
Ironblocks
Onchain Firewall
Audit

| security

March 26, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    6
Schemetic Execution Flow 7

Connecting to Firewall 7

Configuring Policies 8

Security Model and Trust Assumptions ___    8
Privileged Roles 9

Threat Model __    11

High Severity __    15
H-01 Risk of Signature Replay Attack in ApprovedCallsPolicy 15

H-02 Risk of Passing Incorrect Context to Firewall Policies 16

Medium Severity ___    16
M-01 Risk of Non-Reachable postExecution 16

M-02 Confusion With Multiple Modifiers Passing Custom Data to Policies 17

M-03 safeFunctionCall May Expose Unnecessary Future Risks 19

M-04 OnlyEOAPolicy Allows Non-Consumer-Specific Contract Accounts 20

M-05 Nested Protected Functions May Cause Unexpected Reverts 20

M-06 Challenges for Admin Functionality and Logic Initialization in FirewallProxyIntercept 21

Low Severity __    23
L-01 Lack of Event Emission for Firewall Setting Changes 23

L-02 Simulation Mode in ApprovedCallsPolicy 23

L-03 try/catch Error(string memory){} in CombinedPoliciesPolicy May Not Catch Call Cases 23

L-04 ForbiddenMethodsPolicy May Block More Transactions Than Intended 24

L-05 Risk of Function Signature Clash With ifAdmin 25

L-06 Policies Can Be Executed When No Longer Approved 25

L-07 Implementation Address of the FirewallProxyIntercept May Not Be Compatible With Etherscan 26

L-08 staticCallCheck Can Be Circumvented 26

L-09 Array Lengths May Mismatch 27

L-10 Limitations of AdminCallPolicy 27

L-11 Missing Docstrings 28

L-12 Use of tx.origin to Validate EOA Sender 28

Ironblocks Onchain Firewall Audit − Table of Contents − 2

Notes & Additional Information __    29
N-01 Unused Imports 29

N-02 Unnecessary Casts 29

N-03 Lack of Indexed Event Parameter 29

N-04 Non-Explicit Imports Are Used 30

N-05 Using uint Instead of uint256 30

N-06 Missing Named Parameters in Mappings 30

Conclusion __    32

Ironblocks Onchain Firewall Audit − Table of Contents − 3

Type DeFi

Timeline From 2024-02-05
To 2024-02-27

Languages Solidity

Total Issues 26 (26 resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

2 (2 resolved)

Medium Severity
Issues

6 (6 resolved)

Low Severity Issues 12 (12 resolved)

Notes & Additional
Information

6 (6 resolved)

Summary

Ironblocks Onchain Firewall Audit − Summary − 4

Scope
We audited the ironblocks/onchain-firewall repository at commit

8f4fcf861d53c835ed005db67b8af4037464e0ca.

In scope were the following files:

contracts
├── interfaces
│ ├── IERC165.sol
│ ├── IFirewall.sol
│ ├── IFirewallConsumer.sol
│ ├── IFirewallPolicy.sol
│ └── IFirewallPrivateInvariantsPolicy.sol
├── policies
│ ├── AdminCallPolicy.sol
│ ├── AllowlistPolicy.sol
│ ├── ApprovedCallsPolicy.sol
│ ├── ApprovedVectorsPolicy.sol
│ ├── BalanceChangePolicy.sol
| ├── BlocklistPolicy.sol
│ ├── CombinedPoliciesPolicy.sol
│ ├── FirewallPolicyBase.sol
│ ├── ForbiddenMethodsPolicy.sol
│ ├── NonReentrantPolicy.sol
│ └── OnlyEOAPolicy.sol
├── proxy
│ ├── FirewallProxyAdmin.sol
│ ├── FirewallProxyIntercept.sol
│ └── FirewallTransparentUpgradeableProxy.sol
├── Firewall.sol
├── FirewallConsumer.sol
└── FirewallConsumerBase.sol

Ironblocks Onchain Firewall Audit − Scope − 5

https://github.com/ironblocks/onchain-firewall
https://github.com/ironblocks/onchain-firewall/tree/8f4fcf861d53c835ed005db67b8af4037464e0ca

System Overview
The Ironblocks Onchain Firewall is a system of smart contracts designed to enable users to

emulate a firewall, thereby protecting their smart contracts through the adoption of template

security policies. These policies, to which users can subscribe, are customizable and operated

by intercepting the calldata of incoming transactions to a smart contract's function protected

by the firewall, both before and after execution.

This mechanism allows users to execute code and impose conditions with the context of the

call at both stages, ensuring compliance with certain preset configurations when a protected

function is executed. This is achieved through the use of two hooks: preExecution , which is

run prior to the execution of the call, and postExecution , which runs after the call

concludes to ensure that any updated states leave the protected contract in a secure state.

Ironblocks Onchain Firewall Audit − System Overview − 6

Schemetic Execution Flow

Connecting to Firewall
The system uses Firewall.sol to allow a consumer contract to subscribe to firewall-

approved security policies. The three ways a consumer integrates with the firewall are:

Inheriting FirewallConsumerBase.sol and adding modifiers such as

firewallProtected to selected functions.

1.

Ironblocks Onchain Firewall Audit − System Overview − 7

Using FirewallTransparentUpgradeableProxy.sol jointly with

FirewallProxyAdmin.sol to configure and add protection to all non-static function

calls that are made to the implementation contract.

Making FirewallProxyIntercept.sol sit in-between a transparent proxy and an

implementation, where the FirewallProxyIntercept routes every user call through

the firewall.

When the connection to the firewall is set up, security policies can be added or removed over

time when deemed fit directly through the Firewall smart contract, without having to make

changes to the underlying business logic.

Configuring Policies
Each template policy implements a Role-Based Access Control (RBAC) system that grants the

DEFAULT_ADMIN_ROLE to the deployer, who then grants/revokes the

POLICY_ADMIN_ROLE . Each POLICY_ADMIN_ROLE can authorize consumer and executor

status, for example allowing only the firewall to call its state-changing functions or allowing

only the rightful consumer to be evaluated. Each policy has its own specific protection logic

and thus may require policy-specific configuration. Some policies may require assigning new

roles for on-going maintenance. See the next section for a detailed list of policies and their

privileged roles.

Security Model and Trust
Assumptions
For now, the firewall contracts, including proxies and policies, are meant to be utilized and

maintained by projects that wish to build on top of this system. As such, it is the users'

responsibility to assign, coordinate, and be secure in all privilege roles involved in the system.

2.

3.

Ironblocks Onchain Firewall Audit − Security Model and Trust Assumptions −
8

Privileged Roles

Firewall

The deployer of Firewall.sol is its owner who can transfer or renounce ownership. Only

the owner can setPolicyStatus . When a policy has its status as true , consumers can

subscribe to it. When a policy has status false , it cannot be subscribed to by anyone.

