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Abstract—Simulators are powerful tools for reasoning about
a robot’s interactions with its environment. However, when
simulations diverge from reality, that reasoning becomes less
useful. In this paper, we show how to close the loop between
liquid simulation and real-time perception. We use observations
of liquids to correct errors when tracking the liquid’s state in
a simulator. Our results show that closed-loop simulation is an
effective way to prevent large divergence between the simulated
and real liquid states. As a direct consequence of this, our
method can enable reasoning about liquids that would otherwise
be infeasible due to large divergences, such as reasoning about
occluded liquid.

I. INTRODUCTION

Liquids are ubiquitous in human environments, appearing
in many common household tasks. Recent work in robotics
has begun to investigate ways in which robots can reason
about and manipulate liquids. While some research teams have
successfully solved liquid pouring tasks using relatively weak
models of the physics underlying liquid flow [33, 25, 22], other
work has shown that physics-based models have the potential
to enable far richer understanding of actions involving liquids
[11].

Physics-based models are very general tools for enabling
robots to reason about their environments. Work on rigid-
body actions using physics-based models has enabled robots
to perform a wide variety of tasks [30, 20, 5]. However,
to use such models requires tracking their state using real-
time perception. For rigid-body models and deformable objects
such as clothing and towels, there has been a lot of work on
tracking the modeled state using sensory feedback [16, 27, 28].
For liquids, though, there has not yet been any work connect-
ing physics simulation with real-time perception for robotic
tasks. Unlike modeling rigid or deformable bodies, modeling
liquids is much higher dimensional and lacks the same kind
of inherent structure, and thus small perturbations can quickly
lead to large deviations. As an example, Figure 1 shows a
comparison between real liquid (Figure 1b) and the result of
performing a carefully tuned liquid simulation with the same
setup (Figure 1c). It is clear that without any feedback, the
liquid simulator and the real liquid have significant differences.

In this paper, we investigate ways to incorporate sensory
feedback into physics-based liquid simulation. By closing the
loop between simulation and real-time observations, a robot
can track liquids with much higher accuracy, as illustrated in
Figure 1d. Ultimately, the ability to accurately track the state
of a liquid will enable a robot to reason about liquids in a
wide variety of contexts, addressing questions such as “How
much water is in this container?”, “Where did this liquid come
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Fig. 1: A comparison between open-loop and closed-loop liquid
modeling. The upper-left shows the color image of the scene for
reference and the upper-right shows the same image with the actual
liquid pixels labeled. The lower two images show the color image,
but with the liquid from the simulator shown.
from?”, “What is the viscosity of this liquid?”, or “How can
I move a specific amount of this liquid without spilling?”.
Toward this goal, our work only assumes that the robot can
track 3D mesh models of the objects in its environment and
can differentiate between liquid and everything else in its
camera observations, both tasks that have been addressed
in prior work [26, 7, 24]. We demonstrate that our closed-
loop liquid simulation enables a robot to reason about liquids
in ways that were infeasible before, such as estimating the
amount of water in an opaque container during a pouring task,
or detecting partial obstruction in water pipes.

In this paper we first discuss related work, followed by
a detailed description of the liquid simulator we use as
the base for our closed-loop physics-based model. Next we
describe two different methods for using the observations
of real liquid to correct errors in the base liquid simulator.
After that we describe three experiments we performed using
this methodology and their results. We end the paper with a
discussion of the implications of our method and future work.

II. RELATED WORK

Liquid simulation and fluid mechanics are well researched
in the literature [1]. They are commonly used to model fluid
flow in areas such as mechanical and aerospace engineering
[9], and to model liquid surfaces in computer graphics [2, 6,
17]. Work by Ladický et al. [12] combined these methods with
regression forests to learn the update rules for particles in a
particle-based liquid simulator. There has also been some work
combining real world observations with deformable object
simulation. Schulman et al. [28], by applying forces in the
simulator in the direction of the gradient of the error between



depth pixels and simulation, were able to track cloth based on
real observations. Our warp field method, described in section
IV-C, applies a similar concept to liquids. Finally, the only
example in the literature of combining real observations with
liquid simulation is work by Wang et al. [32], which used
stereo cameras and colored water to reconstruct fluid surfaces,
and then used fluid mechanics to make the resulting surface
meshes more realistic, although they were limited to making
realistic appearing liquid flows rather than using them to solve
robotic tasks.

In robotics, there has been work using simulators to reason
about liquids, although only in constrained settings, e.g.,
pouring tasks. Kunze and Beetz [10, 11] employed a simulator
to reason about a robot’s actions as it attempted to make
pancakes, which involved reasoning about the liquid batter.
Yamaguchi and Atkeson [35, 34] used a simulator to reason
about pouring different kinds of liquids. However, these works
use rather crude liquid simulations for prediction tasks that do
not require accurate feedback. Schenck and Fox [24] used a
finite element method liquid simulator to train a deep network
on the tasks of detecting and tracking liquids. They did not
use the simulator to reason about perceived liquid, though.

