 

motion and realistic flight filters. 

  

Figure 6. Computed relative velocity and the resulting thrust commands. 

 

IV. Improved Close Range Pose Algorithm 

In the above analysis it was discovered that an improved close range pose algorithm was needed to refine the 

docking performance. Analysis of the data obtained from the STORRM mission also informed the development of 

the improved close range pose algorithms. The important lessons from analysis of the STORRM data were that 

some surfaces were not visible due to shallow incidence angles, there is a moderate level of background noise and 

bad pixels, and that the standoff cross on the docking target is not clearly visible. These observations drove us to 

create a computationally efficient noise model that could be used for AR&D simulations. The model developed is 

not radiometrically correct, but attempts to mimic some of the behavior observed in the STORRM data. Figure 7 

compares a range image from STORRM to one produced by our computionally efficient model.  

Using both the STORRM data and the computational noise model, improvements were made to the close range pose 

algorithm to ensure accurate results in the presence of noise, but also to ensure improved position determination 

during the final meters of docking. The resulting algorithm is still computationally efficient, and does not use the 

docking cross, but rather point clustering and multiple metrics to identify the docking ring using only range data. 

The performance of the improved close range algorithm are shown in Figure 8 for a number of ranges to the docking 

ring and relative orientations. The center of the range of angles shown (+/- 4 deg) in Figure 8 are those most 

common in the final meters of docking, and show errors between +/-10cm (compared to +/-20cm in the algorithms 

presented in Section IIB). The rotation about the viewing vector is still not determined, and errors for range to target 

and orientation angles are comparable to those for the algorithm presented above.  
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Image courtesy NASA. 

Figure 7. Comparison of a STORRM range image to one from our computationally efficient noise model. In the 

left image white indicates no return signal, and corresponds to dark blue in the right image.  

 

  

Figure 8. Performance of the improved close range pose algorithm shows significant improvement in position 

error compared to the old algorithm.  

 

 

V. Conclusions and Future Work  

By building an end-to-end simulation platform the team was able to test and compare a large variety of pose 

determination algorithms.  The platform is perhaps the best achievement of this effort as it builds a strong 

foundation for future efforts.  For this paper it was seen that through testing AR&D algorithms there was not a 

singular solution that worked at all ranges.  Instead, multiple approaches had to be used based on the range to target.  
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The ICP algorithms created the core approach for much of the approach-to-target range, but for near-field operations 

a form of pyramid of images approach was created.  For the close operations the pyramid approach was tailored so 

that the coarse regions that were indicative of relevant data were further processed.  An improved close range pose 

algorithm was presented that makes use of the spacial efficiency and offers better position estimates during the final 

meters of docking, and is still computationally efficient. The tailoring process enabled good pose estimation while 

operating at a high enough frequency to fit onto existing space hardware.  
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