Consumers

A firewallAdmin needs to be present in all consumers. Depending on how the consumer is

set up, the way to change the firewallAdmin or the firewall address is different. The

firewallAdmin can subscribe and remove policies, and also set the dry-run status when

configuring the policies on the Firewall , without needing to connect to it directly.

If inheriting from FirewallConsumerBase.sol , the firewallAdmin can set the

FirewallAddress for the consumer. On the connected Firewall , the firewallAdmin

can additionally approve targets on which arbitrary calls can be made from the consumer

contract. The incumbent firewallAdmin passes the role to their successor in a two-step

process.

Using FirewallProxyAdmin.sol as the admin of the

FirewallTransparentUpgradeableProxy , the owner of FirewallProxyAdmin can

set the connected Firewall address as well as the firewallAdmin address on the proxy

consumer.

Policies

Each instance of a policy is administered by its POLICY_ADMIN_ROLE . If a policy's execution

hooks are protected by the isAuthorized modifier, the consumer and its connected

Firewall need additional approvals from the POLICY_ADMIN_ROLE to successfully run

that policy. The POLICY_ADMIN_ROLE can approve any address to be an authorized executor

or consumer, without them having to be joined via the firewall.

Below is a list of additional configuration required from privileged roles in each policy:

AdminCallPolicy.sol : An APPROVER_ROLE is granted to approve calls that can be

executed only once within a preset expiration time period. The APPROVER_ROLE can

update the expiration time period independently.

•

Ironblocks Onchain Firewall Audit − Security Model and Trust Assumptions −
9

BlocklistPolicy.sol : The POLICY_ADMIN_ROLE can set the statuses of a list of blocked

addresses for each consumer. This policy can be used by any consumer without

authorization.

OnlyEOAPolicy.sol : This policy checks if the sender is the same as tx.origin or is

from a list of allowedContracts . The POLICY_ADMIN_ROLE can set the list of

allowed contracts. This policy can be used by any consumer without authorization.

AllowlistPolicy.sol : The POLICY_ADMIN_ROLE can set the statuses of a list of allowed

addresses for each consumer. This policy can be used by any consumer without

authorization.

ApprovedVectorsPolicy.sol : This policy allows the POLICY_ADMIN_ROLE to approve a

sequence of calls, also known as "vectors" or "patterns", that are allowed in all

authorized consumers. The POLICY_ADMIN_ROLE can remove any approved vectors.

Note that any approved sequence would necessitate that at least the subsequence is

also allowed. For instance, if [A, B, C, D] is allowed, then [A], [A, B], and [A, B, C] must

also be allowed.

BalanceChangePolicy.sol : The POLICY_ADMIN_ROLE can add tokens to be monitored

and set the maximum balance change allowed for each token per consumer. In addition,

this role can remove any token from the monitoring list and reset the maximum balance

change allowance.

ForbiddenMethodsPolicy.sol : The POLICY_ADMIN_ROLE can set a list of forbidden

methods for each consumer. This policy can be used by any consumer without

authorization.

ApprovedCallsPolicy.sol : This policy allows the execution of a call if all aspects of the

call context have been pre-approved. The SIGNER_ROLE is granted to sign ordered

sequences of approved calls off-chain, each with a designated expiration time. These

signed ordered sequences can then be verified only once in the right order on this

contract before execution. The SIGNER_ROLE can also approve calls on-chain for each

tx.origin .

NonReentrantPolicy.sol : There is no additional privilege for the POLICY_ADMIN_ROLE

in this policy.

CombinedPoliciesPolicy.sol : This policy allows consumers to combine policies and

override the result of a policy execution outcome. The POLICY_ADMIN_ROLE can set

the policies to be combined and its allowed combinations of successes and failures.

•

•

•

•

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Security Model and Trust Assumptions −
10

Threat Model
This section describes the ten most relevant threats to the Firewall system identified during the

audits. Some findings may be briefly mentioned as examples.

1. Threat of Misrepresented Call Context

Some call context (e.g., instance tx.origin , msg.sender , msg.data and

block.number) that has been passed up from the consumer to the policies for evaluation

may not represent the correct entities. Here are a few examples where this threat is relevant:

msg.sender and msg.data can be overwritten by _msgSender() and

_msgData() .

In the context of meta-transactions, such as those following ERC-2771 or ERC-4337

standard, tx.origin can represent a third-party entity, a trusted forwarder, or a

bundler. This may not be compatible with policies assuming tx.origin to be an EOA

sender or a privileged account. Similarly, msg.sender may not represent the sender

identity.

In the context of protected internal functions, msg.data may not represent the

actual data needed to evaluate the internal call. This is anticipated by the Ironblocks

team with additional protection modifiers, such as firewallProtectedCustom and

firewallProtectedSig , which rely on the users' discretion to pass the right data for

evaluation.

In the context of layer 2 networks, some context, such as block.number or

tx.origin for message passing transactions, may behave differently from Ethereum.

2. Threat of Signature Replay and Malleability

Policies that verify signatures may be subject to this threat, particularly considering the

possibility of multiple instances of a policy having a centralized signer. This is observed in the

ApprovedCallsPolicy , where the verifying contract is not checked. In conjunction with this

policy, the approveCallsViaSignature can be front-run thus able to DoS the

safeFunctionCall with the documented initial use case. Furthermore, the size of the

signature component s is not checked explicitly, subjecting the policy to a potential signature

malleability threat.

•

•

•

•

Ironblocks Onchain Firewall Audit − Threat Model − 11

3. Threat of Multiple Executions

Multiple executions of the same policy may result in unexpected reverts. This threat is present

due to the following setup:

The same policy can be accidentally added by the consumer firewallAdmin to the

connected Firewall's subscribedGlobalPolicies as well as

subscribedPolicies by signature. Since the global policies will run for all protected

functions, the overlap in these may result in multiple executions.

When a firewallProtected function calls another firewallProtected function

in a nested fashion from the same contract, the same policies will also run multiple times

in a nested fashion. This can cause unexpected reverts in policies such as

NonReentrantPolicy , BalanceChangePolicy , or ApprovedCallsPolicy if the

configuration is not set up appropriately.

The CombinedPoliciesPolicy allows combining a policy with itself multiple times,

thereby potentially causing multiple executions.

Since policies called on each protected function are not directly viewable, consumers need to

make extra effort to avoid unnecessary policy runs.

4. Threat of Inconsistency

Although all policies can approve multiple consumers to subscribe, some policies do not

support consumer-specific states. For instance, ApprovedVectorsPolicy has no

mapping specific to a consumer address. OnlyEOAPolicy does not allow consumer

specific allowedContracts . CombinedPoliciesPolicy does not allow consumer

specific allowedCombinations .

On some policies, the isAuthorized modifer is not used. Although, it is

understandable that since some execution hooks are view functions, it seems

unnecessary to use isAuthorized . However, this may mean that anyone, without

having authorization or being part of the firewall system, can tap into the policies such as

OnlyEOAPolicy or BlocklistPolicy for free.

