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Abstract— Pouring a specific amount of liquid is a challenging
task. In this paper we develop methods for robots to use visual
feedback to perform closed-loop control for pouring liquids. We
propose both a model-based and a model-free method utilizing
deep learning for estimating the volume of liquid in a container.
Our results show that the model-free method is better able
to estimate the volume. We combine this with a simple PID
controller to pour specific amounts of liquid, and show that the
robot is able to achieve an average 38ml deviation from the
target amount. To our knowledge, this is the first use of raw
visual feedback to pour liquids in robotics.

I. INTRODUCTION

The last years have seen dramatic improvements in robotic
capabilities relevant to household tasks such as putting items
into a dishwasher [1], folding and ironing clothing [2], [3],
and cleaning surfaces [4]. So far, however, robots have not
been able to robustly perform household tasks involving
liquids, such as pouring a glass of water. Solving such tasks
requires both robust control and detection of liquid during
the pouring operation. Humans often are not very accurate
at this, requiring specialized containers to measure a specific
amount of liquid. Instead, people often use vague, relative
terms such as “Pour me a half cup of coffee” or “Just a little,
please.” While there has been recent success in robotics on
controlling a manipulator to pour liquids simulated by small
balls [5] and on detecting liquids using optical flow or deep
learning [6], [7], the task of pouring certain amounts of actual
liquids has not been addressed.

In this paper, we introduce a framework that enables
robots to robustly pour specific amounts of a liquid into
containers typically found in a home environment, such as
coffee mugs, cups, glasses, or bowls. We achieve this in the
most general setting, without requiring specialized hardware,
such as highly accurate force sensors for measuring the
amount of liquid held by a robot manipulator, scales placed
under the target container, or sensors designed for detecting
liquids. However, while we avoid requiring specialized envi-
ronmental augmentation, our investigation is on how accurate
a robot could pour under relatively controlled conditions,
such as having been able to train on the target containers.

The intuition behind our approach is based on the insight
that people strongly rely on visual cues when pouring liquids.
For example, a health study revealed that the amount of wine
people pour into a glass is strongly biased by visual factors
such as the shape of the glass or the color of the wine [8].
We thus propose a framework that uses visual feedback in a
closed-loop pouring controller. Specifically, we train a deep
neural network structure to estimate the amount of liquid in
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Fig. 1: The Baxter robot used in our experiments. In its right gripper
it holds the cup used as the source container. On the table in front
of the robot are the three target containers (from left to right): the
small bowl, tan mug, and redgray mug.

a cup from raw visual data. Our network structure has two
stages. In the first stage, a network detects which pixels in
a camera image contain water. The output of the detection
network is fed into another network that estimates the amount
of liquid already in the container. This amount is used as
real-time feedback in a PID controller that is tasked to pour
a desired amount of water into a cup.

To generate labeled data needed for the neural networks,
we developed an experimental setup that uses a thermal
camera calibrated with an RGBD camera to automatically
label which pixels in the color frames contain (heated) water.
Experiments with a Baxter robot pouring water into three
different containers (two mugs and one bowl) indicate that
this approach allows us to train deep networks that provide
sufficiently accurate volume estimates for the pouring task.

Our main contributions in this paper are (1) an overall
framework for determining the amount of liquid in a con-
tainer for real-time control during a pouring action; (2) the
use of thermal imagery to generate ground truth data for
pixel level labeling of (heated) water; (3) a deep neural
network that uses such labels to detect liquid pixels in raw
color images; (4) a model-based method to determine the
volume of liquid in a target container given pixel-wise liquid
detection; (5) a neural network to regress to the volume of
liquid given pixel-wise liquid detections as input; and (6)
an extensive evaluation that shows that our methodology is
suitable for control by deploying it on a robot for use in a
pouring task.



(a) RGB (b) Thermal (c) Thresholded thermal (d) Network detections
Fig. 2: An example frame from a pouring sequence. The left image shows the color camera from the robot’s perspective, the left-middle
image shows a heatmap of the thermal camera after it has been registered to the color camera, the right-middle image shows the water
labeled by thresholding the thermal image, and the right image shows the output of the detection network based on the RGB input.

