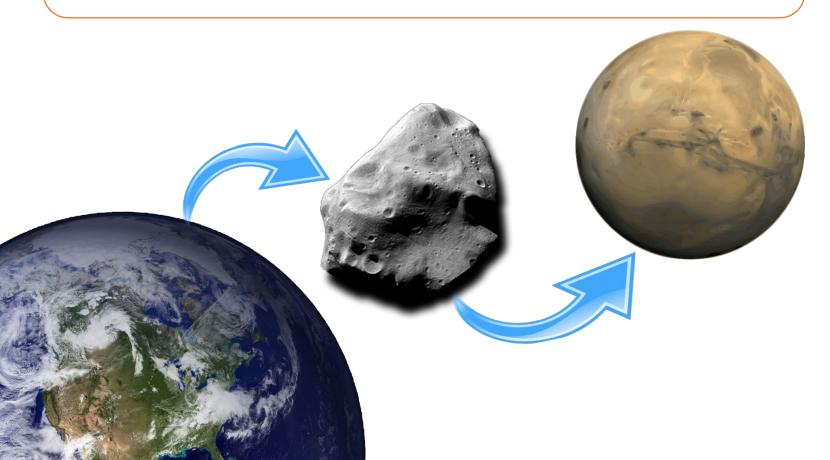
THANK YOU TO OUR GENEROUS SPONSORS FOR SUPPORTING THE CALTECH SPACE CHALLENGE

Lunar – reDirected Orbiting Resource Asteroid Demonstration and Operation


27 March 2015

2

The Big Picture

Project Explorer brings astronauts to the lunar orbiting ARM asteroid in 2025 to characterize, extract, and utilize its resources in order to demonstrate the potential benefits for humanity and future exploration missions.

Executive Summary

- Two rockets: One for cargo and one for crew
- The Eureka science module launches in August 2024 and heads to the asteroid
- A 3-person crew launches in February/March 2025
- 8.5 day prograde lunar flyby trajectory to reach the asteroid
- 22 days of on-asteroid operations
 - Characterization of the asteroid and its environment
 - Resource extraction, processing, and utilization
 - Public outreach
- 8.5 day trajectory to return to earth
- Abort options drive mass and schedule design limits
- Uses Orion and SLS architecture
- \$3.1 billion projected cost (\$1.8 Billion without launch costs)

Presentation Flow

1. Build the foundation

2. Make it flexible


3. Make it creative

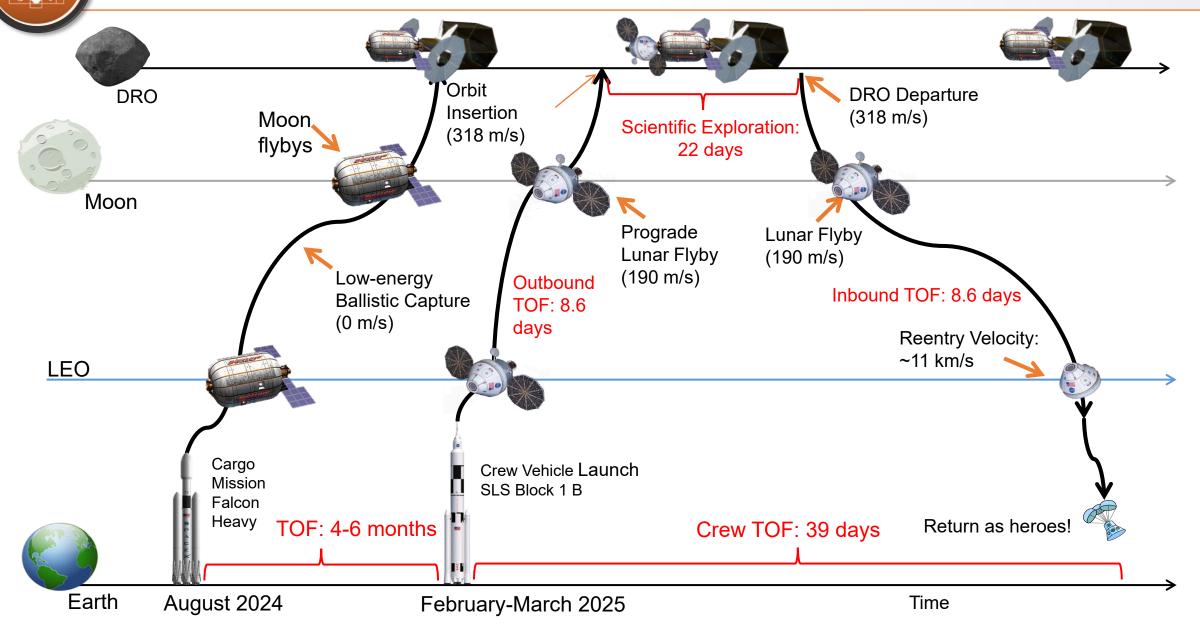
4. Make it fun

Table of Contents

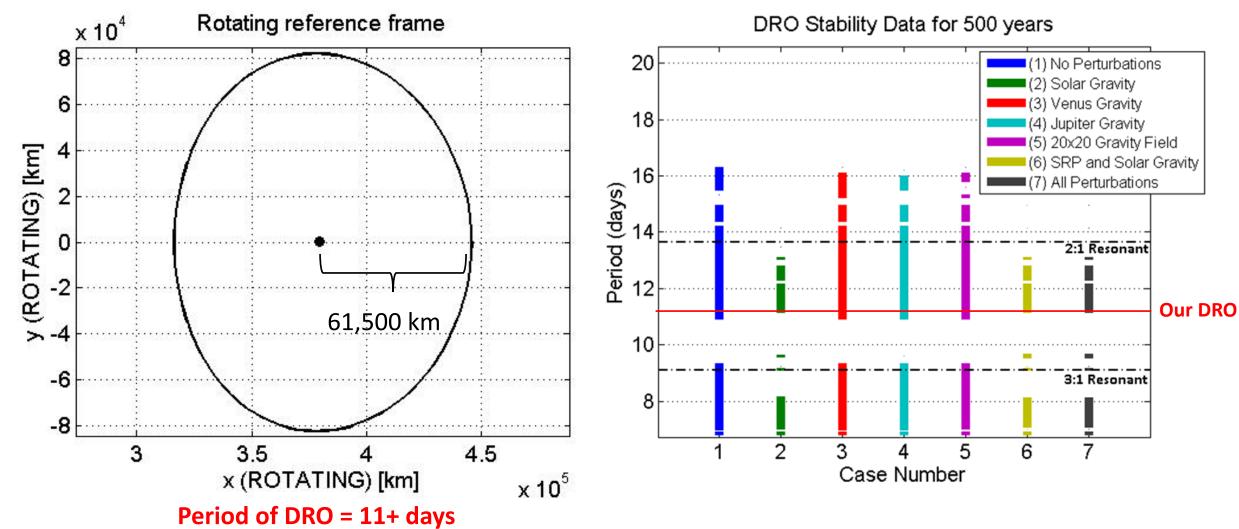
- Mission Context
- Mission Overview
- Trajectory and Launch
- Science and Technology Demos
- Human Factors and ECLSS
- System Engineering
- Public Outreach
- Budget
- Conclusions

Introduction: Step One

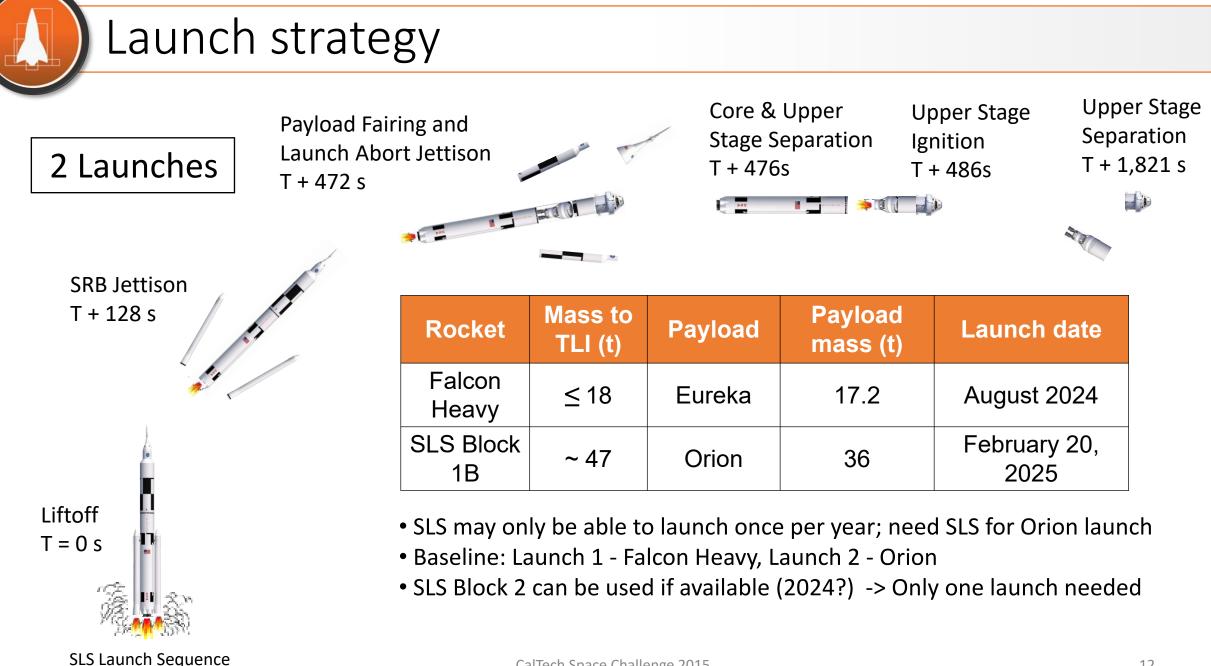
Now What?