Inconsistencies in policy consumer support pattern and authorization requirement may

become a potential threat for future integration.

5. Threat of Cross-Authorization

The use of a centralized signer for multiple protocols implies risks (e.g., the risk of

signature replay).

Authorizing several executors, may or may not be the firewall, to interact with a policy.

•

•

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Threat Model − 12

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/FirewallPolicyBase.sol#L25
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedVectorsPolicy.sol#L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedVectorsPolicy.sol#L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L17
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L17
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L19
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L19

Authorizing targets that can be called from safeFunctionCall using the consumer's

permissions.

Any contracts implementing the firewallAdmin() external returns(address)

interface can modify the states on Firewall.sol , such as subscribedPolicies ,

without having to connect to that firewall. Although the execution hooks will not work for

such contracts without actually connecting to the firewall, it could suggest that the

firewall may carry bloated states.

6. Threat of Special Execution Flow

Some firewall policies may not work as expected when protecting functions with the following

execution flow:

Use of assembly returns will cause the post-execution hook to be non-reachable when

used with FirewallConsumerBase .

Variation in loop length requires specific approval for each length when integrating with

ApprovedCallsPolicy .

Multiple calls of the same data in one transaction will not work with

AdminCallsPolicy .

7. Threat of Excessive Restriction

The policies are considered security add-ons to the underlying consumer. However depending

on the policy design, it may also be overly restrictive and may impede the day-to-day flow of

the business logic. For instance, the ApprovedCallsPolicy can put very strict restriction

on the underlying contract as only the last callCash in the array with tx.origin can be

executed. There is only one SIGNER who needs to sign hashes for all consumers, all

tx.origin , and all calls, which may become a bottleneck in the operation flow.

8. Threat of Selector Clash

The ApprovedVectorsPolicy uses the function selector to generate a hash with the

previous sequence to validate the call vectors. Since this policy is not specific to each

consumer, it is possible to have clashes with function selectors from all subscribed

consumers. Note that once a selector is approved in a vector, any function with the same

selector will be approved too.

There is a risk of function selector clashing between transparent proxies and

implementation contracts.

•

•

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Threat Model − 13

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedVectorsPolicy.sol#L29
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedVectorsPolicy.sol#L29

9. Threat of Mis-integration

Below are some potential risks when integrating with the firewall:

Risk associated with approving target contracts in the FirewallConsumerBase .

Risk of incorrect context due to the wrong choice of modifier (e.g., within internal call

contexts).

Risk when updating the proxy setup: for instance, some challenges when calling admin

functions in FirewallProxyIntercept and possible overriding of the

FirewallProxyIntercept slot in the proxy when updating the logic.

Risk of uncertainty regarding which policies a consumer is actively subscribed to as

modifiers do not clearly indicate the policies to which the consumer has subscribed.

Risk of overwriting approved calls in the ApprovedCallsPolicy when executions and

approvals go out of sync as the approveCallsViaSignature can overwrite non-

executed approvedCalls .

We recommend projects integrating with the firewall system to have a separate audit before

deployment.

10. Threat of Malicious Consumer

Since the policies called on each protected function are not easy to keep track of from the

consumers' contracts, it is potentially possible for malicious consumers to trick users via the

facade of firewall protection. Consider the example where a contract subscribes to a slippage

protection policy. In this case, the user might assume it is safe to interact with the contract.

However, a malicious admin could front-run a user's transaction and alter the contract's logic

by unsubscribing from the slippage protection, leaving the user's transaction without

protection. This could break the guarantees that users supposedly think they have.

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Threat Model − 14

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L74

High Severity

H-01 Risk of Signature Replay Attack in
ApprovedCallsPolicy
The ApprovedCallsPolicy mandates that a transaction to a consumer must be approved

on-chain prior to execution. Only users holding the SIGNER_ROLE are authorized to approve

transactions, and there are two methods to achieve this approval. The first method is for a user

with the SIGNER_ROLE to approve the call directly on-chain by invoking approveCalls() .

The second method involves obtaining approval for the calls with an off-chain signature, then

invoking approveCallsViaSignature() and supplying the signature. To verify the

signature's validity, the contract generates a messageHash comprising of:

bytes32 [] callHashes , the hashes of a sequence of calls

uint256 expiration , the expiration date of the calls

address txOrigin , the account that initiated the calls

uint nonce , the nonce associated with txOrigin

block.chainid , used to avoid replay attacks

The nonce of txOrigin is incremented each time a signature is utilized, preventing the reuse

of the signature within the same contract. However, the issue emerges when multiple

ApprovedCallsPolicy instances from the same protocol share the same SIGNER_ROLE ,

enabling a user to reuse the same signature across each different policy instance. Although the

nonce should be unique, it is conceivable that overlaps occur since all nonces start at 0. The

Ironblocks team also noted that in the protocol's initial phase, the SIGNER_ROLE could be

centralized and held by them.

A replay attack could also occur within a policy different from ApprovedCallsPolicy that

shares the same messageHash structure in the future. In addition, in this setup, the value s

in the signature is not checked. Although this oversight does not subject this specific policy to

signature malleability attacks, it is generally advised as a good practice to verify this

component of the signature to mitigate risks in future versions.

To prevent a signature from being reused across different contracts, consider including the

verifying address to be part of the messageHash (e.g., following the style of EIP-712

•

•

•

•

•

Ironblocks Onchain Firewall Audit − High Severity − 15

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L79
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L79
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L62
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L62
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L70
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L70
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L76
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L120
https://eips.ethereum.org/EIPS/eip-712

standard). Regarding signature malleability, consider always checking the value of s , see for

example the OpenZeppelin ECDSA implementation.

Update: Resolved in pull request #6 at commit 90cd9b0.

H-02 Risk of Passing Incorrect Context to
Firewall Policies
The on-chain firewall system is designed to support meta-transactions. The

FirewallConsumerBase contract, inheriting from Context.sol , allows consumers to override

_msgSender() and _msgData() within the current execution context. This base contract,

along with its modifiers, is responsible for managing the information passed to the Firewall

contract.

However, an issue arises because the modifiers, particularly firewallProtected , utilize the

raw msg.sender and msg.data instead of the potentially overridden _msgSender() or

_msgData() for policy evaluation. If the context is overridden, for example, to support meta-

transactions, incorrect values could be transmitted through the firewall, leading to false alarms

or the passage of invalid transactions.

Further note that tx.origin is used extensively in policies, such as in AdminCallPolicy and

ApprovedCallsPolicy, which may not be compatible with consumers that utilize meta-

transactions.

Consider ensuring that modifiers use the correct context by utilizing _msgSender() and

_msgData() . Moreover, if some policies are not designed to support meta-transactions, it is

crucial to explicitly state this in the documentation, leaving no room for ambiguity.

Update: Resolved in pull request #13 at commit 74a5635.