II. RELATED WORK

There is prior work related to robotic pouring, however,
most of it either uses coarse simulations disconnected from
real liquid perception and dynamics [9], [5] or constrained
task spaces that bypass the need to perceive and reason di-
rectly about liquids [10], [11], [12], [13], [14]. Additionally,
all of these works with the exception of [14] pour the entire
contents of the source container into the target container,
with the focus on other factors such as spillage or the overall
motion trajectory. In contrast, in this work we focus primarily
on pouring a specific amount of liquid from the source into
the target rather than simply emptying the source container
into the target. To do this, the robot requires some method
for estimating the volume of liquid in the target. Rozo et
al.[14] utilized force sensors in the robot’s arm to measure
how much had been poured out, however this requires a robot
with very precise torque sensors, which are not available on
our Baxter robot. In our own prior work [15] we placed
a digital scale under the target container. But this method
presents many of its own challenges, such as delay in the
scale measurement (often 1-2 seconds) and no information
about where the liquid is or how it is moving. Humans, on
the other hand, are able to accomplish this task purely from
visual feedback, which strongly suggests that robots should
be able to as well.

There is some prior work related to directly perceiving
liquids from sensory feedback [16], [17], [18]. Work by
Yamaguchi and Atkeson [6] utilizes optical flow to detect
liquids as they flow from a source into a target container.
However, for the tasks in this paper, the robot must also
be able to detect standing water with no motion, for which
optical flow is poorly suited. Instead, we build on our own
prior work relating to liquid detection in simulation [7].
We developed a method utilizing fully-convolutional neural
networks [19] to label pixels in an image as either liquid or
not-liquid. Here we utilize the recurrent network with long
short-term memory (LSTM) layers [20] that we used in that
work to detect and label liquid in an image.

III. TECHNICAL APPROACH

A. Task Overview

In this paper, the robot is tasked with pouring a specific
amount of liquid from a source container into a target
container. This task is more difficult than prior work on
robotic pouring which primarily focuses on pouring all the
contents of the source container into the target container,
whereas we focus on pouring only a limited amount from
the source containing an unkown initial amount of liquid.

To accomplish this, the robot must use visual feedback to
continuously estimate the current volume of liquid in the
target container. Our approach has 3 main components: First
the robot detects which pixels in its visual field are liquid
and which are not. Next the robot uses these detections to
estimate the volume of liquid in the target container. Finally,
the robot feeds these volume estimates into a controller to
pour the liquid into the target. Figure 3 shows a diagram
of this process. We structure the problem in this manner
as opposed to simply training one end-to-end network as
it allows us to train and evaluate each of the individual
components of the system, which can give us better insight
into its operation.

B. Pixel-Wise Liquid Detection
In order for both the model-based and model-free volume

estimation methods to work, the robot must classify each
pixel in the image as liquid or not-liquid. We developed
two methods for acquiring these pixel labels: a thermo-
graphic camera in conjunction with heated water, and a fully-
convolutional neural network[19] with color images. While
the thermal camera works well for generating pixel labels, it
is also rather expensive and must be registered to an RGBD
sensor. In our prior work [7], we developed a method for
generating pixel labels on simulated data for liquid from
color images only, which we briefly describe here.

Given color images, we train a convolutional neural net-
work (CNN) to label each pixel as liquid or not-liquid (we
use the thermal camera to acquire the ground truth labeling).
The network is fully-convolutional, that is, all the learned
layers are convolution layers with no fully-connected layers.
The output of the network is a heatmap over the image, with
real values in the range [0, 1], where higher values indicate
a higher likelihood of liquid. In [7] we tested 3 network
structures and found that a recurrent network utilizing a long
short-term memory (LSTM) layer [20] performs the best of
the 3. Here we use the LSTM-CNN from that paper, which
is shown in the top row of Figure 3. We refer the reader to
[7] for more details.