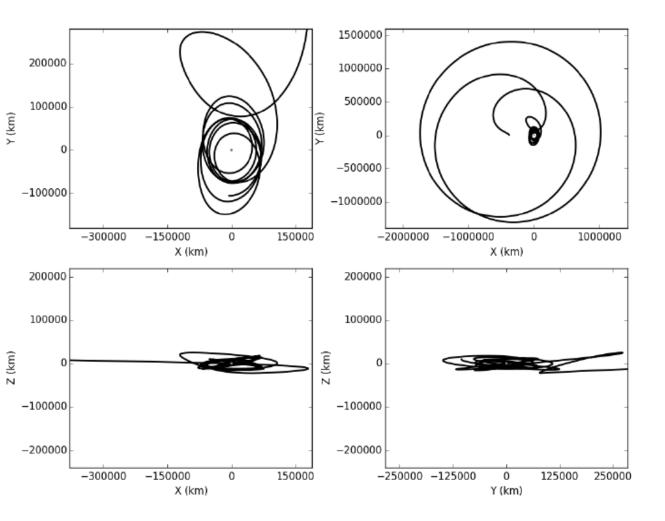

Critical Ground Rules and Assumptions

- In place by 2024
- Class "C" Asteroid
- 500 metric tons
- Design for A or B
- ARM Power can be used


- Use SLS and Orion for Crew
- Block 1, 1B Available
- Block 2 Maybe Not
- 2+ Astronauts
- TRL 8+
- Standard NASA Procedures

- International Cooperation
- Public Outreach is Critical
- Planetary Protection Mandate

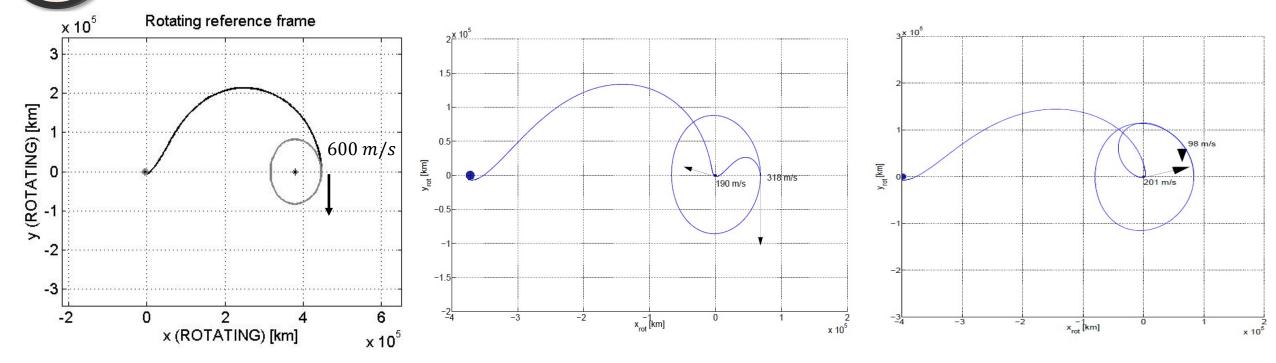

Mission Overview


Trajectory Planning: The Asteroid's Orbit

Bezrouk, Collin, and Jeffrey Parker. "Long Duration Stability of Distant Retrograde Orbits." AAS (2014): n. pag. Web.

Transit: Eureka Trajectory

Herman, Jonathan F.C., and Jefferey S. Parker. "Low-Energy, Low-Thrust Transfers Between Earth and Distant Retrograde Orbits about the Moon." Annual AAS Guidance & Control Conference (2015): n. pag. Web.


Low-Energy Ballistic Capture

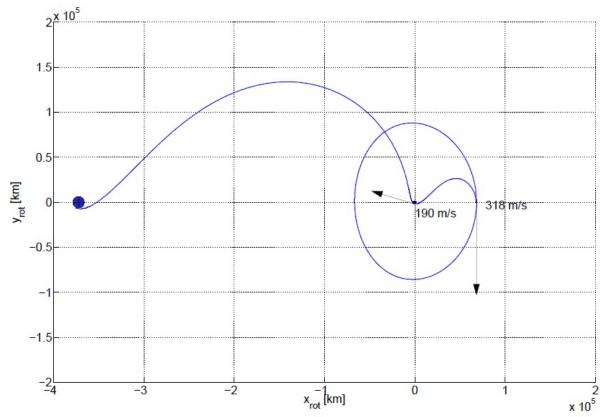
Maneuvers for Outbound Trajectory	Time since launch [mo.]	Δv [m/s]
Launch "cleanup"	~ 0	15
Rendezvous/Docking	4-6	15

 $\Delta V_{tot} = 30 \text{ m/s}$

SEP was also considered but not selected because of additional system complexity

Transit: Crew Trajectory Options

Direct Transfer

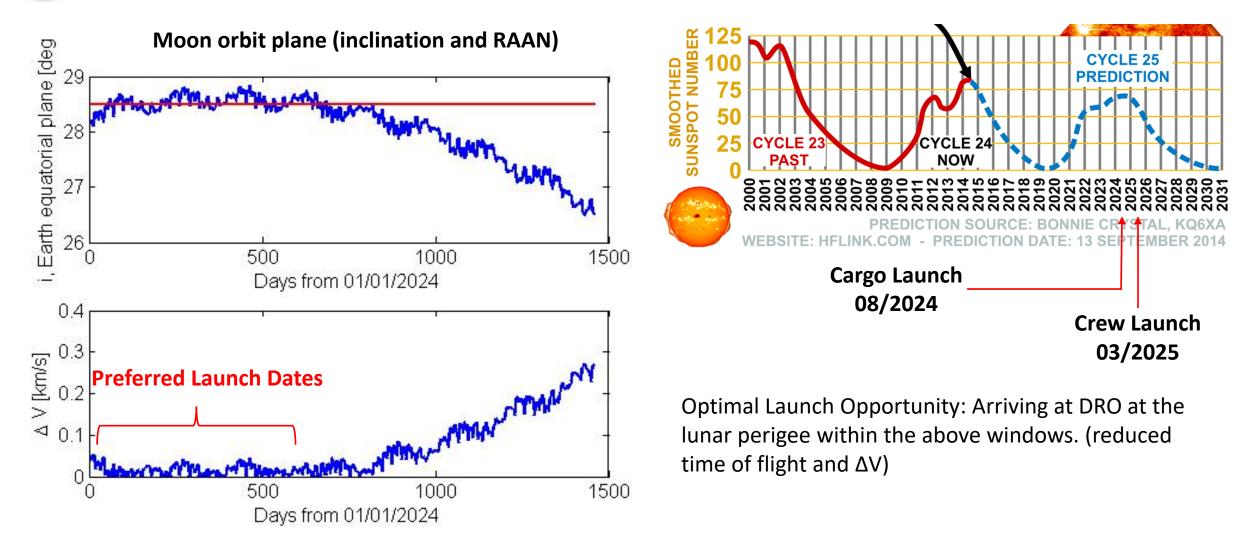

Prograde Powered Lunar Gravity Assist

Retrograde Powered Gravity Assist

Outbound/Inbound Option	Δv [m/s] (one-way)	TOF [days]
Direct Transfer	600	5.9
Prograde Powered Lunar Gravity Assist	508	8.6
Retrograde Powered Lunar Gravity Assist	299	13.5

Landgraf M., Duering M., and Renk F. "Mission Design Aspect of European Elements in the International Space Exploration Framework"

Transit: Crew Trajectory

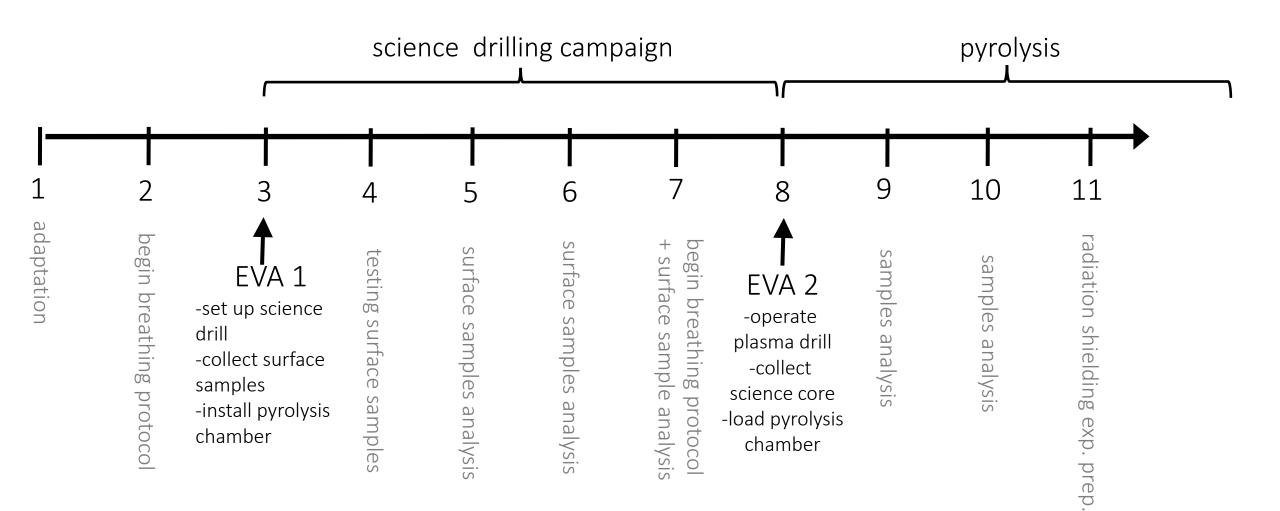

Landgraf M., Duering M., and Renk F. "Mission Design Aspect of European Elements in the International Space Exploration Framework"

Maneuvers for Outbound Trajectory	Time since launch [days]	Δv [m/s]	
Launch "cleanup"	~ 0	20	
Gravity Assist	4.6	190	
DRO Injection	8.6	318	
Rendezvous/Docking	8.9	15	