Medium Severity

M-01 Risk of Non-Reachable postExecution
When inheriting the FirewallConsumerBase , any protected function using modifiers

firewallProtected , firewallProtectedCustom , firewallProtectedSig , and

invariantProtected will not reach the postExecution hook if the execution flow

Ironblocks Onchain Firewall Audit − Medium Severity − 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8b4b7b8d041c62a84e2c23d7f6e1f0d9e0fc1f20/contracts/utils/cryptography/ECDSA.sol#L137
https://github.com/ironblocks/onchain-firewall/pull/6
https://github.com/ironblocks/onchain-firewall/pull/6/commits/90cd9b04f7d7ac481f1e5df1a80d0d0499e97ec3
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/utils/Context.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/utils/Context.sol
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L40-L43
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L40-L43
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L30
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L41
https://github.com/ironblocks/onchain-firewall/pull/13
https://github.com/ironblocks/onchain-firewall/pull/13/commits/74a56358f15b464d15a9bb74b255a68cef225aec
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L20

reaches an inline assembly return in the function body. However when using

FirewallTransparentUpgradeableProxy , the firewallProtected

_internalDelegate can execute the postExecution after an early inline assembly

return .

The following policies in scope are affected by this issue when used with the

FirewallConsumerBase .

In the NonReentrantPolicy , the hasEnteredConsumer state will not be reset back

to false , thereby preventing any further legitimate calls from the same consumer,

effectively disabling this policy for that consumer.

In the ForbiddenMethodsPolicy , the revert upon entering a forbidden method

resides in the postExecution hook. Thus, the call into an forbidden method will not

be rejected without entering the postExecution .

In the BalanceChangePolicy , the postExecution reads the consumerLastBalance

to compute the change of balance in monitored tokens, reverting if the difference

exceeds the maximum allowed. If the postExecution is not reached, the policy will

not revert on calls exceeding a maximum balance change.

In the CombinedPoliciesPolicy , the postExecution updates the

currenResult from executing all subscribed policies, thus the execution results may

not be accurate.

Consider heavily documenting this risk for firewall consumers to avoid unexpected policy

behaviors.

Update: Resolved in pull request #16 at commit eee15f4. The Ironblocks team stated:

Added inline documentation to each modifier in order to alert developers to this risk.

M-02 Confusion With Multiple Modifiers Passing
Custom Data to Policies
Risk of Passing Arbitrary Data

In FirewallConsumerBase , the firewallProtectedCustom modifier and

firewallProtectedSig can pass arbitrary user input byte arguments, which may not be

msg.data , to policies for evaluation. This behavior is inconsistent with the documentation of

•

•

•

•

Ironblocks Onchain Firewall Audit − Medium Severity − 17

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L161
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L161
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/NonReentrantPolicy.sol#L29
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/NonReentrantPolicy.sol#L29
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ForbiddenMethodsPolicy.sol#L34
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ForbiddenMethodsPolicy.sol#L34
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L37
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L37
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L33
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L49
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L49
https://github.com/ironblocks/onchain-firewall/pull/16
https://github.com/ironblocks/onchain-firewall/pull/16/commits/eee15f40417dc75037097fc0d859ff02f9e5c43b
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L50
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L50
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L66
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L66
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L18-L20

Firewall which states that policy contracts have full context of the call. In the case of

misuse, this can cause the wrong data to be passed to a policy for evaluation.

Confusion In Approving Internal Calls

In spite of the apparent flexibility, an important use case for firewallProtectedSig is to

protect internal calls as demonstrated in the SampleConsumerInternals contract where

the argument for firewallProtectedSig is the 4-byte signature of the protected

internal function. This is a fine strategy as otherwise the same msg.data from the parent

external call would be used for policy evaluation for the internal call. However, the extended

flexibility may require special considerations from policy privileged roles to operate correctly

when used in conjunction with the ApprovedCallsPolicy and the

ApprovedVectorsPolicy . For the sake of brevity, we only consider

firewallProtectedSig in the following. Similar arguments apply to

firewallProtectedCustom as well.

When one uses firewallProtected on an internal function, the msg.data from

the evoked external call is passed to the policies as the call context. When a consumer

subscribes to the ApprovedCallsPolicy , it is necessary for the SIGNER_ROLE to

approve the internal call using the same msg.data and msg.value for the callHash,

thereby approving the exact same callHash twice, once for the external call and once for

the evoked internal call.

When the consumer chooses instead to protect an internal call using the

firewallProtectedSig with the argument as the protected function signature, then

the data used in approvedCallsPolicy.preExecution will be just the 4-byte

function signature without any argument encoded. Thus, the SIGNER_ROLE needs to

sign a callHash that consists of only the funcSig instead of encoding arguments

like usual external calls. As such, any arguments will be valid for the internal call.

Both of these cases require the privileged roles from policies to be aware of the

implementations and use different models for approving data depending on the visibility of the

function and also depending on the protected modifier. This can be confusing for the SIGNER

or POLICY_ADMIN_ROLE , particularly, if they are not maintained by the same team. This risk

also applies to the ApprovedVectorsPolicy .

Consider heavily documenting the correct usage of each modifier in relation to relevant

policies, for both internal or external functions. In addition, explicitly spell out the

potential risks of certain configurations to discourage misuse for both consumer integration as

well as policy administration.

•

•

Ironblocks Onchain Firewall Audit − Medium Severity − 18

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L18-L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L18-L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/samples/SampleConsumerInternals.sol#L22
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/samples/SampleConsumerInternals.sol#L22
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L29-L33
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L40
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L40

Update: Resolved in pull request #17 at commit 5ba418e. The Ironblocks team stated:

Added comments to the two modifiers.

M-03 safeFunctionCall May Expose
Unnecessary Future Risks
The safeFunctionCall allows anyone (except via meta-transaction) to execute any data on

an approved target, set by the firewallAdmin, with this consumer contract as msg.sender .

As documented, safeFunctionCall is written with a particular use case in mind: to allow

simultaneous transaction approval via approveCallsViaSignature on the target

ApprovedCallsPolicy and execution of the approved transaction.

This function may present the following risks.

There is a front-run risk with the above use case where the payload can be intercepted

and the signature can be used to call approveCallsViaSignature directly, thereby

causing denial of service (DoS) for a legitimate caller of the safeFunctionCall

function.

The consumer may not subscribe to the ApprovedCallsPolicy , thereby rendering

the initial use case unnecessary for some consumers who are nonetheless exposed to

future risks.

The approved target need not be a firewall policy. By allowing the firewallAdmin

to approve arbitrary target , the privilege of the firewallAdmin role extends

beyond firewall-related activities.

Since the caller to the approved target is address(this) , any special privilege

granted to this consumer contract can be accessed by anyone using this function. For

instance, if the consumer contract has been granted some ERC-20 token approval by

the target , anyone could call transferFrom on the target to get the approved

amount.

Depending on the approved target , this function may potentially be utilized as a

convenient wrapper for some underlying business logic in the future. It is a good practice

to adhere to separation of concerns, keeping the FirewallConsumerBase only for

firewall-related logic and minimizing the possibilities to interfere in the underlying

business logic.