C. Volume Estimation During Pouring Sequences
We propose two different methods for estimating the

volume of liquid in a target container. The first is a model-
based method, which assumes we have access to a 3D model
of the target container and infers the height of the liquid
based on the camera pose and binary pixel labels. The second
is a model-free method that trains a neural network to regress
to the volume of liquid in the target container given labeled
pixels.
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Fig. 3: The entire robot control system using the recurrent neural network for detections and the multi-frame network for volume estimation.
The recurrent detection network (top) takes both the color image and its own detections from the previous time step and produces a liquid
detection heatmap. The multi-frame network (center) takes a sequence of detections cropped around the target container and outputs a
distribution over volumes in the container. The output of this network is fed into a HMM, which estimates the volume of the container.
This is passed into a PID controller, which computes the robot’s control signal.

1) Filtering using a HMM: Before describing our volume
estimation methods, we first describe our filtering method,
which will make our notation in the following sections
clearer. Because of the temporal nature of the task, we
utilize a hidden Markov model (HMM) to filter the volume
estimates over time. Let t be the current timestep, vt be
the volume of liquid in the target container at time t (the
hidden state in the HMM), and let zt be the observation
at time t (described in detail in the following sections). To
compute the probability distribution over vt we can apply
Bayes rule. HMMs make the Markovian assumption, that is,
vt is conditionally independent of all prior observations and
states given vt−1 and zt is conditionally independent of all
prior observations and states given vt. Thus we can write the
posterior as

P (vt|zt, vt−1) ∝ P (zt|vt)P (vt|vt−1).
For this paper, we represent the distribution over v as a
histogram over a fixed range, and so the transition probability
P (vt|vt−1) is a summation over the bins in the histogram

P (vt|vt−1) =
∑
i

P (vt|vt−1 = i)P (vt−1 = i). (1)

The transition probability P (vt|vt−1) is inferred from the
training data.

The following two sections describe how we compute the
observation probability p(zt|vt), which varies for the model-
based and model-free methods. During task execution, we

compute the volume of liquid at a given timestep t by taking
the median over the posterior distribution on vt

1.
2) Model-Based Volume Estimation: Our model-based

method for estimating the volume of liquid in a target
container assumes we have a 3D model of the container
and that we can use the pointcloud from our RGBD sensor
to find its pose in the scene. The observation zt for this
method is the set of pixel-wise liquid labels for the image at
time t, computed as described in section III-B. Intuitively, to
compute the observation probabilities, this method compares
the actual observation zt to what the robot would expect to
see if the volume of liquid in the container were vt.

More formally, we compute P (zt|vt = i) as follows. First,
we assume conditional independence between every pixel
pjt ∈ zt. Thus the observation probability becomes

P (zt|vt = i) =
∏
j

P (pjt |vt = i).

For this product, we only consider the set of pixels that view
the inside of the container, i.e., the set of pixels that could
potentially be labelled liquid. An example of this is shown
in Figure 4. The dashed lines show the pixels whose rays
intersect the interior of the container, whereas the gray areas

1We also evaluated using other methods such as the expectation or
maximum likelihood, but we empirically determined that median produced
more stable and less skewed estimates, although all the methods only had
minor differences.
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Fig. 4: Diagram of the camera looking into the target container.
The blue shows where the liquid is expected to be, given a volume
and the corresponding fill height, ht. The blue lines show pixels
expected to be classified as liquid and the orange lines show pixels
that are expected to be classified as not-liquid. The gray shows
pixels outside the container and not used by our algorithm.

represent the pixels whose rays do not. Since the pixels in
the gray area can not see liquid in the container, they have
no effect on the observation probability and thus are not
considered.

To compute P (pjt |vt = i), we use the 3D mesh of the
container and fill it with vt = i volume of liquid. We then
project that liquid back into the camera to get the expected
pixel label p̂jt . The observation probability is then
P (pjt |vt = i) =P (pjt |p̂

j
t = liquid)P (p̂jt = liquid|vt = i) +

P (pjt |p̂
j
t = not-liquid)P (p̂jt = not-liquid|vt = i).