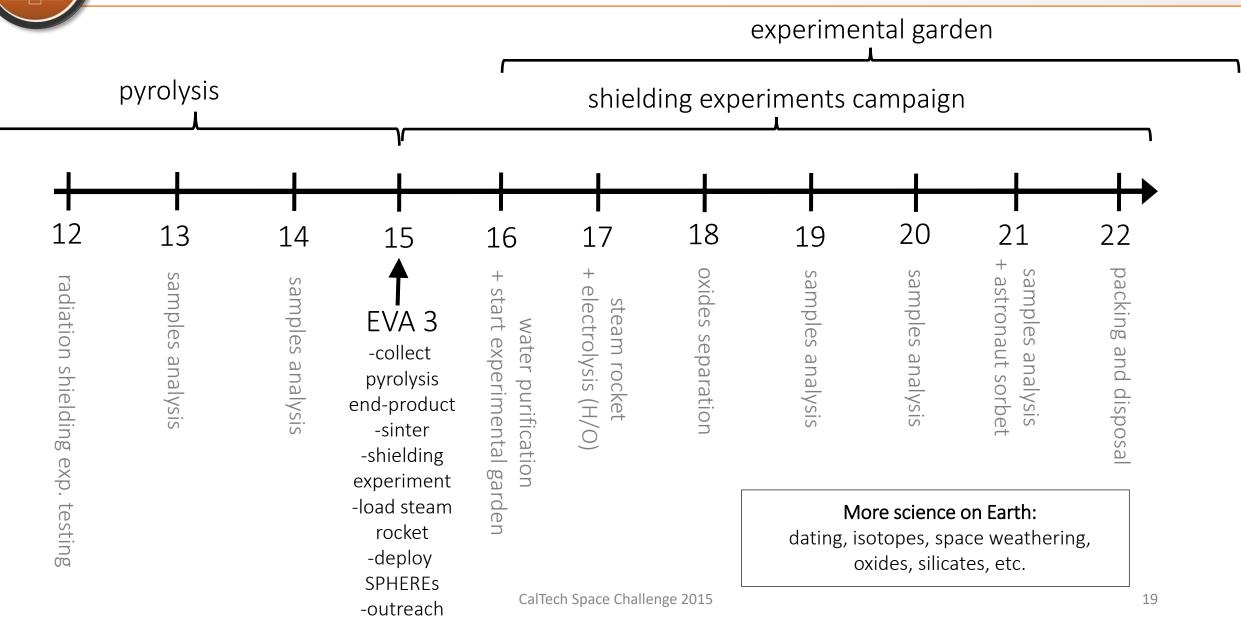
Maneuver for Inbound Trajectory	Time since launch [days]	Δv [m/s]	
DRO Departure	30.6	318	
Gravity Assist	34.6	190	

 $\Delta V_{tot} = 1051 \text{ m/s}$ $\Delta V_{ava} = 1338 \text{ m/s}$

Transit: Launch Date and Time Selection



RAAN: one launch opportunity per day


Science and Tech Demonstration Objectives

	Decadal Survey/Stratgic Knowledge Gap	Objectives		
S1	Understanding Solar System Beginnings	Quantify composition, characterize surface processes, probe		
S2	Revealing Planetary Processes through Time	internal structure, characterize water phases		
S3	Searching for the Requirements for Life	Detect and identify organic compounds		
T1	In-situ Excavation of Small Body Material	Excavate enough rocks for 5 kg of water		
T2	Extraction of Resources from Excavated Material	Extract water, separate oxides		
Т3	Demonstrate Utilization of Extracted Resources	Steam rocket, H/O, sintering, radiation+thermal shielding experiment, experimental garden		

Operations Plan – Days 1-11

Operations Plan – Days 12-22

Science: Primary Instruments

Imaging

High-Res Camera Microscopic Imager

Chemistry

Alpha Particle X-Ray

Radiation

Radiation Detectors

Mineralogy

Active hyperspectral VISIR spectrometer

X-Ray Diffractometer

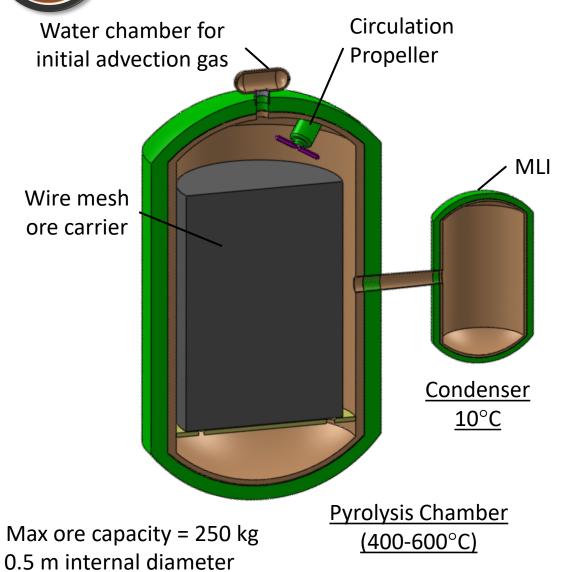
Sampling

Coring Drill Chisel-in-a-Cup

Structure

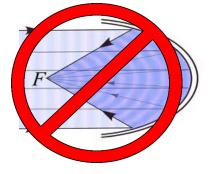
Density Probe

Neutron Probe


Gamma Ray Probe

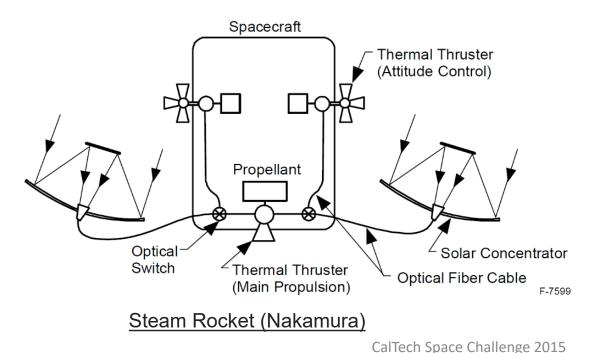
Thermocouples

Organics


Gas Chromatography -Mass Spectrometer

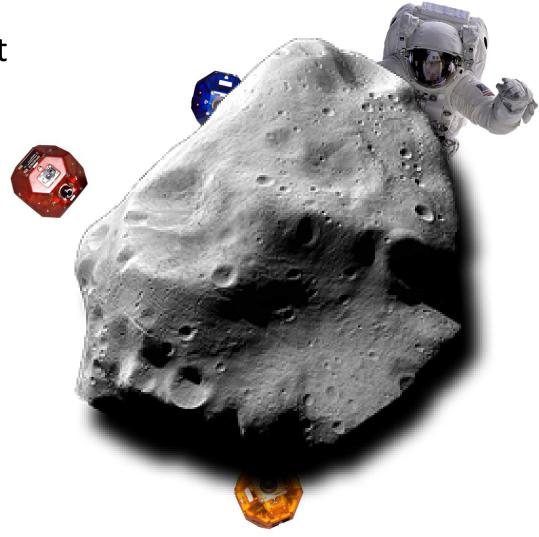
ISRU: Extracting Volatiles from Ore

- Pressure valve opens to condenser at 1 atmosphere
 - Initially water vapor and then liquid water in container
- Heating via resistance heaters and propeller for circulation



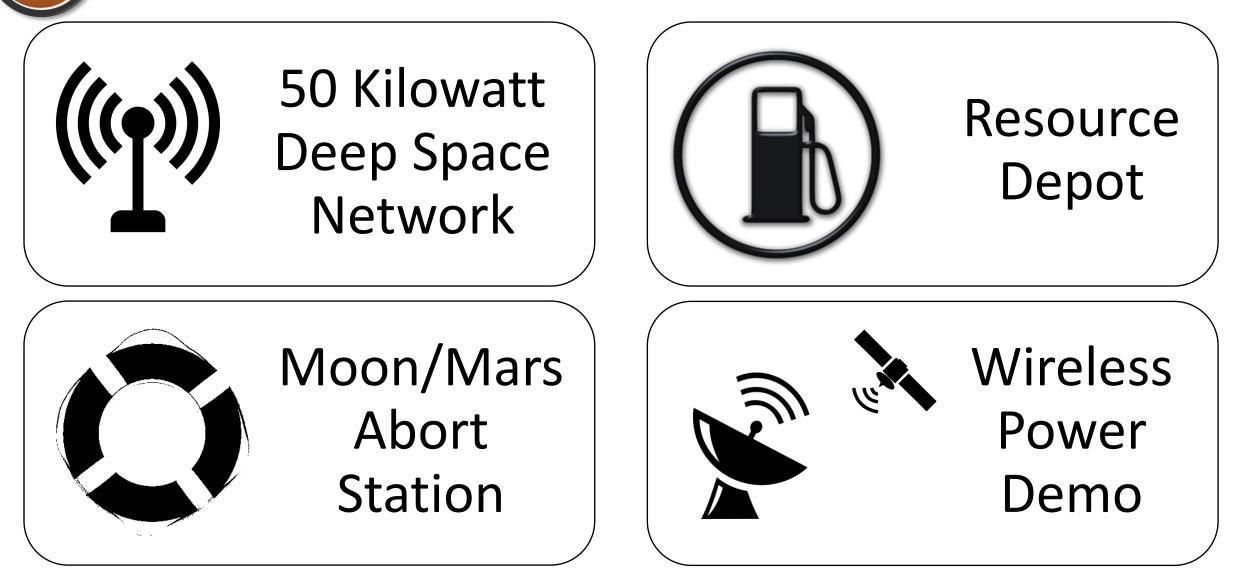
- Minimum 5 kg water extracted
- Centrifuge then separates volatiles