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Medium Severity − 19

https://github.com/ironblocks/onchain-firewall/pull/17
https://github.com/ironblocks/onchain-firewall/pull/17/commits/5ba418e91222a014c5699e6f339e5f940e9bc2c3
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L140
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L151-L156
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L132-L134
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L62
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L62
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L15
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L15

Consider imposing further restrictions on the approved targets, limiting the privilege of the

firewallAdmin , and thoroughly documenting the risks involved.

Update: Resolved in pull request #15 at commit 0539c1f. The Ironblocks team stated:

This pull request solves the issue with ERC-165, requiring any payload target to conform

to a new interface. This means that no pre-existing contracts (tokens, NFTs, vaults, etc.)

should be callable via safeFunctionCall . Regarding the DDoS, in the worst-case

scenario, users' transactions can be delayed by one block, at a cost to the attacker and

no cost to the user. This is because afterwards, the users' transaction will be approved

and they can interact with the contract without using safeFunctionCall since the

attacker already approved it. If this is not satisfactory, we can replace a revert either in

the policy or the consumer to fully resolve the issue.

M-04 OnlyEOAPolicy Allows Non-Consumer-
Specific Contract Accounts
The OnlyEOAPolicy not only allows EOAs to interact with a protected function on the

consumer, any contract account can also be added to the allowedContracts variable. The

allowedContracts do not differentiate between consumers. As a result, a contract allowed

by one consumer is considered a valid caller for all consumers subscribed to this policy.

This causes confusion as users may suppose that OnlyEOAPolicy only allows an EOA caller

and reverts on non-EOA callers. To achieve the effect of allowing exceptions to the onlyEOA

rule, one can combine this policy with AllowlistPolicy using

CombinedPoliciesPolicy . It is a better strategy as the AllowlistPolicy can have

different allowed accounts for different consumers.

Consider removing the allowedContracts state and keep it as a single-purpose policy or

renaming it to reflect its intended purpose. Consider also enhancing the documentation on how

to combine different policies for the desired effect.

Update: Resolved in pull request #5 at commit 948288f.

M-05 Nested Protected Functions May Cause
Unexpected Reverts

A firewall-protected function calling another firewall-protected function in the same

contract will cause a revert in the NonReentrantPolicy. This is because the

•

Ironblocks Onchain Firewall Audit − Medium Severity − 20

https://github.com/ironblocks/onchain-firewall/pull/15
https://github.com/ironblocks/onchain-firewall/pull/15/commits/0539c1fc0fe6965b9e0de165d7a769b2a6b1f41b
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L17
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L17
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AllowlistPolicy.sol#L14
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AllowlistPolicy.sol#L14
https://github.com/ironblocks/onchain-firewall/pull/5
https://github.com/ironblocks/onchain-firewall/pull/5/commits/948288fb9de91dfbb63cb91c1605c230e585c9a3
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/NonReentrantPolicy.sol#L24

hasEnteredConsumer is specific to the consumer address and will be set to true

before it enters the first protected function and reverts when it reaches the inner

protected function.

In the BalanceChangePolicy , the preBalance is read at the beginning of each

function call. It is possible that the intermediate change of balance in the inner call may

exceed the maximum allowance but the final balance change will not.

In the ApprovedCallsPolicy as well as the ApprovedVectorsPolicy , any

protected inner function calls are required to be approved in advance in a specified

manner. This also includes approval for each loop length and any further nesting.

Although the CombinedPoliciesPolicy permits combining the same policy more than

once and thus can override certain combination of results from the same policy, it may not be

the desired behavior. A similar behavior is observed in the Firewall contract that a

consumer could be subscribed to a policy globally and also on a function level, which could

create conflicts between the repeated policies.

Consider documenting the recommended and discouraged patterns for the relevant policies.

Update: Resolved in pull request #18 at commit d7a6355. The Ironblocks team stated:

Updated comments for the relevant policies.

M-06 Challenges for Admin Functionality and
Logic Initialization in FirewallProxyIntercept
The on-chain firewall contracts provide a set of proxy contracts designed to integrate firewall

capabilities into the proxy layer. The FirewallTransparentUpgradeableProxy contract

inherits from OpenZeppelin's TransparentUpgradeableProxy contract with additional

firewall functionality. If a protocol opts to implement the firewall at the proxy layer instead of

utilizing OpenZeppelin's TransparentUpgradeableProxy , they could use

FirewallTransparentUpgradeableProxy . Another proxy contract,

FirewallProxyIntercept , is designed for scenarios in which the protocol has already

been deployed and there is a desire to incorporate the firewall at the proxy level. This contract

acts as an intermediary. It receives delegatecall s from the proxy and subsequently

forwards them to the logic contract via delegatecall .

However, the FirewallProxyIntercept encounters specific challenges. As is known, the

Transparent Proxy pattern differentiates between functions only callable by the admin and

•

•

Ironblocks Onchain Firewall Audit − Medium Severity − 21

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L32
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L32
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L67
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L67
https://github.com/ironblocks/onchain-firewall/pull/18
https://github.com/ironblocks/onchain-firewall/pull/18/commits/d7a6355d3b2bf26f5b542eaae4cb3e78071831ed
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bd325d56b4c62c9c5c1aff048c37c6bb18ac0290/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84

other functions. Consequently, the admin can only invoke admin-specific functions, while non-

admin users are restricted to accessing the logic contract's functions. The admin's interaction

with a function in the logic is limited to using upgradeToAndCall , which allows specifying

the function details in the logic contract they wish to call, typically reserved for invoking the

initialize function after an upgrade.

The FirewallProxyIntercept contract includes some only admin functions (e.g., the

initialize function). However, due to the admin's inability to interact with the

implementation directly, these functions cannot be directly invoked. To circumvent this

limitation, the admin must employ the upgradeToAndCall method, retaining the intercept

proxy's address as-is, and encode the call to the admin function within the data field. When

using UpgradeToAndCall to change firewall settings, the only event emitted is event

Upgraded(address indexed implementation) . This event will be emitted at each

change of firewall settings with the same address and thus appear confusing to any off-chain

monitoring setup, without emitting the real change in firewall settings.

Another challenge arises when the admin also needs to initialize the underlying logic contract

after an upgrade. One way to upgrade the underlying logic contract is via the

FirewallProxyIntercept 's initialize function, which does not support immediate

execution of an initialization call. This gap could leave the logic contract uninitialized for a brief

moment, presenting some potential risk.

All these changes inherent in the dual role of the FirewallProxyIntercept , both as a

proxy and an implementation, make the correct usage susceptible to unintended errors. A user

might mistakenly attempt to upgrade the logic with upgradeToAndCall and unintentionally

overwrite the address of the FirewallProxyIntercept .

Consider documenting each step that users must take to overcome these challenges, as they

may not be intuitive for the users and could lead to problems.