To compute P (p̂jt |vt = i), we assume that the liquid is
resting level in the container2. At rest, the surface of the
liquid will be parallel to the ground, and so we find the
height ht of the surface. We place a plane parallel to the
ground at ht and check whether the ray from pixel pjt
intersects that plane prior to intersecting the 3D mesh of
the container. We set P (p̂jt = liquid|vt = i) to be 1 if the
ray intersects the plane first (and 0 otherwise), and we set
P (p̂jt = not-liquid|vt = i) to be 1 if the ray intersects the
mesh first (and 0 otherwise). Figure 4 shows an example.
The blue dashed lines show pixels that intersect the plane,
whereas the orange dashed lines show pixels that intersect
the mesh before intersecting the plane. To compute P (pjt |p̂

j
t ),

we use the following table:

pjt
Liquid Not-liquid

p̂jt
Liquid 90% 10%

Not-liquid 20% 80%

To compute the height of the surface of the liquid ht, we
use binary search in combination with the signed tetrahedron
volume method [21]. That is, given a height ht, we can
compute the volume of the interior of the container below
that height using its 3D mesh by applying the method
described in [21]. This volume under the plane corresponds
to the volume of liquid resting in the container. We then
perform binary search over the height to find the ht that
corresponds to vt = i. Note that because the distribution over
vt is a histogram with a fixed set of bins, we can precompute
the height for each value of vt for each 3D mesh.

2While not strictly true throughout the entire duration of a pour, this
assumption still allows for a good measurement.

3) Model-Free Volume Estimation: Our model-free
method replaces the object pose inference of the model-based
method with a neural network. The neural network takes in
pixel labels and produces a volume estimate. We use only
the output of the detection network described in section III-B
for the pixel labels, so we directly feed the heatmap over the
pixels into the volume estimation network. We also evaluate
adding as inputs either the color or depth images, which we
append channel-wise to the pixel labels before feeding into
the network. We crop the input to the network around the
target container.

Formally, the network computes the function f(zt) = ṽt,
where zt is the observation and ṽt is an estimate of the
volume in the container. The estimate ṽt is used as the
observation in the HMM, i.e., we use P (ṽt|vt) in place of
P (zt|vt) since ṽt is a function of the observation zt. The
output of the network is a distribution over ṽt. To compute
P (ṽt|vt), we sum over all values for ṽt

P (ṽt|vt) =
∑
k

P (vt|ṽt = k)P (ṽt = k)

where P (ṽt = k) is computed by the network. The condi-
tional probability P (vt|ṽt = k) is inferred from the training
data.

We evaluated three different network architectures: a
single-frame CNN, a multi-frame CNN, and a recurrent
LSTM CNN. We use the Caffe deep learning framework
[22] to implement our networks

Single-Frame CNN: The single-frame network is a stan-
dard CNN that takes as input a single image. It then passes
the image through 5 convolution layers, each of which is
followed by a max pooling and rectified linear layer. Every
layer has a stride of 1 except for the first 3 max pooling
layers, which have a stride of 2. It passes the result through
3 fully connected layers, each followed by a rectified linear
layer. These last 3 layers are also followed by dropout layers
during training, with a drop rate of 10%. The single-frame
network (CNN) is similar to the multi-frame network shown
in the center row of Figure 3, with the exception that it only
takes a single frame and does not have the concatenation
layer or the convolution layer immediately following it.

Multi-Frame CNN: The multi-frame network (MF-CNN)
is shown in the center row of Figure 3. It takes as input a
set of temporally sequential images. Each image is passed
independently through the first 5 layers of the network, which
are identical to the first 5 convolutional layers in the single-
frame network. Next, the result of each image is concatenated
channel-wise and passed through another convolution layer
(which is also followed by max pooling and rectified linear
layers). This is then fed into 3 fully connected layers, which
are identical to the last 3 layers of the single-frame CNN.

Recurrent LSTM CNN: The LSTM-CNN is identical to the
single-frame network, with the exception that we replace the
first fully connected layer with the LSTM layer. In addition
to the output of the convolution layers, the LSTM layer also
takes as input the recurrent state from the previous timestep,
as well as the cell state from the previous timestep. Each
gate in the LSTM layer is a 256 node fully connected layer.
Please refer to Figure 1 of [23] for a detailed layout of the
LSTM layer.