Tech Demos: Steam Rocket, Radiation Shielding

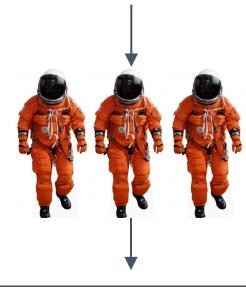

- Test 15 kg steam rocket
 - Concentrated sunlight vaporizes asteroid water \rightarrow thrust
 - Low ISP (~40 sec)
- Good for on/near asteroid operations
 - Rugged, simple engine
 - Fuel easy to store as ice

Tech Demo: Semi-Autonomous Robotic Swarm

- Derived from the MIT SPHERES-project
- Allow for remote and local control
- Leave behind as "inhabitants"
- Augment situational awareness
- Increase outreach capabilities


ISRU: Solar Powered Sintering

ISRU: Plant Experiment


Adding Value: Use ARM's 50 kW Power and Eureka

Crew Size, Selection, Training

Selection

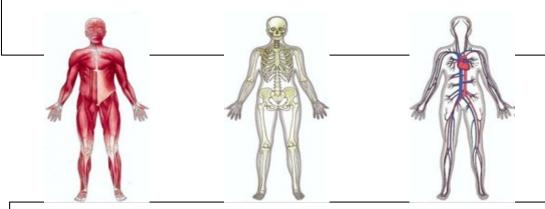
- 2 x scientists, 1 x engineer
- odd numbered crew to avoid decisional splits
- people of task-focused styles perform better: aptitude, personality,
- attitudes, experiences, communication skills

Training

-Psychological -Group buildingtraining activities-Survival training -Training together

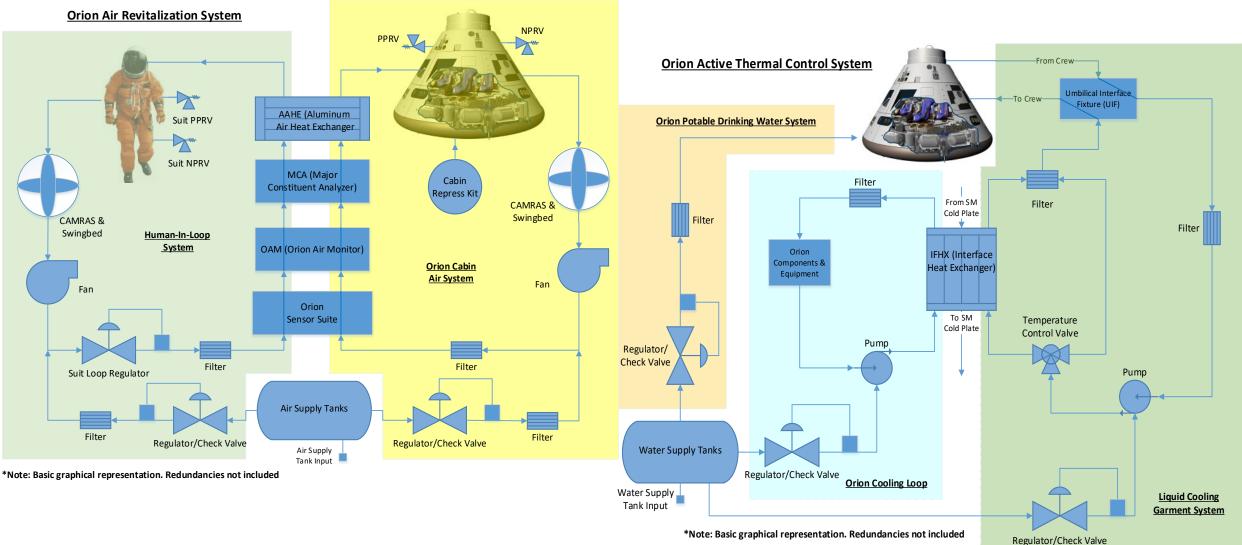
Physiological Deconditioning & Countermeasures

-Typical countermeasures for in-flight, pre-landing, post landing

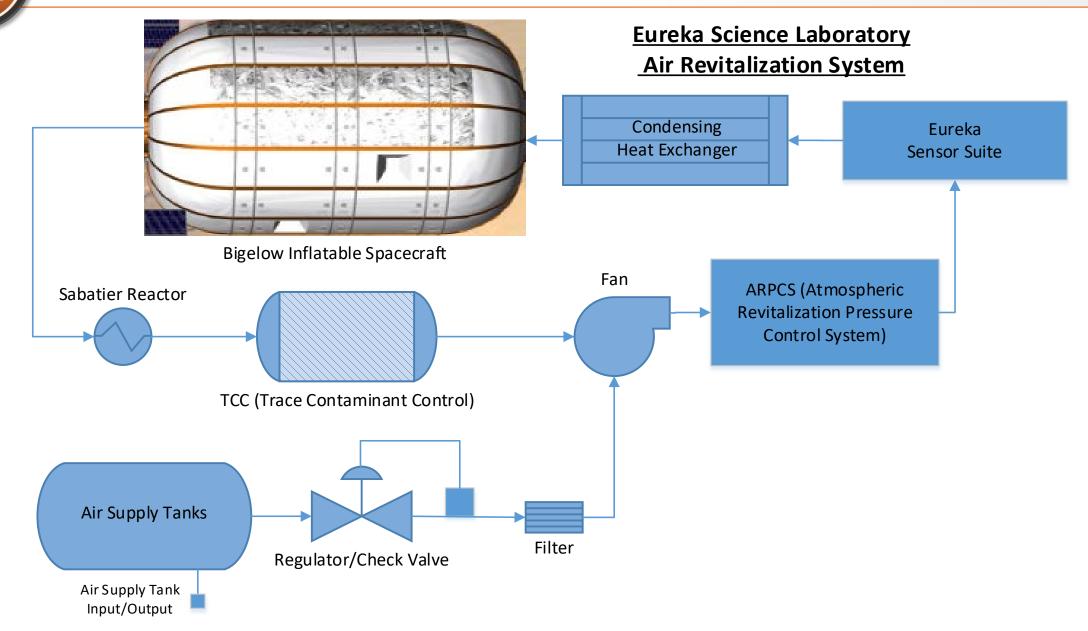

-Resistive Exercise Device: Rotary MR Damper

-current TRL level of 3, expected TRL level of 7 at TOF

-specifically developed for compact volumes


-Radiation Protection: water walls in Eureka, X-ray monitoring using GOES

-no risk of GCR / risk of SPE



-changes in HR, cephalic fluid shift, bone mass density loss, cardiovascular changes, muscle atrophy, radiation protection

ECLSS: Understanding Orion

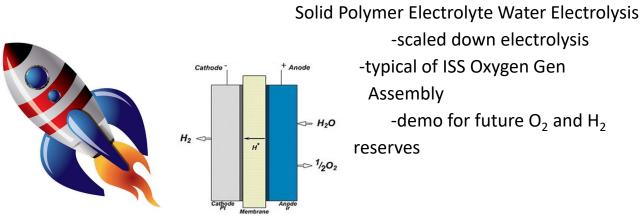
ECLSS: Building an Independent System

ECLSS: Eureka Environmental Control & Life Support Systems

Atmospheric Monitoring & Regulation

- CO2 Reduction: Sabatier (chosen over Bosch and LiOH)
- Non-regenerable O2 generation: O2 tanks
- Sensor suite for monitoring
- TCCS: charcoal sorbent bed to catalytic oxidizer
- Fire detection & suppression: JPL E-Nose

Demonstration for future ECLSS Reservoirs

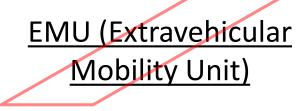

Water Recovery & Purification

-Vapor Phase Catalytic Ammonia Removal (VPCAR) System

-Trades included ISS Water Recovery System & Forward Osmosis Bag

Oxygen Generation with H2 byproduct as Rocket Fuel Source

ECLSS: IVA Space Suit Selection



9	Current TRL	6	
9	2025 TRL	8	
41.7	Total Mass (kg)	16	
Shuttle	Vehicle Design Fit	Orion	
Vehicle Provided - Open- loop	Primary Life Support	Vehicle Provided - Closed- loop	
No	EVA Capability	Yes	
\$180,000	Cost	Unknown (Est. \$360,000)	

ECLSS: EVA Space Suit Selection

- TRL Level 9: Flight Proven - Suit Mass: 55.3 kg
- Life Support: PLSS
- Nominal EVA Time: 8 hours
- EVA Mobility: Moderate

MACES (Modified ACES) Suit

- TRL Level 7: Demonstrated in operational environment
- Suit Mass: 36 kg
- Life Support: PLSS 3.0
- Nominal EVA Time: 10 hours
- Mobility: Low

Z-3 (Z-Series) Exploration Suit

- TRL Level 6: Demonstrated
- Expected TRL Level 9 by 2022
- Suit Mass: 65 kg
- Life Support: PLSS 3.0
- Nominal EVA Time: 10 hours
- Mobility: High
- Future Mars Exploration Suit

Systems Engineering: Requirements

• All of the requirements are driven by four functional objectives:

#	Functional Objective
1	Safely bring and return humans to the ARM asteroid
2	Characterize the asteroid and its environment
3	Demonstrate the feasibility of in situ resource use for long term missions
4	Involve and inspire the public

• These functional objectives have children requirements. For example:

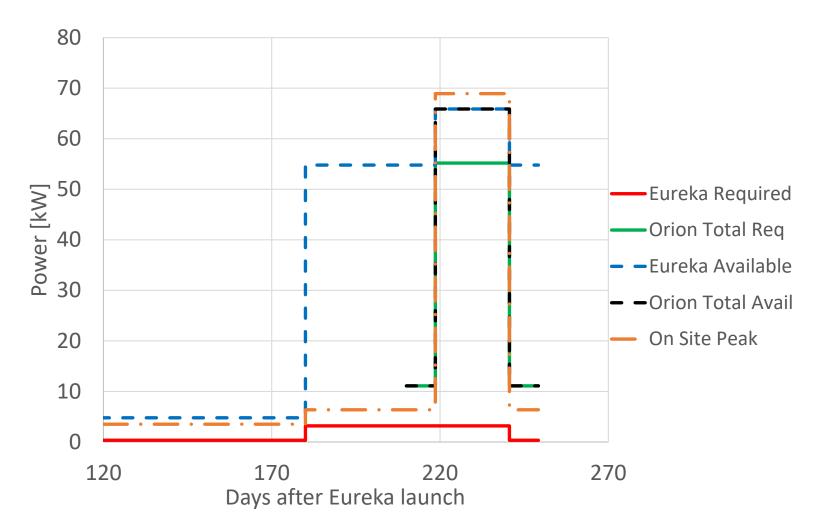
#	Functional Objective
1	Safely bring and return humans to the ARM asteroid
1.1	Protect the crew from the aerospace environment.
1.2	Provide sufficient propulsion capability to meet the science and demonstration objectives.
1.3	Design abort options to minimize crew return delays.