Update: Resolved in pull request #19 at commit 231e2ea. The Ironblocks team stated:

Added comments about the difference from the standard proxy behavior.

Ironblocks Onchain Firewall Audit − Medium Severity − 22

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L39
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L39
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L39
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L39
https://github.com/ironblocks/onchain-firewall/pull/19
https://github.com/ironblocks/onchain-firewall/pull/19/commits/231e2ea233c454f8a4ba72495a40c1783050b78e

Low Severity

L-01 Lack of Event Emission for Firewall Setting
Changes
No event is emitted when the firewall is updated or the firewallAdmin is updated in

the following contracts:

FirewallProxyIntercept.sol

FirewallTransparentUpgradeableProxy.sol

FirewallConsumerBase.sol

Consider adding event emission to these critical state changes to the firewall setting reflecting

both the old and new values for off-chain monitoring.

Update: Resolved in pull request #14.

L-02 Simulation Mode in ApprovedCallsPolicy
In ApprovedCallsPolicy , the variable IS_EXECUTING_SIMULATION_SLOT can be read in

_is_executing_simulation() . However, it cannot be set, thereby always returning

false for all on-chain transactions. Although this variable provides a way for the

SIGNER_ROLE to override local states and simulate a sequence of calls off-chain before

approving them, a simulation effect can be achieved by other ways (e.g., in a forked

environment).

Since the simulation does not affect any present on-chain logic in the

ApprovedCallsPolicy , consider removing it to improve code clarity.

Update: Resolved in pull request #4.

L-03 try/catch Error(string memory){} in
CombinedPoliciesPolicy May Not Catch Call
Cases
In CombinedPoliciesPolicy , the result from executing each subscribed policy is set to be

true if the preExecution does not revert with an error string. The result is updated to

•

•

•

Ironblocks Onchain Firewall Audit − Low Severity − 23

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L19
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L22
https://github.com/ironblocks/onchain-firewall/pull/14
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L19
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L146
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L146
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#state-overrides
https://github.com/ironblocks/onchain-firewall/pull/4
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L32-L36
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L32-L36

false if the postExecution reverts with an error string. The entire result sequence is

compared to the allowed combinations. The CombinedPoliciesPolicy: Disallowed

combination error will be returned if it does not match any allowed combination.

Note that the returned error string is unused. More importantly, if an execution reverts without

any error message (e.g., a policy reverting with require(success) or assembly

{revert(offset, size)}) the try/catch Error(string memory){} hook will not

be able to catch it. The transaction will, in fact, revert even though such a revert is an explicitly-

allowed failure in the isAllowedCombination .

For the policies in scope, all reverts contain a string error message. To prevent such cases for

future policy implementation, consider using try/catch {} instead of try/catch

Error(string memory){} to catch all types of failures.

Update: Resolved in pull request #3.

L-04 ForbiddenMethodsPolicy May Block More
Transactions Than Intended
In ForbiddenMethodsPolicy , tx.origin , block.number , and tx.gasprice are

used to remember the context when a forbidden method is entered and the policy reverts in

the postExecution hook when the same context is detected. This context may apply to

more transactions than intended.

tx.origin :

In the context of EIP-4337 Account Abstraction or the presence of a relayer, the tx.origin

may be coming from a bundler or a trusted forwarder that sends out multiple transactions in

the same block. On some L2 networks, if it is an L1→L2 transaction, the tx.origin is set to

some special addresses on L2 (e.g., Optimism), thereby covering more transactions than

intended.

block.number :

On some L2 network, the block.number may remain constant for some time until it is

synced with the L1 block.number . For instance, Arbitrum's block.number is updated to

sync with the L1 block.number approximately every minute. In this context,

block.timestamp is recommended over block.number .

tx.gasprice :

Ironblocks Onchain Firewall Audit − Low Severity − 24

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L46-L50
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L46-L50
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L52-L53
https://github.com/ironblocks/onchain-firewall/pull/3
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ForbiddenMethodsPolicy.sol#L34
https://eips.ethereum.org/EIPS/eip-4337
https://community.optimism.io/docs/developers/build/differences/#added-opcodes
https://docs.arbitrum.io/for-devs/concepts/differences-between-arbitrum-ethereum/block-numbers-and-time#example
https://docs.arbitrum.io/for-devs/concepts/differences-between-arbitrum-ethereum/block-numbers-and-time#example

Gas price can be the same for different transactions in the same block on the Ethereum

network. Here are some examples in the Ethereum block 19232990 where the third, fourth,

fifth, and sixth transaction all have the same gas price of 0.000000022986457525 ETH

according to the Etherscan user interface.

The combination of the above scenarios suggests that the ForbiddenMethodsPolicy can

block more transactions than intended. As such, consider documenting the risks involved and

strategies for a workaround, and using block.timestamp over block.number if intending

to support L2 networks.

Update: Resolved in pull request #12 and pull request #28 at commit aeb8f9f with additional

comments.

L-05 Risk of Function Signature Clash With
ifAdmin
The ifAdmin modifier is deprecated due to the risk of function signature clash in the

OpenZeppelin Contracts library's v4.9.3 release, which is the dependency version used in

this project. The ifAdmin modifier is used in the FirewallTransparentUpgradeableProxy and

the FirewallProxyIntercept contracts to guard firewall - and firewallAdmin -related

functions. This increases the risk of function signature clash with implementation contracts.

Consider allowing a clean separation of admin functionality and user calls to minimise the risk

of signature clash. See, for instance, the v5.0 release of the TransparentUpgradeableProxy.

Update: Resolved in pull request #23 at commit 3fb999b.

L-06 Policies Can Be Executed When No Longer
Approved
The owner of the Firewall contract can set policy status and only approved policies can be

subscribed by consumers.

In the situation where a policy is compromised, the owner of the Firewall contract can set

the policy status to false to disapprove the policy, preventing further subscription to the

compromised policy. However, existing consumers of that compromised policy are still

executing it unless each consumer's firewallAdmin removes the policy individually. This

creates a window where consumers can execute disapproved policies, subject to risks of a

vulnerable policy.

Ironblocks Onchain Firewall Audit − Low Severity − 25

https://etherscan.io/txs?block=19232990
https://etherscan.io/tx/0xfc776b88c95f3029ba4a9581eaf21fdd14a5f8c40764ab4995fcbe500784d955
https://etherscan.io/tx/0x72b8e5c8a9f153a457ceeab1aeb9871ac4d24b48c7ec4862b462e12f1964a561
https://etherscan.io/tx/0x35847e7499f985c491842462173828b3755452357b225d12ecab1d01403650b8
https://etherscan.io/tx/0x2885da050b74dc02e51ffeb67e4ee7fcaccd835f8eb4ddbc4402c6518f17045f
https://github.com/ironblocks/onchain-firewall/pull/12
https://github.com/ironblocks/onchain-firewall/pull/28
https://github.com/ironblocks/onchain-firewall/pull/28/commits/aeb8f9fde71e832f35300b438c017757bc7df246
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bd325d56b4c62c9c5c1aff048c37c6bb18ac0290/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L70
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v5.0/contracts/proxy/transparent/TransparentUpgradeableProxy.sol
https://github.com/ironblocks/onchain-firewall/pull/23
https://github.com/ironblocks/onchain-firewall/pull/23/commits/3fb999b1adfb01066a7b3a419eae9a0e628e7563
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L181
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L286

Consider documenting this risk clearly and recommending consumer admins to monitor

subscribed policies' status. Alternatively, consider giving an option to the firewall owner to

disable any disapproved policies temporarily until further actions from the consumer admin.