D. Robot Controller

For this paper, we want to investigate whether, given good
real-time feedback, pouring can be performed with a simple
controller. We place a table in front of the robot, and on
the table we place the target container. We fix the source
container in the robot’s right gripper and pre-fill it with a
specific amount of water not given to the robot. We also fix
the robot’s arm such that the source container is above and
slightly to the side of the target container.

To pour, the robot controls the angle of its wrist joint,
thus directly controlling the angle of the source container.
We use a modified PID controller to execute the pour. The
robot first tilts the container to a pre-specified angle (we
use 75 degrees from vertical), then begins running the PID
controller, using the difference between the target volume
and the current volume in the target container as its error
signal, which it uses to set the angular velocity of its wrist
joint. Since pouring is a non-reversible task (liquid cannot
return to the source once it has left), the integral term does
nothing except push the robot to pour faster, so we set its gain
to 03. We set the proportional and derivative gains to 0.01π

180
and 0.2π

180 respectively, which we empirically determined to
perform well for the pouring task. Once the target volume has
been reached, the robot stops the PID controller and rotates
the source container until it is vertical once again.

E. Implementation Details

1) Finding the Container in the Scene: Both our model-
based and model-free methods require finding the target
container on the table in front of the robot (though only the
model-based needs a 3D model). To find the container, we
use the robot’s RGBD camera to capture a pointcloud of the
scene in front of the robot and then utilize functions in the
PointCloud Library (PCL) [24] to find the plane of the table
and cluster the points on top of it. To acquire the pose for
the model-based method, we use iterative closest points to
find the 3D pose of the model in the scene. Next we use this
pose to label each pixel in the image as either inner (inside
of the container), outer (outside of the container), or neither.

2) Generating Ground Truth Pixel Labels: We use a
thermal camera in combination with water heated to ap-
proximately 93◦Celsius to get the ground truth pixel labels
for the liquid. To register the thermal image to the color
image, we use a paper checkerboard pattern attached to a
61×61 centimeter metal aluminum sheet. We then direct
a small, bright spotlight at the pattern, causing a heat
differential between the white and black squares, which is
visible as a checkerboard pattern in the thermal image. We
use OpenCV’s built-in function for finding corners of a
checkerboard to find correspondence points and compute an
affine transformation4. We use an adaptive threshold based
on the average temperature of the pixels associated with the
target container (which includes the pixels for the liquid in
the container). The result of this is a binary image with each

3We refer to the controller as a PID controller for easier comprehension
by the reader, but it is technically a PD controller.

4While there has been prior work on performing full registration between
thermal and color images [25], because the depth of the pour is fixed, we
opted for this simpler approach. We cannot use the depth sensor because
water does not appear on the depth image.

pixel classified as either liquid or not-liquid. Figure 2 shows
a color image, its corresponding thermal image transformed
to the color pixel space, and a simple temperature threshold
of the thermal image. Note that the thermal camera provides
quite reliable pixel labels for liquid detection with minimal
false positives

3) Acquiring Ground Truth Volume Estimates for Training
and Evaluation: In order to train our networks in the
previous section, and to evaluate both our model-based
and model-free methods, we need a baseline ground truth
volume estimation. To generate this baseline, we utilize the
thermal camera in combination with the model-based method
described in section III-C.2. However, since this analysis can
be done a posteriori and does not need to be real-time, we
can use the benefit of hindsight to improve our estimates, i.e.,
future observations can improve the current state estimate.
While we acknowledge that this method does not guarantee
perfect volume estimates, the combined accuracy of the
thermal camera and after-the-fact processing yield robust
estimates suitable for training and evaluation.

To compute this baseline we replace the forward method
for HMM inference described in section III-C.1 with Viterbi
decoding [26]. We replace the summation in equation 1 in the
computation of the prior P (vt|vt−1) with a max to compute
the probability of each sequence. We use a corresponding
argmax to compute the previous state from the current state,
starting at the last time step and working backwards. At the
last time step, we start with the most probable state. Thus
using this method we can generate a reliable ground truth
estimate of the volume of liquid in the target container over
the duration of a pouring sequence to use for training our
learning algorithms and evaluating our methodology.