Systems Engineering

Payload Budget - Orion

System	Mass [t]	Volume[m ³]
Orion	10.2	
Fairing, LAS, Docking	9.5	
Service Module	16.0	
Human Factors	0.65	3
Astronauts	0.29	6
Total	0.94	9
Margin	0.2	0.2
Total + Margin	36.82	10

Total					
Mass [t] Power [kW]					
Total 51.0 47.2					
Margin 0.2 0.2					
Total + Margin	54.1	56.7			

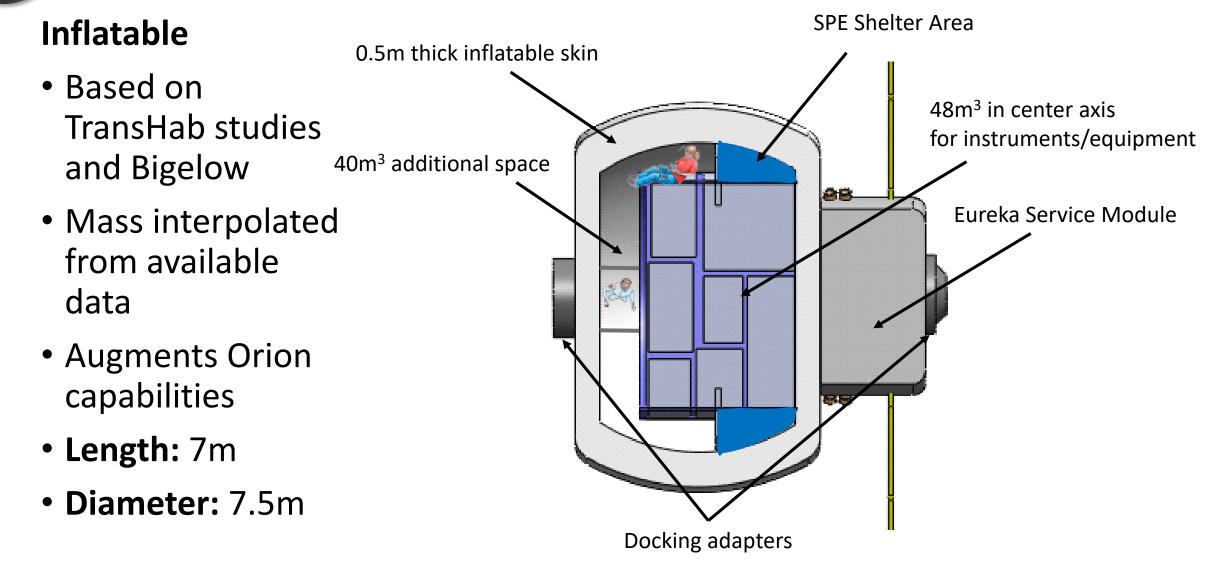

Payload Budget - Eureka

System	Mass [t]	Volume[m ³]	Power avg. [kW]
Habitat	3.3		
Science	0.98	13.4	
ECLSS	8.75	3.6	2.3
Workspace		10.8	
EPS	0.23		3.0
тсѕ	0.04	0.1	1.5
GNC	0.93		257.4
СОМ	0.08		72.0
овдн	0.01		20.2
Module Structure	0.5		
Total	14.35	28.0	2.6
Margin	0.2	0.2	0.2
Total + Margin	17.22	33.6	3.2

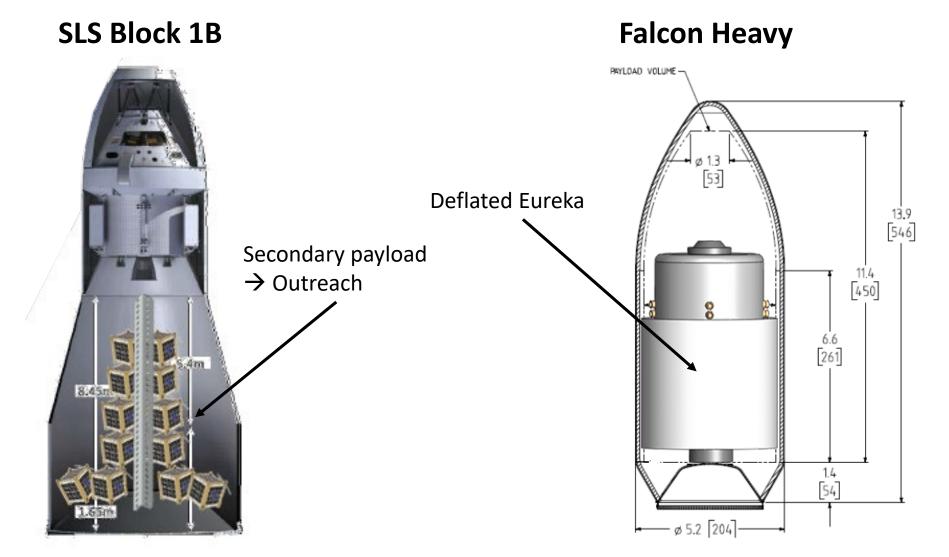
Power Budget

EPS

- Primary and secondary batteries in Eureka
- Solar array sizing includes required battery charge power
- Peaks covered by batteries


Risk management

- Risks related to all subsystems are rated according to the NASA risk management standard.
- Mitigation strategies are implemented according to the severity
- Almost all critical risks reduced to LOM


10: Partial failure of critical system shortly after TLI \rightarrow Trajectories and maneuvers devised to bring crew back to earth

Consequence Index/ Probability Index	1	2	3	4	5
5	23		8		
4			30	21/22	
3	31	12	11/16/17/ 20/24		10
2	3/15	18	2/25/26/2 7	5/6/7/13	14
1	4	1		29	9/19/28

Science Habitat - Eureka

Launch configuration

Public Outreach: Tangible Experiences

Space selfies

CubeSats Released at Moon (After Mission)

Arm-Chair Astronauts

Astronaut Sorbet from
 Processed Water

Public Outreach: Social Media in Action

Mi piace · Commenta · Condividi

A Piace a Bene Laufer, Antoni Perez-Poch, Trevor Morris e altri 6.

Lawrence Hennessy Be more ambitious. Work on landing on a Planet. leri alle 18.03 · Mi piace

1 h · Mi piace

Chabely Pollier I think you should not put people on an asteroid at all.

Phillip Keane Not even Ceres or Vesta? They seem like pretty cool asteroids. Better than some planets even. 18 h · Mi piace

Lawrence Hennessy @ philip. You are mistaken. 18 h · Modificato · Mi piace

Chabely Pollier I did not say that asteroids are not interesting. I just said you should not send people there. 18 h · Mi piace

Phillip Keane Ok Lawrence Hennessy. We'll send them for a Jupiter or Venus landing. That sounds totally more realistic than sending someone to Ceres. 18 h · Mi piace

Phillip Keane Chabely Pollier, yes I saw what you wrote (twice). I was more interested in your reasons for not wanting to send someone to an asteroid.

Phobos is a pretty cool place (and also a captured asteroid) in terms of scientific return (and general awes... Altro... 17 h · Mi piace

Chabely Pollier You need to separate two things: not wanting a mission to go there and not wanting a MANNED mission to go there. I think it is ridiculous to send a manned mission there, as I really don't see the scientific return being at this waint is time to consider a second science i

Picked up by the Space Generation Advisory Council

Space Generation Advisory Council European Region leri alle 14.54 · 泰

The Italian NPoC Valentina Boccia is partecipating at the Caltech Space Challenge, designing a manned mission to an asteroid.

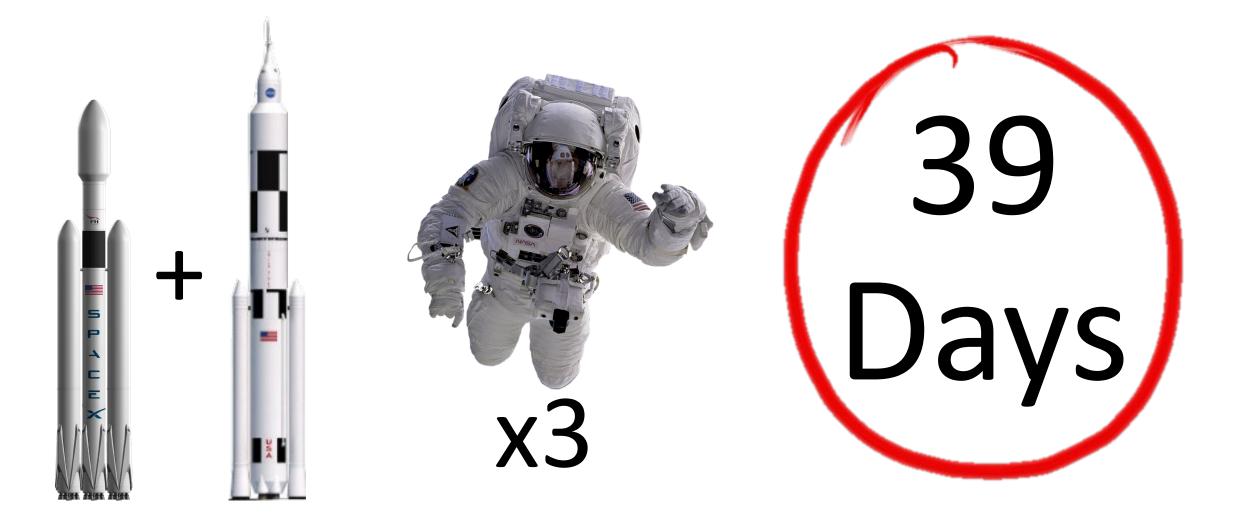
They need the help of the #SGAC community as they would like to know your opinion on why people should go to an asteroid, what use you would do of the asteroid's resources and what you would suggest as outreach.