Yamaguchi and Atkeson followed up their simulated work
with pouring on a real robot [36]. Several others have also
performed the pouring task using a real robot [25, 13, 18,
29, 3, 22]. However, most of these simply dump the entire
contents from the source container into the target, bypassing
the need to reason in any detail about the liquid dynamics.
Only [25, 22] actually attempted to pour specific amounts of
liquid, requiring at least a partial understanding of liquids on
the robot’s part.

There has been some limited work on perceiving liquids
in real data. Yamaguchi and Atkeson [33] used optical flow
combined with stereo vision to perceive liquid flows in 3D.
Work by Griffith et al. [8] used liquids to assist a robot in
understanding containers from sensory data. In both [24, 25],
they use deep networks to both perceive liquids in color
images and to reason about their behavior. However, their deep
networks are limited to the specific setting they are trained
on, and do not have the broad applicability of general liquid
simulators.

III. OPEN-LOOP LIQUID SIMULATOR

Our physics-based model is based on a liquid simulator. The
state of the simulator tracks the liquid over time, simulating
it forward while observations prevent it from deviating from
the real liquid dynamics. In this section, we describe how
the liquid simulator computes the dynamics of the liquid,
and in the following section we describe how the observation
modifies the liquid state.

To simulate the trajectory of liquid in a scene, the liquid
is represented as a set of particles and the Navier-Stokes
equations [1] are applied to compute the forces on each
particle. The Navier-Stokes equations require certain physical
properties of liquid (e.g., pressure, density) to be defined for
all points in R3. This is implemented using Smoothed Particle
Hydrodynamics (SPH) [31], which computes the value of
a property at a specific location in space as the weighted

average of the neighboring particles. This is in contrast to
finite element liquid simulations [21], which divide the scene
into a voxel grid and store the values of the given property
at each location in the grid. One major disadvantage of the
finite element simulations is that as the size of the environment
grows, the requirements of the voxel grid in both memory and
run time grows as O(n3), making them inefficient for large
environments with sparsely located liquids. This is the case
for the simulations in this paper, and so we chose to use SPH,
which is better suited to this type of task. The implementation
used in this paper is based off the implementation from the
particle simulation library Fluidix [15]. The rest of this section
briefly describes that implementation.

Smoothed Particle Hydrodynamics is essentially a method
for representing a continuous vector field of a physical prop-
erty in space via a discrete set of particles. It is based around
the following equation for evaluating that field at any arbitrary
point in space, where A is the physical property in question:

A(r) =
∑
j

mj
Aj
ρj
W (|r − rj |, h)

where mj is the mass of particle j, Aj is the value stored
in particle j, ρj is the density of particle j, W is a kernel
function that weights the contribution of each particle by its
distance, and h is the cutoff distance for W . In SPH, the mass
mj of each particle is constant, however the density ρj is
not, and must be computed via the SPH equation above. That
is, the physical value we want to compute A is set to be the
density ρ, which results in ρ appearing on the right side of the
equation twice. The issue of recurrence (requiring the density
to be known in order to compute the density) is handled by
the density in the denominator canceling out:

ρ(r) =
∑
j

mj
ρj
ρj
W (|r − rj |, h) =

∑
j

mjW (|r − rj |, h).

To implement a liquid simulation using SPH, each particle
must store 6 physical properties: 3D position (without orienta-
tion however since particles are infinitesimally small points),
velocity, force, mass, density, and pressure. As stated above,
the mass for each particle is constant. At each timestep, the
force is used to update the velocity as follows:

vt+1
i = vti +

f ti
ρi

∆T

where ∆T is the amount of simulation time one timestep
corresponds to. The position at each timestep is then updated
by the velocity in a similar manner

rt+1
i = rti + vti∆T.

The density of each particle at each timestep is computed
using the equation in the previous paragraph. The pressure
is computed as

pi = c2i (ρi − ρ0)
where c2i is the speed of sound and ρ0 is the reference density
of the liquid.

The force is computed by summing the contributions from
pressure, viscosity, gravity, and surface tension. The pressure



force at particle i is defined as:

fpressurei =
∑
j

−mj

ρj

(
pi
ρ2i

+
pj
ρ2j

)
∇W (ri − rj).

The force due to viscosity is

fviscosityi =
∑
j

−µmj

ρj

(
vi
ρ2i

+
vj
ρ2j

)
∇2W (ri − rj)

where µ is the viscosity constant of the liquid (recall that vi
is the velocity of particle i). To compute the surface tension
acting on each particle, we must first compute the normal of
each particle:

ni =
∑
j

mj

ρj
∇W (ri − rj).