IV. EXPERIMENTS & RESULTS

A. Robotic Platform
All of our experiments were performed on our Rethink

Robotics Baxter Research Robot, shown in Figure 1. It is
equipped with two 7-dof arms, each with an electric parallel
gripper. For the experiments in this paper, we use exclusively
the right arm. The robot has an Asus Xtion Pro mounted
on its upper-torso, directly below its screen, which includes
both an RGB color camera and a depth sensor, each of
which produce 640×480 images at 30Hz. Mounted on the
robot immediately above the Xtion sensor is an Infrared
Cameras Inc. 8640P Thermal Imaging Camera, which reads
the temperature of the image at each pixel and outputs a
640×512 image at 30Hz.

B. Experimental Setup
For all experiments, the robot poured from the cup shown

in its gripper in Figure 1. We used three target containers,
also shown in Figure 1. We collected a dataset of pours using
this setup in order to both train and evaluate our methodolo-
gies. We collected a total of 279 pouring sequences, in which
the robot attempted to pour 250ml of water into the target
using the thermal camera with the model-based method, with
the initial amount in the cup varied between 300ml, 350ml,
and 400ml. Each sequence lasted exactly 25 seconds and
was recorded on both the thermal and RGBD cameras at
30Hz. We randomly divided the data 75%-25% into train
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Fig. 5: The left plot shows the scale reading compared to the
thermal camera with the model based method for each of the target
containers. The right plot shows the pixel-wise precision and recall
curves for the liquid detection network.
and evaluation sets. After the data was collected, we used
the thermal images to generate ground truth pixel labels as
well as we used the Viterbi decoding method described in
section III-E.3 to generate ground truth volume estimates,
which we compare against for the remainder of this section.

C. Validating Thermographic Ground Truth Methodology
Before we can evaluate our methodologies, we must

first verify that our method for generating ground truth
volume estimates is accurate. We can compare a static
volume measurement with a scale to static estimates from
the thermal camera combined with the model-based method
to gauge the accuracy of our method. Figure 5a shows a
comparison between measurements from a scale (x-axis) and
the corresponding measurement from the thermal camera
using the model-based method (y-axis) for each of the
three target containers. The black dashed line shows a 1:1
correspondence for reference. From the figure it is clear
that the model-based method overestimates the volume for
each container. In order to make our baseline as accurate as
possible, we fit a linear model for each container and use that
to calibrate the baseline ground truth estimates described in
section III-E.3.

Note that we only use this calibration for computing the
ground truth baseline, and not when computing estimates
for the model-based methodology. This is done on purpose,
since a robot would not be able to pre-calibrate its estimates
for every object in a household setting. While it might be
reasonable to assume that a robot can acquire a 3D model
for each target container via existing object databases, we
believe that performing a pre-calibration using a scale and
multiple pouring experiments for each object would be overly
demanding.
D. Evaluating the Detection Network

Next we must verify that the neural network we trained
to labels pixels as liquid or not-liquid from color images is
accurate enough to utilize for volume estimation. While our
prior work [7] showed that neural networks can label liquid
pixels reasonably well on data generated by a realistic liquid
simulator, these networks performed poorly on real imagery.
Here, we take advantage of our thermal camera system to
train on real data. We trained the recurrent LSTM CNN using
the mini-batch gradient descent method Adam [27] with a
learning rate of 0.0001 and default momentum values, for
61,000 iterations. We unrolled the recurrent network during
training for 32 frames and used a batch size of 5. We scaled
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Fig. 6: Root mean squared error in milliliters of each of the methods
for volume estimation. The left plot shows the error for the model-
based method using either the thermal image or the output of the
detection network as pixel labels. The right plot shows the error for
the model-free methods when the networks take as input only the
liquid detections (red), the liquid detections plus the color image
(green), and the liquid detections plus the depth image (blue).
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Fig. 7: The volume estimates for the two model-based methods
and the multi-frame detection only model-free network. The black
dashed line is the baseline ground truth. We randomly selected one
sequence for each target container from our test set to display here.
Best viewed in color.

the input images to 400×300 resolution. The error signal was
computed using softmax loss. As in [7], we found the best
results are achieved when we first pre-train the network on
crops of liquid in the images, and then train on full images.