Give a feedback writing a post on their facebook page https://www.facebook.com/CSC2015TeamExplorer

24000	Caltech Space Challenge 2015 - Team Explorer Posted by Valentina Boccia [?] · March 23 at 9:42pm · @	`			
64.55					
us kn	rt of this amazing challenge and help us to design a g ow what you think the best use of asteroid resources ant to send astronauts on an asteroid! Please, post y	can be and why			
1,361	people reached	Boost Post			
Unlike	• Comment • Share • 🔥 11 🖵 6 🎝 1	1			
	tech Space Challenge 2015 - Team Explorer, Thierry de che, Davide Conte, Mathieu Lapôtre and 7 others like this.	Most Relevant			
⇔ 1 s	hare				
0	Write a comment	0 0			
	Press Enter to post.				
2	Eric Dahlstrom I see the challenge ends Friday 3/27, and is focused on the asteroid redirect mission scenario (1000 t asteroid in lunar orbit, visited by Orion via SLS).				
	I suggest it would be most useful to demonstrate asteroid min and space manufacturi See More	ning equipment			
	Like · Reply · 🖒 1 · Yesterday at 9:03pm				
	Caltech Space Challenge 2015 - Team Explorer Than much Eric! Great answer!	k you very			
	Like · Commented on by Valentina Boccia (?) · 22 hrs				
*	Ana Diaz Artiles To get Platinum Group Metals! my TP durin Asteroid Mining. This could be a good resource for your comp know if you don't find the report, I can send it to you. Valentin in you team? Unlike · Reply · ① 1 · Yesterday at 2:34pm				
*	Asteroid Mining. This could be a good resource for your comp know if you don't find the report, I can send it to you. Valentin in you team?	a Boccia, who is			

Programmatic Considerations: Budget

- Rough estimates of the mission cost are based on the Space Mission Analysis and Design handbook
- Launch costs are best guess and do not include development costs
- Development of common technologies not included: Orion and SLS program, Orion Service Module (MPCV-ESM), Space suit, annual cost of launch and NASA facilities, Bigelow space module


	ltem	ROM cost (M\$)
Launch	2.0 Launch Vehicle	
Launun	2.1 First launch (Falcon Heavy)	270
costs	2.2 Second launch incl. Orion capsule and service module (SLS block 1B)	2,000
	Total	2,270 M\$

Programmatic Considerations: Budget

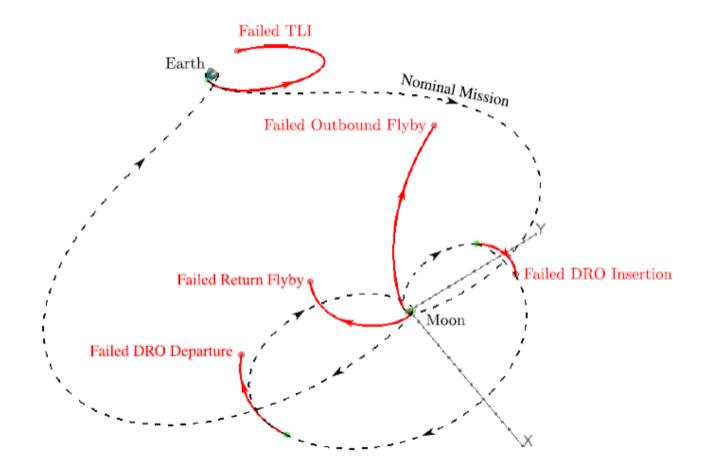
- Rough estimates of the mission cost are based on the Space Mission Analysis and Design handbook
- Launch costs are best guess and do not include development costs
- Development of common technologies not included: Orion and SLS program, Orion Service Module (MPCV-ESM), Space suit, annual cost of launch and NASA facilities,

Bigelow Module	Item	ROM cost (M\$)		
Vehicle and	1 Science vehicle assembly			
operation	1.1. Inflatable structure	150		
operation	1.2. Custom service module	250		
costs	1.3. Science and tech demo			
0313	3.0 Ground Command & Control	50		
	4.0 Program level			
	7.0. Operations CalTech Space Challenge 2015	130 42		
	Total (with 20% margin)			

Conclusions: Mission Overview

Conclusions: Measure, Treasure, and Pleasure

Science


Conclusions: We Should be Having Fun Too!

Trajectory Planning: Direct Transfer Abort Option

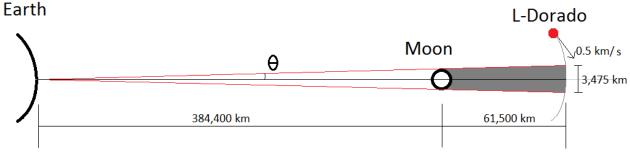
Williams & Condon, "Contingency Trajectory Planning for the Asteroid Redirect Crewed Mission," Paper AIAA 2014-1697

Communications, Command and Data Handling

Two links :

- 1) Telemetry link
- 2) Crew voice communiction link

High system complexity : Science Data, HD cameras, housekeeping data


C&DH system : 10 kg, 15 dm³ and consume 25 W ('SMAD', Wertz)

Time of lunar blackout time ~ 2 h (no operations that require communications fidelity.

ARCHITECTURE

Link budget assumptions:

- Data rate: 12 Mbps
- X-band frequencies : ~8 GHz
 Total losses : 12 dB
 Thermal noise : neglected
 Ground station : 15 m dish, 200 W
- Various losses outside line losses: 12 dB
- S/C dish of 10 cm diameter and a power of 20 W
- Link closes with margins of 20 dB on the up- and 11 dB downlink.

We Had Fun (Ridiculous) Ideas Too

Break up the asteroid and send it to earth to create a spectacular meteor shower. Expect a huge spike in weddings and wedding proposals on the day of the event.

Back-up Slides

"Hot" Issues

- Working hard across disciplines to get everything in one launch. Going to be close.
- Difficult to find mass, power, volume, cost, etc... information on existing science instruments.
- In situ resource processing doesn't have much real-world experiments to study.
- Looking to push the envelope on creativity. Would like to get your feedback on some concepts. (See back up slides)

Science Missions

Use the resources for future moon and mars missions.

Use a mirror to focus the sun to sinter material.

Build a symbiotic greenhouse where microbes create the resources needed to fuel the plants.

Leave an autonomous station that continues to research and process the asteroid

Use the asteroid as a platform for deep space communications. It could feature both laser powered as well as traditional EM technology. It may be even more valuable as a telecommunications platform if it's in a polar orbit around the moon.

Install telescopes that will benefit from using the asteroid as an effective sun and earth shield.

Use it as an emergency station for moon travelers.

Use the gases and water collected from the asteroid to power a small rocket that navigates around, or possibly to, the moon. It would be more of a steam rocket then a high Isp rocket.

The asteroid's relatively wide orbit around the moon may make it a good platform for radio wavelength observations. The asteroid would also help block polluting signals from the earth.

Use the asteroid to demonstrate micro-gravity refueling.

Use the asteroid for radiation protection, either by boring into it or breaking it into smaller pieces that are installed around a vehicle.

Science Missions

Use bacteria or microbes to digest the asteroid over time. A bag or balloon around the asteroid collects the gases for analysis and use later.

Use the mass of the asteroid to help demonstrate artificial gravity methods.

Use the asteroid as a platform for the Mars Cycler concept.

Beam the 50 kWatts from the ARM to earth to study space-based energy sources. Alternatively, beam the power to a relatively nearby test unit.

Cut the asteroid in half with a laser. Science!

Lunar science base. Green house on moon. Futuristic approach. Telerobot control

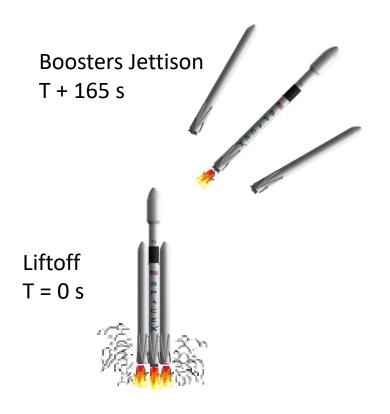
Crash the asteroid on the moon, Mars, Venus, etc... to create a plume that can be studied.

Use the minerals from the asteroid to create a solar panel.

Use the moon's tidal forces to break apart the asteroid.

Break the asteroid into pieces, then embed life in the asteroid and send them outside the solar system.

Demonstrate the ability to precisely target and collide with another asteroid.


Use a laser to shape the asteroid, get it to start spinning, and become a reaction wheel.

Testing asteroid deflection technologies for earth protection.

Break up the asteroid and send it to earth to create a spectacular meteor shower. Expect a big spike in wedding proposals.