Update: Resolved in pull request #22 at commit e56b1e6. The Ironblocks team stated:

Added comments on this for functions that subscribe consumers to policies.

L-07 Implementation Address of the
FirewallProxyIntercept May Not Be
Compatible With Etherscan
The "eip1967.firewall.intercept.implementation" storage slot contains the underlying business

logic of the implementation address for the FirewallProxyIntercept contract. However,

it may be incompatible with block explorers such as etherscan, that point the implementation

address to the eip1967.proxy.implementation . In such a case, the

TransparentUpgradeableProxy will point to FirewallProxyIntercept and the

FirewallProxyIntercept will point to the same slot on the intercept, set in the

constructor, which may not always be the same as that in the

FIREWALL_INTERCEPT_IMPLEMENTATION_STORAGE_SLOT .

To ensure that users can seamlessly work with this contract, consider documenting this

potential mismatch.

Update: Resolved in pull request #21 at commit d924e9f. The Ironblocks team stated:

Added comment about the limitation of interoperability with common block explorers.

L-08 staticCallCheck Can Be Circumvented
The FirewallTransparentUpgradeableProxy intends to skip view functions with the

_isStaticCall check. A staticcall will result in the staticCallCheck function to

revert, thus returning true when it happens. This strategy can be circumvented using a low-

level call to a view function and triggering the pre and post hooks on subscribed

policies, thereby rendering this check ineffective.

To avoid unexpected results for users integrating with this contract, consider documenting this

specific case.

Ironblocks Onchain Firewall Audit − Low Severity − 26

https://github.com/ironblocks/onchain-firewall/pull/22
https://github.com/ironblocks/onchain-firewall/pull/22/commits/e56b1e6bfc27dd119f00e350330644fcc8e07ef0
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L22
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyIntercept.sol#L31-L37
https://github.com/ironblocks/onchain-firewall/pull/21
https://github.com/ironblocks/onchain-firewall/pull/21/commits/d924e9f99f5c23cb2af96eca3265c0271f7f26ab
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L64-L68
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L64-L68
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L83
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L83
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L80
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L80
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L84-L88
https://github.com/ironblocks/onchain-firewall/blob/1aa67cc54dbc10c98d80c9b56833739a8635bdf6/contracts/proxy/FirewallTransparentUpgradeableProxy.sol#L84-L88

Update: Resolved in pull request #24 at commit 3711619. The Ironblocks team stated:

Added a comment regarding the limitations of static call checks.

L-09 Array Lengths May Mismatch
In CombinedPoliciesPolicy , the policy administrator can set the allowed combinations

and policies using an address[] array for the policies and a double boolean array bool[]

[] for the allowed combinations.

The data structure bool[][] for the input _allowedCombinations allows boolean arrays

of different lengths. For example, [[true],[true, false], [true, false, true]]

passed as an _allowedCombinations will succeed regardless of the length of

_policies . Each inner array is hashed together as a key used to compare with the hash of

the resulting array in postExecution which is always a boolean array of the same length as

the policies. An accidental mistake when setting allowed combinations may result in

unintended reverts.

To ensure correct behavior, consider enforcing that the lengths of the inner arrays in

_allowedCombinations match the length of _policies .

Update: Resolved in pull request #2 at commit 411530b.

L-10 Limitations of AdminCallPolicy
The AdminCallPolicy is a policy that requires a third party with the APPROVER_ROLE to

approve any admin calls. When a call is approved, the hash of the call together with the

block.timestamp at approval is stored in a mapping. The hash of the call is determined by

five parameters, and once the call is approved, the user has one day to execute it. However, a

challenge arises if the admin intends to execute multiple calls within the same transaction

using the same call hash, as this would not be feasible.

Consider modifying the system to allow the admin to execute the same call hash multiple times

within the same transaction, thereby covering all potential use cases.

Update: Resolved in pull request #27 at commit c8e2e24. The Ironblocks team stated:

We decided to leave this as-is and instead document this limitation as a known trade-

off, thereby balancing security and usability (we do not foresee a practical use case

Ironblocks Onchain Firewall Audit − Low Severity − 27

https://github.com/ironblocks/onchain-firewall/pull/24
https://github.com/ironblocks/onchain-firewall/pull/24/commits/37116197776aac17e7f363b87d1e611223d6f03a
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L56
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L56
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L64
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L52
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/CombinedPoliciesPolicy.sol#L52
https://github.com/ironblocks/onchain-firewall/pull/2
https://github.com/ironblocks/onchain-firewall/pull/2/commits/411530bca1815a963c0a94cbc5de973b746ebb31
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L23
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L30
https://github.com/ironblocks/onchain-firewall/pull/27
https://github.com/ironblocks/onchain-firewall/pull/27/commits/c8e2e24b47544d6e2b033bd794d81bc9af3fc121

where an admin would need to call the same function multiple times in a single

transaction for a function that is protected by notary approvals).

L-11 Missing Docstrings
Throughout the codebase, there are multiple instances of code that is missing docstrings, for

example, but not limited to:

The APPROVER_ROLE state variable in AdminCallPolicy.sol .

The expirationTime state variable in AdminCallPolicy.sol .

The adminCallHashApprovalTimestamp state variable in

AdminCallPolicy.sol .

The preExecution function and in the postExecution function in different policies.

Consider thoroughly documenting all functions (and their parameters) that are part of any

contract's public API. Functions implementing sensitive functionality, even if not public ,

should be clearly documented as well. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #25 at commit 988f358.

L-12 Use of tx.origin to Validate EOA Sender
In the OnlyEOAPolicy , the sender is considered an EOA if sender == tx.origin . If the

transaction is coming via a trusted forwarder as in the ERC-2771 meta-transaction, it is

possible that the sender is an EOA but not equal to tx.origin .

Consider documenting this specific case and/or try handling this validation differently when it

comes to a meta-transaction.

Update: Resolved in pull request #26 at commit b065d73. The Ironblocks team stated:

Added a comment to the EOA policy.