Figure 5b shows the performance of the detection network,
and the image in Figure 2d shows an example of the output
of the network. These results clearly show that our detection
network is able to classify pixels with high precision and
recall. This suggests that the network will work well for
estimating the volume of liquid in the target container. We
should note, however, that due to the relatively small size of
the training set, this detection network will work well only
for the tasks described in this paper and will not generalize
to other environments or tasks.
E. Comparing Methods for Volume Estimation

For our model-free methodology, every network was
trained using the mini-batch gradient descent method Adam
[27] with a learning rate of 0.0001 and default momentum
values. Each network was trained for 61,000 iterations, at
which point performance tended to plateau. All single-frame
networks were trained using a batch size of 32; all multi-
frame networks with a window of 32 and batch size of 5; and
all LSTM networks with a batch size of 5 and unrolled for
32 frames during training. The input to each network was a
160×160 resolution crop of either the liquid detections only,
the color image and detections appended channel-wise, or
the depth image and detections appended channel-wise. We
discretize the output to 100 values for the range of 0 to 400ml
(none of our experiments use volumes greater than 400ml)
and train the network to classify the volume. The error signal
was computed using the softmax with loss layer built into



Caffe [22]. In our data we noticed that approximately 2
3 of the

time during each pouring sequence was spent either before or
after pouring had occurred, with little change in the volume.
We found that the best results could be achieved by first
pre-training each network on data from the middle of each
sequence during which the volume was actively changing,
and then training on data sampled from the entire sequence.
We discretize vt and the output of the network into 20
values5.

Figure 6 shows the root mean squared error in milliliters
on the testing data for each method with respect to our
baseline ground truth comparison described in section III-
E.3. It should be noted that although both our baseline
ground truth estimate and the thermal estimate in Figure 6a
are derived from the same data, the difference between the
two can be largely attributed to the fact that the baseline
method is able to look backwards in time and adjust its
estimates, whereas the thermal model-based method can only
look forward (which is necessary for control). For example,
in the initial frames of a pour, as the water leaves the
source container, it can splash against the side of the target
container, causing the forward thermal estimate to incorrectly
estimate a spike in the volume of liquid, whereas the baseline
method can smooth this spike by propagating backwards in
time.

While the error for both model-based methods are rela-
tively small, it is clear that some of the model-free methods
are actually better able to estimate the volume of liquid in the
target container. Surprisingly, the best performing model-free
estimation network is the multi-frame network that takes as
input only the pixel-wise liquid detections from the detection
network. The networks trained on detections only are the
only networks that receive no shape information about the
target container (both the depth and color images contain
some information about shape), so intuitively, it would be
expected that they would be unable to estimate the volume of
more than a single container, and thus perform more poorly
than the other networks. However, a lot of the temporal and
perceptual information used by our methodology is already
provided in the pixel-wise liquid detections, thus temporal
information in addition to either color or depth images are
not as beneficial to the networks.

We can verify that this is indeed the case by looking
at the volume estimates on randomly selected pouring se-
quences from the test set, one for each target container.
Figure 7 shows the volume estimates for the two model-
based methods and the multi-frame detection only method
as compared to the baseline. It is clear from the plots that
the multi-frame network is better able to match the baseline
ground truth than either of the model-based methods. Not
only does the multi-frame network outperform the model-
based methods, but unlike them, it does not require either an
expensive thermal camera or a model of the target container.
For these reasons, we utilize this method in the next section
for carrying out actual pouring experiments with closed-loop
visual feedback.
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Fig. 8: Plot of the result of each pour using our model-free method
as input to the controller. The x-axis is the target amount that the
robot was attempting to reach, and the y-axis is the actual amount
the robot poured. The points are color-coded by the target container.
The black dashed line shows a 1:1 correspondence for reference.
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Fig. 9: Reference images for each of the three target containers.
This is exactly the perspective the robot sees when looking at the
containers. Notice that a 50ml difference is difficult to perceive even
for a human (best viewed enlarged).