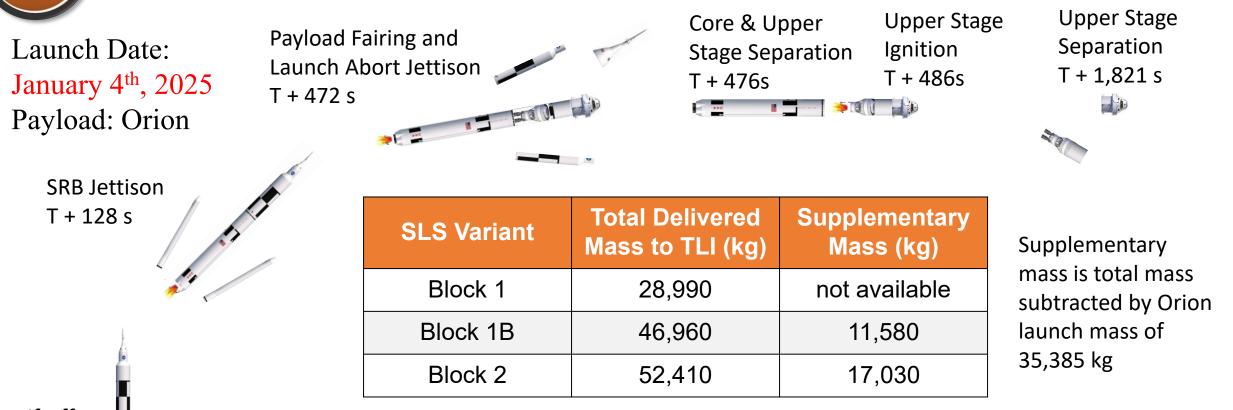
Launch 1: Falcon Heavy Launch

Launch Date: January 4th, 2024 Payload: Science Module

Core & UpperUpper StageStage SeparationIgnitionT + 210 sT + 220 s

Payload Fairing Jettison T + 225 s

Upper Stage Separation T + 600 s

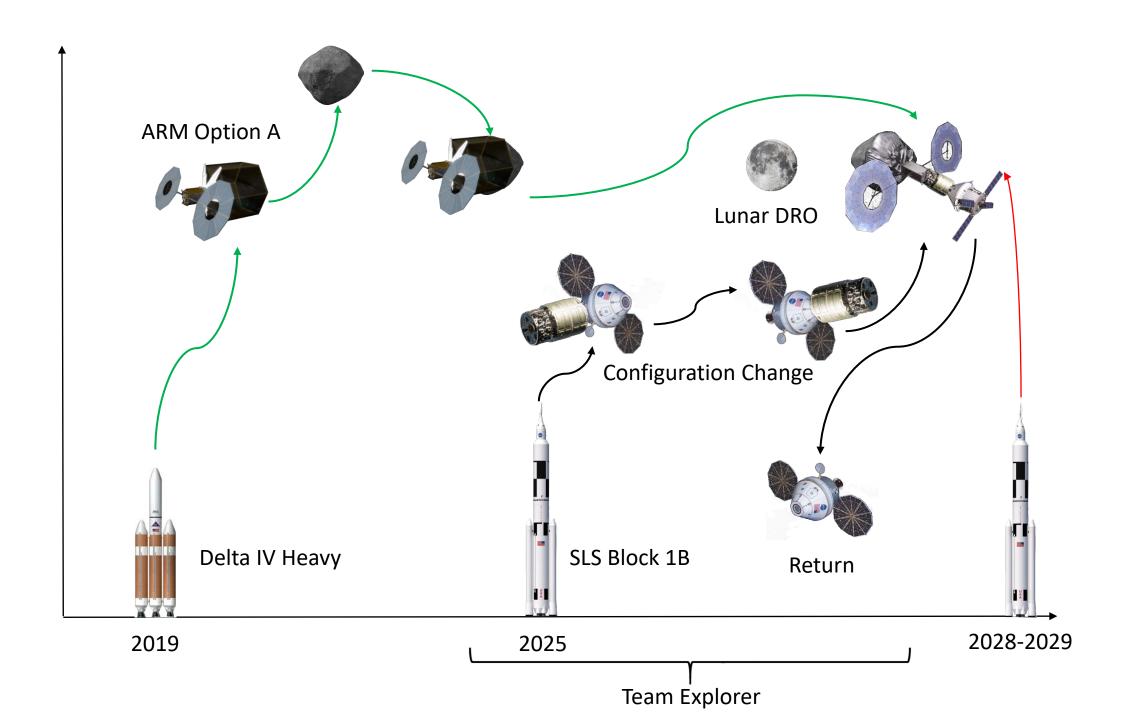


RocketMass to TLI (kg)Delta IV Heavy11,350Falcon Heavy16,280SLS Block 121,660

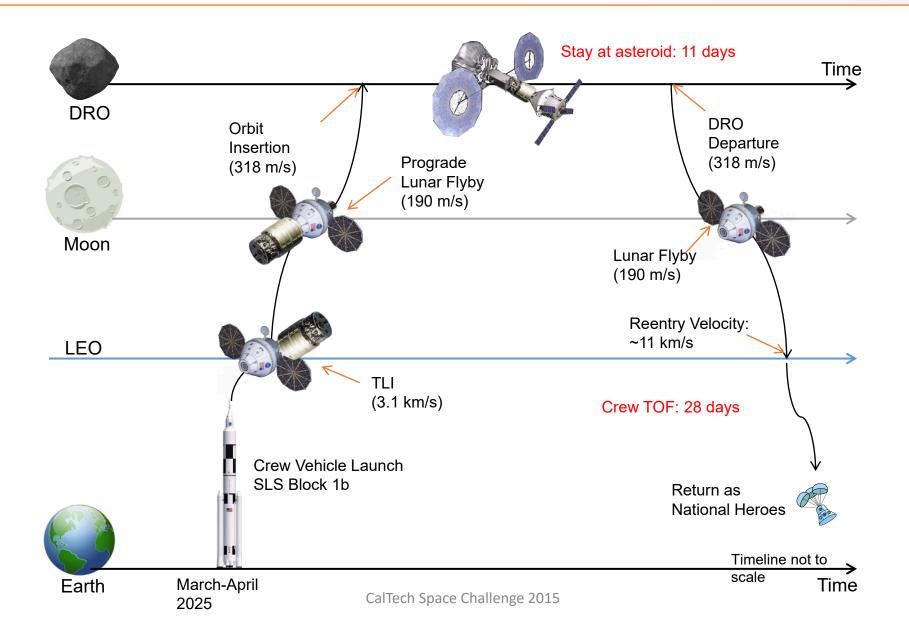
Must deliver science module mass of 12,000 kg to Trans-Lunar Injection (TLI)

- Only Falcon Heavy and Space Launch System (SLS) are sufficient
- SLS may only be able to launch once per year; need SLS for Orion launch
- Thus, Falcon Heavy will be used to launch science module

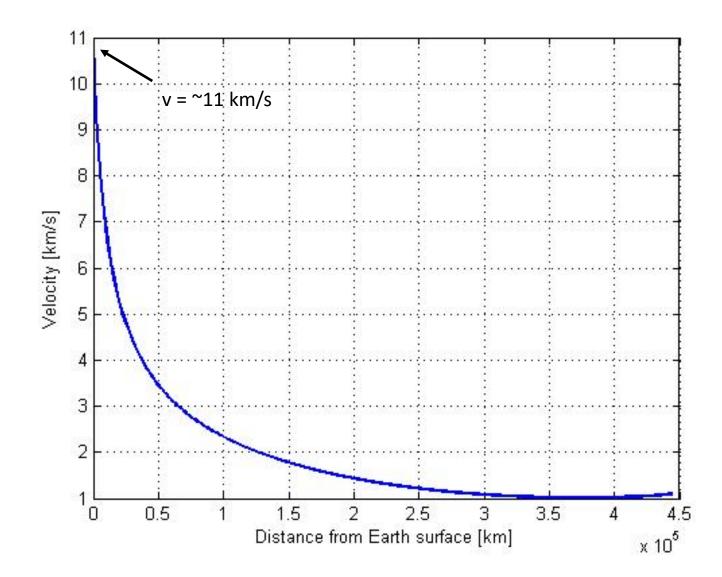
Launch 2: Space Launch System 1B Launch



Liftoff T = 0 s

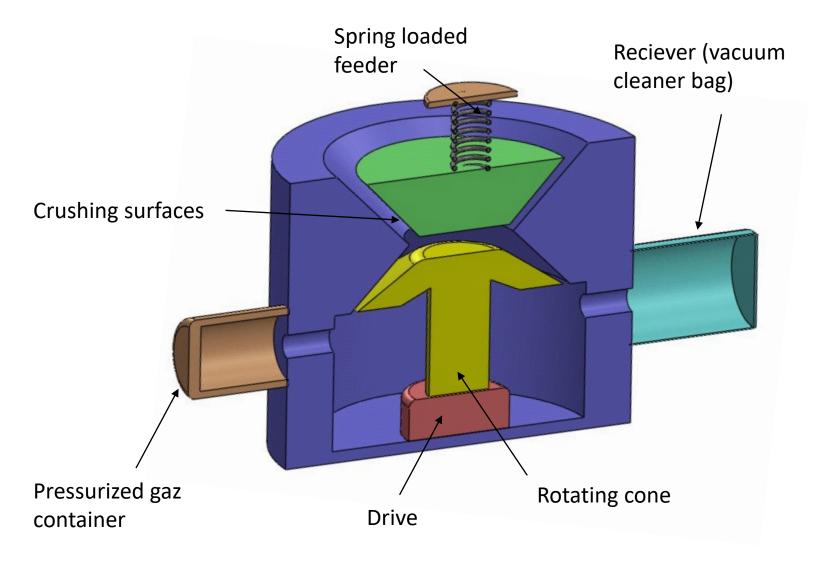

- Space Launch System Block 1B (available 2021) and Block 2 (available 2024?) are sufficient
- SLS Block 1B will be used; SLS Block 2 can be used if available -> Only one launch needed
- Stage breakdown by thrust, specific impulse, and mass available in backup slides