•

•

•

•

Ironblocks Onchain Firewall Audit − Low Severity − 28

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L18
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L21
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L21
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L23
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L23
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/ironblocks/onchain-firewall/pull/25
https://github.com/ironblocks/onchain-firewall/pull/25/commits/988f3586c8b3cbd2961fafef19bbd004870ada80
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L20
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/OnlyEOAPolicy.sol#L20
https://github.com/ironblocks/onchain-firewall/pull/26
https://github.com/ironblocks/onchain-firewall/pull/26/commits/b065d73e60ee17e8680d7c21660e54aace22a48b

Notes & Additional
Information

N-01 Unused Imports
In FirewallProxyAdmin.sol , there are imports that are duplicated and unused:

The import import "@openzeppelin/contracts/utils/Address.sol"; .

The import import "../interfaces/IFirewall.sol"; .

The import import "../interfaces/IFirewallConsumer.sol"; .

Consider removing unused imports to improve the overall clarity and readability of the

codebase.

Update: Resolved in pull request #7.

N-02 Unnecessary Casts
In BalanceChangePolicy.sol , there are unnecessary casts:

The address(consumer) cast

The address(consumer) cast

To improve the overall clarity, intent, and readability of the codebase, consider removing

unnecessary casts.

Update: Resolved in pull request #8.

N-03 Lack of Indexed Event Parameter
In Firewall.sol , the PolicyStatusUpdate event does not have indexed parameters.

To improve the ability of off-chain services to search and filter for specific events, consider

indexing event parameters.

Update: Resolved in pull request #9.

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Notes & Additional Information − 29

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L7
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L7
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L9
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L9
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L10
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/proxy/FirewallProxyAdmin.sol#L10
https://github.com/ironblocks/onchain-firewall/pull/7
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L32
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L32
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L43
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L43
https://github.com/ironblocks/onchain-firewall/pull/8
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L27
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/Firewall.sol#L27
https://solidity.readthedocs.io/en/latest/contracts.html#events
https://github.com/ironblocks/onchain-firewall/pull/9

N-04 Non-Explicit Imports Are Used
The use of non-explicit imports in the codebase can decrease code clarity and may create

naming conflicts between locally-defined and imported variables. This is particularly relevant

when multiple contracts exist within the same Solidity files or when inheritance chains are long.

Throughout the codebase, global imports are being used. Following the principle that clearer

code is better code, consider using named import syntax (import {A, B, C} from "X")

to explicitly declare which contracts are being imported. Some examples are:

The import "./FirewallPolicyBase.sol"; import in AdminCallPolicy.sol .

The import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import in

BalanceChangePolicy.sol .

The import "@openzeppelin/contracts/utils/Address.sol"; import in

FirewallConsumerBase.sol .

The import "@openzeppelin/contracts/utils/Context.sol"; import in

FirewallConsumerBase.sol .

The import "./interfaces/IFirewall.sol"; import in FirewallConsumerBase.sol .

Update: Resolved in pull request #10.

N-05 Using uint Instead of uint256
Throughout the codebase, there are instances of uint being used as opposed to uint256 .

In favor of explicitness, consider replacing all instances of uint with uint256 . Some

examples of this are:

In line 21 of AdminCallPolicy.sol

In line 43 of ApprovedCallsPolicy.sol

In line 37 of BalanceChangePolicy.sol

Update: Resolved in pull request #11.

N-06 Missing Named Parameters in Mappings
Since Solidity 0.8.18, developers can utilize named parameters in mappings. This means

mappings can take the form of mapping(KeyType KeyName? => ValueType

ValueName?) . This updated syntax provides a more transparent representation of a

mapping's purpose.

•

•

•

•

•

•

•

•

Ironblocks Onchain Firewall Audit − Notes & Additional Information − 30

https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L6
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L6
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L6
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L7
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/FirewallConsumerBase.sol#L8
https://github.com/ironblocks/onchain-firewall/pull/10
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L21
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/AdminCallPolicy.sol#L21
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L43
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/ApprovedCallsPolicy.sol#L43
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L37
https://github.com/ironblocks/onchain-firewall/blob/8f4fcf861d53c835ed005db67b8af4037464e0ca/contracts/policies/BalanceChangePolicy.sol#L37
https://github.com/ironblocks/onchain-firewall/pull/11
https://github.com/ethereum/solidity/releases/tag/v0.8.18

Throughout the codebase, there are multiple mappings without named parameters. Consider

adding named parameters to the mappings to improve the readability and maintainability of the

codebase.

Update: Resolved in pull request #20.

Ironblocks Onchain Firewall Audit − Notes & Additional Information − 31

https://github.com/ironblocks/onchain-firewall/pull/20

Conclusion
Two high-severity issues were identified among various medium and lower-severity issues. We

emphasize the need for a more comprehensive documentation on the protocol overall,

particularly regarding the specifics of the smart contracts, some of which were described in the

found issues. The Ironblocks team consistently responded to our inquiries made during the

audit and throughout the two threat modeling sessions which helped us better understand the

system.

Ironblocks Onchain Firewall Audit − Conclusion − 32

	Ironblocks Onchain Firewall Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Schemetic Execution Flow
	Connecting to Firewall
	Configuring Policies

	Security Model and Trust Assumptions
	Privileged Roles
	Firewall
	Consumers
	Policies

	Threat Model
	1. Threat of Misrepresented Call Context
	2. Threat of Signature Replay and Malleability
	3. Threat of Multiple Executions
	4. Threat of Inconsistency
	5. Threat of Cross-Authorization
	6. Threat of Special Execution Flow
	7. Threat of Excessive Restriction
	8. Threat of Selector Clash
	9. Threat of Mis-integration
	10. Threat of Malicious Consumer

	High Severity
	Risk of Signature Replay Attack in ApprovedCallsPolicy
	Risk of Passing Incorrect Context to Firewall Policies

	Medium Severity
	Risk of Non-Reachable postExecution
	Confusion With Multiple Modifiers Passing Custom Data to Policies
	safeFunctionCall May Expose Unnecessary Future Risks
	OnlyEOAPolicy Allows Non-Consumer-Specific Contract Accounts
	Nested Protected Functions May Cause Unexpected Reverts
	Challenges for Admin Functionality and Logic Initialization in FirewallProxyIntercept

	Low Severity
	Lack of Event Emission for Firewall Setting Changes
	Simulation Mode in ApprovedCallsPolicy
	try/catch Error(string memory){} in CombinedPoliciesPolicy May Not Catch Call Cases
	ForbiddenMethodsPolicy May Block More Transactions Than Intended
	Risk of Function Signature Clash With ifAdmin
	Policies Can Be Executed When No Longer Approved
	Implementation Address of the FirewallProxyIntercept May Not Be Compatible With Etherscan
	staticCallCheck Can Be Circumvented
	Array Lengths May Mismatch
	Limitations of AdminCallPolicy
	Missing Docstrings
	Use of tx.origin to Validate EOA Sender

	Notes & Additional Information
	Unused Imports
	Unnecessary Casts
	Lack of Indexed Event Parameter
	Non-Explicit Imports Are Used
	Using uint Instead of uint256
	Missing Named Parameters in Mappings

	Conclusion