F. Pouring with Raw Visual Feedback
Estimating the volume a posteriori and using a volume

estimator as input to a pouring controller are two very
different problems. A volume estimation method may work
well analyzing the data after the pouring is finished, but
that does not necessarily mean it is suitable for control.
For example, if the estimator outputs an erroneous value at
one timestep, it may be able to correct in the next since
the trajectory of the pour does not change. However, if this
happens during a pour and the estimator outputs an erroneous
value, this may result in a negative feedback loop in which
the trajectory deviates more and more from optimal, leading
to more erroneous volume estimates, etc. To verify that our
chosen method from the previous section is actually suitable
for control, we need to execute it on a real robot for real-time
control.

Even though our volume estimation is rather accurate, it
is not clear whether it is good enough for actually pouring
certain amounts of liquid. This is due to the fact that
erroneous estimates during a pouring operation can generate
a feedback loop between the volume estimator and the
controller, resulting in poor performance. Thus, to verify
that our method is actually suitable for control, we need to

5While this may seem rather coarse, we found it works well in practice.



execute it in real-time on a real robot.
To test the multi-frame network with detections only, we

executed 30 pours on the real robot using the PID controller
described in section III-D. We ran 10 sequences on each
of the three target containers. For each sequence, we ran-
domly selected a target volume in {100, 150, 200, 250, 300}
milliliters and we randomly initialized the volume of water
in the source container as either 300, 350, or 400 milliliters,
always ensuring at least a 100ml difference between the
starting amount in the source and the target amount (so the
robot cannot simply dump out the entire source and call it
a success). Each pour lasted exactly 25 seconds, and we
evaluated the robot based on the actual amount of liquid in
the target container (as measured by a scale) after the pour
was finished.

Figure 8 shows a plot of each pour, where the x-axis is the
target amount and the y-axis is the actual volume of liquid
in the target container after the pour finished. Note that the
robot performs approximately the same on all containers.
This is particularly interesting since the volume estimation
network is never given any information about the target
container, and must simply infer it based on the motion of the
liquid. Additionally, almost all of the 30 pours were within
50ml of the target. In fact, the average error over all the pours
was 38ml. For reference, Figure 9 shows 50ml differences
for each of our 3 containers from the robot’s perspective. As
is apparent from this figure, 50ml is a small amount, and a
human solving the same task would be expected to have a
similar error.

V. CONCLUSION AND FUTURE WORK
In this paper, we introduce a framework for visual closed-

loop control for pouring specific amounts of liquid into a
container. To provide real-time estimation of the amount of
liquid poured so far, we develop a deep network structure
that first detects the presence of water in individual pixels of
color videos and then estimates the volume based on these
detections. We show how to automatically generate the data
and labels required to train the deep networks using heated
water along with a calibrated RGB-D / thermal camera
system. A model-based approach allows us then to estimate
the volume of liquid in a container based on the pixel-level
water detections.

Our experiments indicate that the deep network archi-
tecture can be trained to provide real-time estimates from
color only data that are slightly better than the model-
based estimates using thermal imagery. Furthermore, once
trained on multiple containers, our volume estimator does not
require a matched shape model of the target container. We
incorporated our approach into a PID controller and found
that it on average only missed the target amount by 38ml.
While this is not accurate enough for some applications (e.g.,
some industrial settings), it is well suited for similar pouring
tasks in standard home environments. To our knowledge, this
is the first work that has combined visual feedback with
control in order to pour specific amounts of liquids into
everyday containers.

This work opens up various directions for future research.
One important avenue is to develop methods to improve
the robustness of the neural networks. Other interesting
directions include generalization to different liquids, such as

pouring a glass of soda or a cup of coffee, representing target
amounts in relative terms, such as in “Pour me a half cup
of water”, and more sophisticated control schemes on top of
our perception. REFERENCES
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