Intuitively, the normal ni for any particle in the center away
from the surface of the liquid will have approximately equal
contributions from all directions, resulting in the magnitude of
ni being small. Conversely, for particles near the surface, ni
will have a large contribution from particles in the direction
of the interior of the liquid and very little contribution in
the direction of the surface, resulting in an ni with a large
magnitude in the direction away from the surface. The force
due to surface tension is computed as

f tensioni = −σ ni
|ni|

∑
j

mj

ρj
∇2W (ri − rj)

where σ is the liquid’s tension constant. To prevent numerical
instability when |ni| is small, we only compute the tension
force when the normal magnitude is greater than a threshold,
i.e., the particle is near the surface.

To simulate the flow of liquid in a scene during an in-
teraction, we assume the simulator is given 3D models of
the objects that interact with the liquid as well as their 6D
poses over the course of the interaction (obtained for example
from an object tracking system such as [26]). We initialize the
liquid particles in the scene (details on this in section VI) and
simulate the particles forward at each timestep as the simulator
tracks the objects’ poses.

Our liquid simulator is implemented using the particle
simulation library Fluidix [15], which efficiently computes
particle interactions on the GPU. We performed a best-first
grid search over the space of parameters (e.g., the viscosity
constant) to find the set of values that best match the real liquid
dynamics. For each set of parameters in the grid, we used the
evaluation criteria described in section V-D to score them with
respect to the data we collected (described in section V-B), and
selected the parameters that best fit the real data. In doing so,
we attempted to make our open-loop simulation as close as
possible to the real liquid dynamics. For efficiency reasons,
we use between 2,000 and 8,000 particles in our experiments.
For a detailed derivation of Smoothed Particle Hydrodynamics,
please refer to [31].

IV. CLOSED-LOOP LIQUID SIMULATORS

While liquid simulators model fluid dynamics based on
physical properties, they often don’t model every possible
force that could affect the liquid; and even the best simulators
still have some error relative to real liquids. Over time, even
small errors can lead to a large divergence between real and

simulated liquid behavior. While this may not be a problem in
some cases (e.g., in 3D animation it may only be necessary for
a liquid to appear realistic), if we wish to use liquid simulation
as a robot’s internal model of its environment, it must match
the real liquid behavior as closely as possible.

One potential method for alleviating this issue is to improve
the fidelity of the simulator. However, this method has many
pitfalls. It requires knowledge of every possible force that
could affect the trajectory of the liquid, not only the standard
forces such as pressure and viscosity, but also forces for exam-
ple due to vacuum suction (as in the case of a plunger), which
may require modeling additional elements of the environment.
It can also be very brittle, as every property of every object
in the environment must be known ahead of time (e.g., the
friction constants over the entire surface of every object).
Finally, and most importantly, even if the simulator is almost
perfectly accurate, the initial state of the simulator might not
be known (e.g., unknown amount of water in a cup), and it
will still deviate slightly from reality and thus accumulate drift,
which a purely open-loop system has no way to estimate or
correct for.

We propose two methods for dealing with noise when
tracking real liquid dynamics using a simulator. Both methods
involve closing the loop, that is, utilizing observations of
real liquid dynamics in order to better approximate them in
the simulation. The first, inspired by standard Bayes filters
in robotics, is a MAP filter, which uses the observation to
“correct” simulation errors relative to the observation. The
second, based on modeling physical forces in the simulator,
applies a warp field that pulls particles toward observed liquid.
We describe these two methods in the following sections.

A. Bridging the Observation and the State

Before describing our two closed-loop methods, we briefly
describe how we map the full 3D state of the liquid simulator
into the robot’s perception space. In this work, we assume
that the robot’s camera only provides 2D images labeled with
pixel detections, based on the observation that most liquids,
especially water, are not detected by depth cameras. At any
timestep t, the robot’s perception is thus a binary image It,
with pixels labeled as liquid or not-liquid. In order to directly
compare the particles representing the 3D liquid state with the
2D image, the pose of the particles must be projected into the
image. This is done using the following equation:

x̂it = Axit
([

0 0 1
]
xit
)−1

where xit is the pose of particle i at time t, x̂it is that pose
projected onto the 2D image plane, and A is the camera
intrinsics matrix: [

FLx 0 PPx
0 FLy PPy

]
where FL is the focal length and PP is the principle point of
the camera. When projecting particles into the image plane,
we can take into account occlusions by casting a ray from the
particle’s 3D pose into the camera’s 3D pose and checking
if it collides with any of the rigid objects in the scene. Any
particle whose ray collides with an object is not included when
updating the dynamics of the simulator as there is no way to



directly observe that particle. For the particles that are not
occluded, we can compute the distance in 2D space between
pixels in the image and liquid particles, which can then be
used to inform the dynamics of the liquid simulator.

Additionally, we can use this projection to compute the
likelihood of an image, that is, how well the overall set of
liquid particles “explains” each of the observed pixels. We
define the function Φ to be the coverage function that maps a
pixel location to the number of particles that cover that pixel.
To compute this, we place a small, fixed radius sphere at each
liquid particle location, then project those spheres back into
the camera, ignoring occluded spheres. The value of Φ at a
given pixel location is then simply the number of these spheres
that projected onto that pixel. We use this function in both our
closed-loop methods.