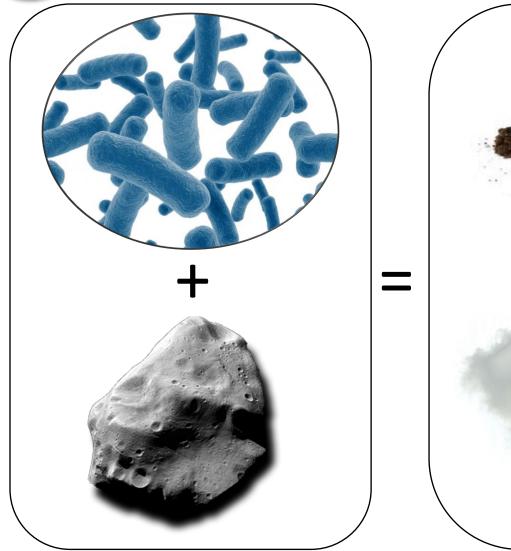
Launch Backup


Stage	Variant	Rocket Engine	Thrust (kN)*	lsp (s)^	Burn Time (s)	Dry Mass (t)*	Propellant Mass (t)*
	1/1B	2x Modified SS SRBs	28024	252.2	128.4	104 0.	631.5
0	2	2x New Composite ATK Boosters	40031	272.5	110	84	790
1	1/1B/2	4x RS-25D/E	8277	409.1	476	102	979.5
2	1	1x RL-10-B2	110	461.5	1118	3.8	26.9
	1B/2	4x RL-10-C1	425	448.5	1335	15	129

Mission Overview

Trajectory Planning: Reentry Velocity


Tech Demo: Plasma Drill and Radiation Protection



ARC (Asteroid Regolith Crusher)

- Cone crusher
- Used on earth
- Development needed for deep space implementation
- Needs self cleaning environment

ISRU: Microbe Powered Greenhouse

Alternative Pyrolysis Heating Methods (Backup)

- 30 kW microwave emitter
 - ~65-78 % efficiency difficult to remove waste heat
 - Safety concerns with crew nearby
- Solar thermal parabolic mirrors
 - Long set up time, limited EVAs
 - Area >20m2
 - Pyrolysis chamber must be uninsulated
 - Astronauts could pass in front of beam

		1	2	3
Heating method	Weight	Solar parabolic	Micro-	Resistive
Criteria	(1 -> 5)	mirror	waves	heating
Weight	5	3	3	5
Crew safety	5	2	3	5
Power	4	5	2	3
Operation simplicity	4	3	4	4
Scalability	4	4	3	5
Processing time	3	3	5	4
Volume	3	3	4	5
Cost	2	3	3	4
Energy efficiency	2	5	2	3
Waste heat	2	5	3	4
Total	34	97	99	133

Engineering

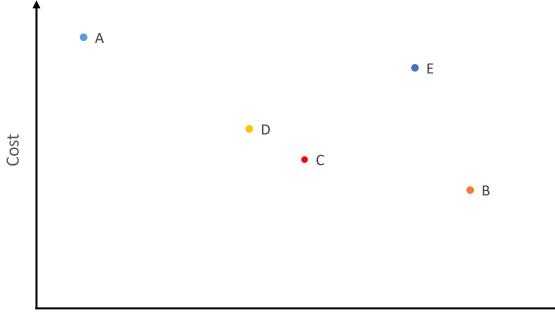
- Engineering of the vehicles, tools, and instruments primarily relies on the subcontractors.
- The program levies requirements based on mission level analysis and assigns factors of safety they must work to.
- The general concept is to define what they must not do and not how they must do it.

Programmatic Considerations (Backup)

• Cost

Item	ROM cost (M\$)	Comment	Num FTE over 10 years
1.0 Space Vehicle			
1.1. Orion capsule with service module	1000	From web	
1.2. Service transfer vehicle	0	Assumes European contribution	
1.3. Science payload			
1.3.1. Laboratory structure	148	USCM8: ~(23 k\$/kg * 4000kg * 150%)	
1.3.2. Laboratory thermal control	6	USCM8: ~(23 k\$/kg * 136kg * 150%)	
1.3.3. Science instruments	500	20 instruments @ 20 M\$ + 25%	
2.0 Launch Vehicle (launch cost)	1000	From web	
3.0 Ground Command & Control	5	3% of laboratory cost	
4.0 Program level			
4.1. System engineering	31	20% of laboratory cost (not instruments)	16
4.2. Program management	24	15% of laboratory cost	12
4.3. System integration and test	24	15% of laboratory cost	12
4.3. Product assurance	5	3% of laboratory cost	3
4.5. Other	0		
5.0 Flight Support Operations	0		
6.0 Aerospace Ground equipment	0		
7.0. Operations			
7.1. PMSE	24	15% of laboratory cost	
7.2. Space segment maintenance	0		
7.3. Ground segment	9	30 engineers + 10 tech, for 2 months	

Team Members


First Name	Last Name	Focus Areas
Bill	Tandy	Proposal Manager
Chris	Wynard	
Dan	Fries	Systems Engineering
Davide	Conte	
Henna		
Koki	Но	
Lee		
Max		
Marilena		
Mat		
Max		
Priyanka		
Rahul		
Simon	Dandavino	
Takeshi	Gagliardi	
Thierry	de Roche	Extraction
Valentina	Boccia	Science

_aunch

Launch concept trade-off

A Orion + Service Module in SLS Block 1B and Habitat in Block 1B
 Orion + Service Module in Block 1B and Habitat + Heavy Lift + Upper Stage in Payload for

- B ballistic TLI
- C Orion + Service Module in Block 1B and Inflatable Habitat + Heavy Lift for ballistic TLI
- D Orion + Service Module in Block 1B and Habitat + Heavy Lift + SEP to lunar DRO
- E Orion + Service Module in Block 1B and inflatable Habitat + Heavy Lift + SEP to lunar DRO

Option B - large, cryogenic upper stage, modified payload fairing

Option D - more costly due to customized habitat, additional ARM derived SEP module. Can-designs have large heritage, ARM is intentionally developed modularly to reuse

Option C - good compromise between risk and cost, chance to develop inflatables further, key technology for future missions. Enough payload volume and mass, including sufficient margins.

Risk Management

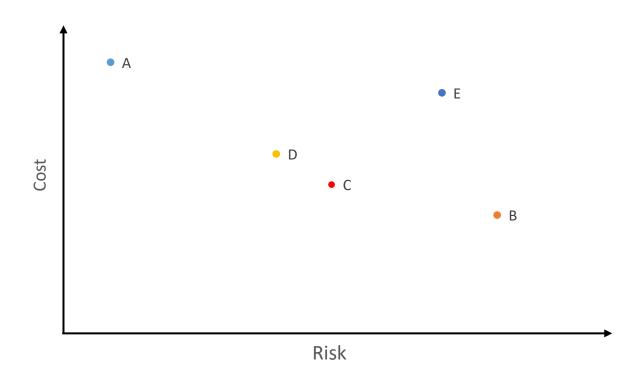
Critical Risks

8: Translunar injection maneuver is not successful → If the upper stage delivers only a delta-v of 2.92 km/s or lower, the mission cannot be completed (still working on mitigation!)

21: Eclipse by moon/earth

→MLI in skin of Eureka to ensure thermal inertia. Include heating device.

22: Eclipse by asteroid


→Dock in such a way that spacecraft is not eclipsed. Include heating device.

Launch Trade Example

Orion + Service Module in SLS Block 1B and Habitat in Block 1B

A B

- Orion + Service Module in Block 1B and Habitat + Heavy Lift + Upper Stage in Payload for ballistic TLI
- Orion + Service Module in Block 1B and Inflatable Habitat + Heavy Lift for ballistic TLI
- D Orion + Service Module in Block 1B and Habitat + Heavy Lift + SEP to lunar DRO
- E Orion + Service Module in Block 1B and inflatable Habitat + Heavy Lift + SEP to lunar DRO

Option B - large, cryogenic upper stage, modified payload fairing

Option D - more costly due to customized habitat, additional ARM derived SEP module.

Can-designs have large heritage, ARM is intentionally developed modularly to reuse

Option C - good compromise between risk and cost, chance to develop inflatables further, as a key technology for future missions. Enough payload volume and mass, including sufficient margins.

Eureka

Habitat trade-off

- Science equipment and experiments require considerable amount of space
- Improved radiation shielding allows for extended stay
- Inflatables as key technology for future manned exploration and utilization missions
- More usable payload per launch
- Inflatable heritage does exist

	"Can" design	Inflatable
Living/Working Space	+	+++
Heritage	+++	+
Radiation Shielding	++	+++
Mission Duration	+	++
Tech. advancement	+	++
Mass	+	++
Cost	++	+
Total	11	14

Programmatic Considerations (Backup)

• Cost

Item	ROM cost (M\$)	Comment	Num FTE over 10 years
1.0 Space Vehicle			
1.1. Orion capsule with service module	1000	From web	
1.2. Service transfer vehicle	0	Assumes European contribution	
1.3. Science payload			
1.3.1. Laboratory structure	148	USCM8: ~(23 k\$/kg * 4000kg * 150%)	
1.3.2. Laboratory thermal control	6	USCM8: ~(23 k\$/kg * 136kg * 150%)	
1.3.3. Science instruments	500	20 instruments @ 20 M\$ + 25%	
2.0 Launch Vehicle (launch cost)	1000	From web	
3.0 Ground Command & Control	5	3% of laboratory cost	
4.0 Program level			
4.1. System engineering	31	20% of laboratory cost (not instruments)	16
4.2. Program management	24	15% of laboratory cost	12
4.3. System integration and test	24	15% of laboratory cost	12
4.3. Product assurance	5	3% of laboratory cost	3
4.5. Other	0		
5.0 Flight Support Operations	0		
6.0 Aerospace Ground equipment	0		
7.0. Operations			
7.1. PMSE	24	15% of laboratory cost	
7.2. Space segment maintenance	0		
7.3. Ground segment	9	30 engineers + 10 tech, for 2 months	

Public Outreach: Tangible Experiences

Art Using Returned Asteroid Material

CubeSats Released at Moon (After Mission)

Name the Asteroid Leave Disc of Names

Astronaut Sorbet from Processed Water

Programmatic Considerations