B. MAP Filter Simulator

We use a maximum a posteri (MAP) filter as one of our
closed-loop simulation methods. We model each particle as its
own filter, with its own set of hypotheses, and use the MAP
hypothesis at each time step to compute the dynamics. Let
Pt be a set of liquid particles in a scene at time t, Ot be
the objects and their corresponding 6D poses, and It be the
observation. We define S (Pt−1,Ot) = Pt to be the function
as described in section III that computes the state of the liquid
particles at timestep t given the previous state of the liquid
particles.

At the beginning of each timestep t, all the liquid particles
are propagated forward in time by one step via S using
the objects and their poses Ot. Since S is deterministic, we
perform the dynamics sampling step in the filter separately.
Given a liquid particle xit, we sample one hypothesis particle
x̃i,nt for each location in a grid centered at that liquid particle’s
position. The grid has dimension 3×3×3 and the size of each
grid cell is set at a small, fixed constant (we use 5mm in this
paper). This results in 27 hypotheses sampled for each liquid
particle.

Next we must compute P (x̃i,nt |It,Pt), the probability of
each hypothesis particle given the observation and the set of
liquid particles. Here, we must condition on all particles in
order to take into account that these particles may already
“explain” a certain liquid pixel. We first apply Bayes rule

P (x̃i,nt |It,Pt) ∝ P (It|x̃i,nt ,Pt)P (x̃i,nt |Pt).
For simplicity, we use a uniform prior P (x̃i,nt |Pt) over all
hypothesis particles that are feasible, eliminating those that
violate physical constraints, such as moving through a 3D
object mesh. Thus, for all feasible hypothesis particles,

P (x̃i,nt |It,Pt) ∝ P (It|x̃i,nt ,Pt).
When computing P (It|x̃i,nt ,Pt), what we really want to

know, since this is a MAP filter, is which x̃i,nt maximizes
this probability. However, the interaction between It, x̃

i,n
t , and

Pt is highly complex and difficult to compute analytically.
Instead, we approximate this value with an activation function
Ψ which we define to be

Ψ(It, x̃
i,n
t ,Pt) =

∑
j∈liquid(It)

W (|̂̃xi,nt − jt|, h)

Φ(jt,Pt) + 1

where liquid(It) is the set of all liquid pixels in It, W is a
kernel function, ̂̃xi,nt is x̃i,nt projected onto the image plane
(as described in the previous section), h is the limiting radius
for W , and Φ returns the coverage of jt by Pt (also described
in the previous section). Intuitively, this function sums the
number of liquid pixels around x̃i,nt , weighted by their distance
to ̂̃xi,nt divided by their coverage, i.e., how well explained
that pixel is by Pt. Thus, the more liquid pixels around a
hypothesis particle, the higher its Ψ value, and the less the
pixels are covered by the liquid particles, the higher the Ψ
value. For W we use a squared exponential kernel with a
length scale of 1

332 , and we set the limiting radius to 100.
Intuitively, this means that the unit length under this kernel is
33 pixels with a limiting radius of 100 pixels.

Finally, we set xit from the MAP hypothesis particles as
follows:

xit = argmax
x̃i,n
t

Ψ(It, x̃
i,n
t ,Pt).

Note that we also adjust the velocity of xit to match the change
in position from xit−1 so as to preserve the correct momentum.

C. Warp Field Simulator
The second method we use for closing the loop in the simu-

lator is a warp field, somewhat similar to the approach applied
in [28]. Here, the observation applies a force in the simulator
that attempts to make the liquid particles better match the
observed liquid. Each observation point is essentially a magnet
in the scene, pulling nearby particles towards it. However, if
all observation points pulled with the same amount of force,
then particles would tend to clump around a subset of the
observation points, leaving other observation points with no
nearby particles as the forces from the former cancel out
those from the latter. Thus, the amount of force an observation
point applies to nearby particles must vary with the number
of nearby particles. When taken together, all the observation
points create a field of forces that warp the particles to better
match the real liquid observations.

Once again let Pt be a set of liquid particles in a scene at
time t, Ot be the objects and their corresponding 6D poses,
It be the observation, and S be the function that computes the
dynamics of the particles for a single timestep. The force due
to the observation warp field is computed as

f̂ i,obst =
∑

j∈liquid(It)

λ
uijt

Φ(jt,Pt) + 1
W (|x̂it − jt|, h)

where λ is the warp constant, liquid(It) is the set of all
liquid pixels in It, u

ij
t is a unit vector pointing from particle

x̂it (projected onto the image plane as described in section
IV-A) to liquid pixel jt, Φ(jt,Pt) is the coverage of pixel jt
(described in section IV-A) and W is the same kernel function
used in the MAP simulator (with same parameters). The warp
constant λ adjusts the strength of the warp force, with higher
values resulting in a higher warp force and lower values in a
lower force.

Again, the coverage of a pixel Φ(jt,Pt) is a measure of
how many liquid particles “cover” it, that is, how many liquid
particles are nearby. The force applied to each particle by each
liquid pixel is divided by that pixel’s coverage, thus as more



(a) Cup (b) Bottle (c) Pipe Junction

(d) Pan (e) Bowl (f) Fruit Bowl

Fig. 2: Objects used during the experiments. The top row shows the
two containers the robot poured from as well as the pipe junction.
The leftmost bowl in the bottom row was used in the pouring and the
right two were used during the pipe junction experiments.

particles cover an observed liquid pixel, it pulls particles to it
with less force. Conversely, pixels that have lower coverage
pull particles to them with more force, thus encouraging the
simulator to move particles so as to fill the contour of the
observed liquid.

The force f̂ i,obst is then projected back into 3D space. This
is done by applying the inverse of the projection described
in section IV-A. Because this is 2D to 3D, the projection has
an unspecified degree of freedom. To compensate for this, we
assume that the force vector is in a plane parallel to the image
plane in 3D space. Finally, we apply the SPH equation to
smooth the forces across the particles

f̄ i,obst =
∑
j

mj
f j,obst

ρj
W (|ri − rj |, h).

The resulting force f̄ i,obst is then added to the other forces
described in section III and S is computed as normal.

V. EXPERIMENTAL SETUP

A. Robot & Sensors
The robot used in the experiments in this paper was an

upper-torso robot with two 7-DOF arms, each with an electric
parallel gripper. A table was fixed in front of the robot. To
sense its environment, the robot used its Asus Xtion Pro
RGBD camera, which recorded both color and depth images at
640× 480 resolution at 30 Hz during each interaction, and its
Infrared Cameras Inc. 8640P Thermal Imaging camera, which
recorded thermographic images at 640× 512 resolution at 30
Hz during each interaction. The thermal camera was used in
combination with heated water to acquire the ground truth
pixel labelings. The cameras were locked in fixed relative po-
sitions and placed just below the robot’s head at approximately
chest height.

B. Data Collection
1) Pouring: We collected 16 pouring interactions. We var-

ied the source container (cup, Figure 2a, or bottle, Figure 2b)
and its initial fill amount (empty, 30%, 60%, or 90% full).
Before each pouring interaction, a bowl (the pan, Figure 2d)
was placed on the table in front of the robot. Next the source
was placed in the robot’s gripper, filled with water, and the

(a) Unblocked (b) Partial (c) Blocked

Fig. 3: The 3 types of blockages placed in the pipe junction. (left to
right) Pipe junction with no blockage; left leg is partially blocked;
and left leg is fully blocked.

gripper moved over the bowl. The robot then proceeded to
rotate it’s wrist along a fixed trajectory such that the opening
of the container tilted down towards the bowl and water poured
out. During each pouring interaction, the robot recorded from
its RGBD and thermal cameras as well its joint poses. We
collected two trials for each combination of source container
and fill amount.

2) Pipe Junction: We collected 5 pipe junctions interac-
tions. Before each of the pipe junction interactions, two bowls
(bowl, Figure 2e, and fruit bowl, Figure 2f) were placed side-
by-side on the table in front of the robot. Next, the robot held
the ends of the pipe junction (Figure 2c) with its grippers over
the bowls and recorded from its RGBD and thermal cameras
while 1 liter of water was poured in the top opening. Each leg
of the pipe junction could be fully blocked or partially blocked,
i.e., the flow going to that leg could be partially restricted or
entirely stopped. A diagram of the pipe junction and how the
blockages affected flow is shown in Figure 3. The blockage can
be placed in either leg, for a total of 5 possible configurations.

C. Data Processing

Before we can use our simulators to track the flow of liquid
in the interactions described in the previous section, we must
first perform some post-processing on the data. First, both the
open-loop and closed-loop simulators require the object poses
to be known over the course of the interaction. We utilize
an object tracking method based on point cloud data to do
this. Second, both closed-loop simulators require an image
with pixels labels for the liquid. We use a thermal camera
to acquire this labeling. In this paper we perform these steps
offline, however both are capable of operating in real-time in
online situations.

1) Object Tracking: We use the software program
DART [26] (Dense Articulated Real-Time Tracking) to track
the objects in each interaction. DART uses depth images to
track objects over time. We initialize the pose of the bowls
by using the Point Cloud Library’s [23] built-in tabletop
segmentation algorithm to find the point cluster on the table,
and then set their initial pose to the centroid. We initialize
the containers by computing the robot’s forward kinematics to
find the gripper pose. Once initialized, DART returns a pose
for each object at each point in time over the interaction.

2) Liquid Labeling: For each pouring and pipe junction
interaction, the water was heated to a temperature significantly
above the surrounding environment but below its boiling point.
The interactions were recorded with a thermal camera, and
the thermal image was simply thresholded to locate the liquid
pixels. Figure 4b shows an example thermal image recorded



(a) RGB (b) Thermal (c) Threshold (d) Overlay

Fig. 4: Acquiring liquid labels from the thermal camera. The upper-
left is a color image of the scene, the upper-right shows the corre-
sponding thermal image transformed to the color image’s space. The
lower-left image shows the liquid labels acquired via thresholding
the thermal image, and the lower-right shows the labels overlayed
on the color image.

during a pipe junction interaction, and Figure 4c shows its
corresponding thresholded values.

In addition to generating labels from the thermal image, it
must also be calibrated to the depth image (the object poses
generated by DART, and thus the entire simulator, operate
in the depth camera frame of reference). That is, for each
pixel in the thermal camera, we must determine which pixel
in the depth camera it corresponds to. This is not as simple
as it may appear. Water is not visible in the depth image as
the projected infrared light does not reflect properly off the
surface. However, our depth camera also collects color images
and calibrates it to the depth frame automatically. We can use
the color image then to calibrate the thermal camera.

While there exist methods for doing a full registration
between color and thermal images [19], these tend to be noisy
and unreliable. In this paper, because the water remains at a
fixed distance from the camera, we use a simpler solution. First
we take a checkerboard pattern printed on a wooden board
and place it under a high-intensity halogen lamp. The light
and dark pattern on the board absorbs light from the lamp at
different rates, causing the dark squares to heat faster than the
light squares. We then hold this board in front of both the
thermal and color cameras at the same distance as the water.
The differential heating causes the checkerboard pattern to be
visible in both cameras, allowing us to find correspondence
points between the two images. We then use these points to
compute an affine transformation between the images, and use
it to transform the thermal image onto the color image. Figures
4a and 4b show an example color image and its corresponding
thermal image transformed onto the color space (the thermal
camera has a narrower field of view than the color camera,
which is why there are no thermal values around the edge of
Figure 4b). Figure 4d shows the thresholded thermal image
overlayed onto the color image.

D. Evaluation Criteria
We use two criteria for evaluating our methodology. The

first is intersection over union (IOU). In this case, the state of
the liquid simulation is projected into the camera by placing
small spheres at each particle location and projecting those
into the camera, taking into account occlusions by objects.
We then compare the set of pixels labeled as liquid by this
projection to the set of pixels labeled as liquid by the thermal
image. The IOU is simply the intersection of these two sets
divided by the union.

When comparing the probability of multiple simulations for
the purposes of estimating hidden state, we use P (Îπ|Iπ)

Open MAP Warp
Loop Filter Field

Cup 60.17% 73.38% 75.94%
Bottle 67.25% 77.12% 79.41%

30% 35.56% 65.22% 67.01%
60% 77.62% 79.85% 82.80%
90% 77.94% 80.69% 83.22%

Overall 65.66% 76.03% 78.41% 0 100 200 300 400

Timestep

0

0.2

0.4

0.6

0.8

IO
U

Open Loop
MAP Filter
Warp Field

Fig. 5: The table shows the IOU for each method. The graph shows
the IOU at every timestep across one of the pouring experiments
(bottle filled to 30%).

where Îπ is a set of predicted images for interaction π, and
Iπ is the set of ground truth images. To compute this, we first
apply Bayes rule

P (Îπ|Iπ) ∝ P (Iπ|Îπ)P (Îπ).

For our experiments, we assume the prior P (Îπ) is uniform.
To compute P (Iπ|Îπ), we assume each pixel is independent
and simply multiply their individual probabilities together

P (Iπ|Îπ) =
T∏
t=1

∏
j

P (j|ĵ)

where we set P (j|ĵ) equal to δ if j and ĵ are equal (both
liquid or both not-liquid), and to 1−δ if they are not. Due the
the large number of pixels across all images and timesteps,
we set δ = 0.50001 to prevent underflow1. After computing
the probabilities, we then normalize them so they sum to 1.

VI. EXPERIMENTS & RESULTS

We ran three experiments to evaluate our simulators at
tracking the state of real-world liquids. The first utilized the
pouring interactions and focused on quantitatively evaluating
the open and closed loop simulators. The second and third
experiments test our simulation methods at estimating the
state of an unknown variable in the environment. This is an
important ability for a robot, as often liquids are occluded
by containers or other objects, forcing robots to reason about
the hidden state of the liquids based on outcomes during an
interaction, something that is not always necessary during rigid
object interactions. Our second two experiments examine two
different cases of hidden state estimation using liquids.

A. Comparing Open and Closed Loop Simulation Methods
To compare each of the three simulation methods (open

loop, MAP filter, and warp field), we simulated them on the
data collected for each pouring interaction. At the start of each
interaction, we fill the 3D model of the container with the
same amount of liquid as was filled in the real container. To
do this, we perform binary search on the initial number of
particles, running the simulation forward, holding the object
poses constant, until each has settled and then computing the
level of the liquid in the container. We then simulate the liquid
forward in time, updating the object poses based on the tracked
poses acquired using DART. We evaluate each method by
comparing their IOUs, computed as described in section V-D2.

1Even in log-space, values would still periodically underflow with higher
values for δ due to the large quantity of pixels.

2The 4 pouring interactions where the container was left empty were not
included in this analysis because the union part of the IOU would be 0,
resulting in a division by 0.
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Fig. 6: Probability distribution over the estimated initial fill amounts.
They are aggregated by the true fill amounts. From top to bottom they
are empty, 30% full, 60% full, and 90% full (indicated by the *). The
blue bars show results from the open loop method, cyan for the MAP
filter, and red for the warp field.

The IOU for the three simulation methods is shown in the
table in Figure 5. The upper two rows show the IOU for the
methods conditioned on the two types of containers used; The
middle rows show the IOU conditioned on the initial percent
full of the container; and the last row shows the overall IOU for
each method. This table reveals some interesting phenomena.
It is not immediately clear why all the simulators seem to
perform slightly better on interactions where the robot poured
from the bottle rather than the cup. However, the middle of
the table shows that all of the methods tend to perform better
when more liquid is involved. We notice that the bottle, while
having a similar diameter as the cup, is taller, meaning if they
are filled to the same ratio full (e.g., 30%), then the bottle
will have more overall liquid. This explains the slight bump
in performance from one container to the other.

The most important revelation, however, is that both closed-
loop simulation methods outperform the open-loop simulation
by a significant margin. This is illustrated graphically by the
graph on the right in Figure 5, which shows the IOU at every
timestep over one sequence, and clearly shows that the closed-
loop methods are better able to match the location of the real
liquid than the open-loop method. Additionally, both the table
and the graph show that the warp field method outperforms the
MAP filter method. This clearly shows that closing the loop in
liquid simulations can make the trajectory of the liquid better
match real world liquid dynamics.

B. Estimating the Initial Amount of Liquid
We evaluated all three simulation methods on the same

hidden state task. For each pouring interaction, the initial
amount of liquid in the container was not given to the robot.
Instead, the task of the robot was to estimate this amount
based on the observations and its own liquid simulations. To
do this, the robot needs to run multiple simulations for each
interaction, one for each possible fill amount, and compare the
predictions of each simulation to the observation.

For each pouring interaction, the robot ran 4 simulations:
one where the container was left empty, one where the
container was filled to 30% full, one where the container was
filled to 60% full, and one where it was filled to 90% full. For
each simulation, the liquid particles are simulated forward in
time as the object poses are updated via their tracked poses.
We compute the probability of each simulation by evaluating
the probability of their predicted images as described in section
V-D.

Figure 6 shows the results of performing this for each of
the pouring interactions, aggregated by the ground truth fill
amount (indicated by the * in the x-axis of each graph). The
blue bars show the probability distributions for the open-loop
method, the cyan bars show the distribution for the MAP filter
method, and the red bars show the distribution for the warp
field method. All methods are easily able to correctly place
the highest probability on the empty simulation when there
is in fact no liquid in the interaction, which follows intuition
as there are no observed liquid particles. Additionally, even
though there is slightly more confusion, all of the methods
place the highest probability on the 90% simulation when the
containers start out 90% full. Again, this aligns with intuition
as it is easy to distinguish “a lot” of liquid from “almost no”
liquid. The most confusion occurs when trying to distinguish
“a little” (30%) from “some” (60%). The open loop method
is almost completely unable to distinguish between the two,
both distributions being very similar. The MAP filter method
is slightly better, but still gets confused when the true amount
in the container is 60%. Only the warp field method is able
to correctly estimate the initial amount of liquid, placing over
70% probability on the correct simulation in every case.

C. Solving the Pipe Junction Task

The final experiment we performed was the pipe junction
task. Here the task is for the robot to find the blockage in
a pair of connected pipes simply by observing the liquid as
it exits the pipes, a situation the robot may find itself in if,
say, trying to diagnose a broken sink. We assume that the
robot knows a priori the default, unblocked flow rate of liquid
through the pipes, and thus must use the change in flow to
find the blockage. To test this, a pipe T-junction was held
inverted over two bowls such that the legs of the T emptied
into different bowls, both visible to the robot. However, the
task is to find the blockage based only on the output of the
pipes, so the T-junction was held high enough so that the
robot could only see the openings on the bottom and not the
top opening. To simulate a constant flow into the pipes, a
container with exactly 1 liter of water was tilted at a constant
angular velocity so that the liquid flowed into the top opening
of the junction. The type of blockage used (if any), unblocked,
partially blocked, or blocked, was placed inside the pipe, not
visible to the robot. We used the data collected during the pipe
junction interactions to evaluate the robot on this task.

To solve this task, like in the previous experiment, the robot
needs to run multiple simulations with different values for the
hidden state (the pipe blockages) and compare their outcomes.
For each interaction, the robot ran 5 simulations: one for both
legs unblocked, one for the right leg partially blocked, one
for the right leg fully blocked, one for the left leg partially
blocked, and one for the left leg fully blocked. The probability
of each simulation is computed using the method described in
section V-D.

Figure 7 shows the probability for each of the simulated
blockages over time for one of the interactions using the best
closed-loop method (warp field). The robot ran one simulation
for each blockage type, and the diagrams across the top of
the figure indicate where the blockage in that simulation was
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Fig. 7: Probability distribution over the blockage location over time
for a single interaction. The 5 diagrams across the top correspond to
the five different simulations the robot ran, each color-coded to the
corresponding line in the plot. The true blockage was placed in the
left leg and only partially blocked the leg (in the keys in the top row,
second from right). Best viewed in color.

placed. The color bordering each diagram corresponds to the
color of the line indicating that simulations probability over
time. After only a short time window, the robot is able to
place 100% probability on the correct blockage (partial-left).
Indeed, we ran this on all 5 pipe junction interactions, and by
the end of each, the robot had placed 100% on the correct
blockage in every case. We also evaluated the 5 interactions
using the open-loop method. It was able to correctly estimate
with 100% probability in the simpler cases (no blockage or
fully blocked) as would be expected. However, for the more
difficult interactions (partial blockage), it only picked the
correct blockage type and location in one case (when the true
blockage was partial-left) and in the other case incorrectly
placed 100% probability on there being no blockage. While
the point of this experiment was to show the possible type
of reasoning that can be done with full physics-based liquid
models, even here the closed-loop methods outperform the
open-loop methods, if only in 1 out of 5 cases. Regardless,
by using the closed-loop liquid simulation methods developed
here, the robot is clearly able to robustly solve this task.

VII. DISCUSSION
Reasoning about Liquids: So far, reasoning about liquids

applied to real robots has been limited to restricted tasks
such as pouring [25, 22, 3]. With our physics-based model,
reasoning about liquids can be done on a much wider variety
of tasks. The last two experiments in this paper both involve
completely different tasks, one reasoning about pouring, the
other about blockages in pipes, yet the same algorithm is able
to solve both tasks, without any special knowledge aside from
generic 3D models. Another advantage of our method over
methods such as a deep learning approach [24] or even a non-
physics model-based approach [33] is that the persistence of
a liquid is trivially inferred. For example, a robot using this
model could observe a pouring interaction, and it would be
immediately obvious that the new liquid in the target container
originated in the source container, and that the overall liquid
is the same at the end of the pour as it was at the beginning.

Generalizing to Other Liquids: Another advantage of a
physics-based model is that it can generalize to different types

of liquid. Yamaguchi and Atkeson [33] developed a model-
based detector that could determine the location of liquids in a
scene, and they showed that it could generalize to a wide array
of liquid types. This is unlike learning-based models, which
cannot generalize to liquids too different from their training
set. With the alteration of a few physical parameters, a physics-
based model can generalize to liquids as diverse as water, oil,
honey, and even dough. It is currently an open challenge as to
how to infer these parameters efficiently from observation.

Predicting Liquid Behavior: While others have used
physics-based models for liquids [11], none have yet combined
them with real perception. As a result, due to the quick
divergence of open-loop models with reality, there has been
little prior work exploring the possible action spaces around
liquids. Closed-loop liquid simulations enable robots to use
the same model to interact with liquids in a wide variety of
settings, such as carrying a container across a room without
spilling its contained liquid, scooping liquid with a spoon, and
ejecting liquid from a syringe in a controlled manner. Without
closed-loop liquid simulations, each of these tasks would
require developing a separate model. Using an algorithm such
as model predictive control [4], the robot could plan for a short
time horizon into the future using the open-loop simulation,
but track the current state using the closed-loop simulation,
thus preventing a fatal divergence from reality.

VIII. CONCLUSION

In this paper, we proposed two methods for tracking the
state of liquid with a closed-loop simulator. The first, inspired
by Bayes filter techniques in robotics, used a MAP filter to
correct errors in the simulator. The second, inspired by the
physical forces underlying the simulator, applied a warp field
to the particles to correct the error. The results clearly show
that both our closed-loop methods are better at tracking the
liquid than the open-loop method. We also showed how these
closed-loop simulations can be used to reason about and infer
the hidden variables of an interaction involving liquids. To our
knowledge, this is the first time real liquid observations have
been combined with liquid simulations for robotics tasks.

In the immediate future, we plan to continue this work along
multiple avenues of investigation. In this paper, we utilized
a thermal camera to acquire liquid detections to focus the
evaluation on our experimental methodology. In the future, we
plan to combine our methodology with deep learning methods
like the ones in [24, 14] to perceive liquids, bypassing the need
for a thermal camera. Deep learning can also be applied to
perform system identification, i.e., to learn the correct physics
models and update them in real-time based on perception. This
might additionally enable more efficient simulation, allowing
the use of more particles. Our current system requires running
a separate simulator for each hidden state, making it hard
to scale to more complex scenarios. One interesting question
is how to best incorporate independencies between multiple
containers of liquid in order to improve scaling. Additionally,
we also plan to apply our methodology to solving closed-
loop controls tasks with real liquids, something which was
difficult or impossible before. Finally, we plan to make our
data publicly available to other researchers.
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