
c©Copyright 2018

Connor Schenck

Liquids & Robots: An Investigation of Techniques for Robotic

Interaction with Liquids

Connor Schenck

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Reading Committee:

Dieter Fox, Chair

Maya Cakmak

Siddhartha Srinivasa

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Liquids & Robots: An Investigation of Techniques for Robotic Interaction with Liquids

Connor Schenck

Chair of the Supervisory Committee:
Professor Dieter Fox

Computer Science & Engineering

Liquids are an important part of everyday human environments. We use them for common

tasks such as pouring coffee, mixing ingredients for a recipe, or washing hands. For a robot to

operate effectively on such tasks, it must be able to robustly handle liquids. In this thesis, we

investigate ways in which robots can overcome some of the challenges inherent in interacting

with liquids. We investigate how robots can perceive, reason about, and manipulate liquids.

We split this research into two parts. The first part focuses on investigating how learning-

based methods can be used to solve tasks involving liquids. The second part focuses on how

model-based methods may be used and how learning- and model-based methods may be

combined.

In the first part of this thesis we investigate how deep learning can be adapted to tasks

involving liquids. We develop several deep network architectures for the task of detection, a

liquid perception task wherein the robot must label pixels in its color camera as liquid or not-

liquid. Our results show that networks able to integrate temporal information have superior

performance to those that do not, indicating that this may be necessary for the perception

of translucent liquids. Additionally, we apply our network architectures to the related task

of tracking, a liquid reasoning task where the robot must identify the pixel locations of all

liquid, seen and unseen, in an image based on its learned knowledge of liquid physics. Our

results show that the best performing network was one with an explicit memory, suggesting

that liquid reasoning tasks may be easier to solve when passing explicit state information

forward in time. Finally, we apply our deep learning architectures to the task of pouring

specific amounts of liquid, a manipulation task requiring precise control. The results show

that by using our deep neural networks, the robot was able to pour specific amounts of liquid

using only RGB feedback.

In the second part of this thesis we investigate model-based methods for robotic inter-

action with liquids. Specifically, we focus on physics-based models that incorporate fluid

dynamics algorithms. We show how a robot can use a liquid simulator to track the 3D state

of liquid over time. By using a strong model, the robot is able to reason in two entirely

different contexts using the exact same algorithm: in one case, about the amount of water

in a container during a pour action, in the other, about a blockage in an opaque pipe. We

extend our strong, physics-based liquid model by creating SPNets. SPNets is an implemen-

tation of fluid dynamics with deep learning tools, allowing it to be seamlessly integrated

with deep networks as well as enabling fully differentiable fluid dynamics. Our results show

that the gradients produced from this model can be used to discover fluid parameters (e.g.,

viscosity, cohesion) from data, precisely control liquids to move them to desired poses, and

train policies directly from the model. We also show how this can be integrated with deep

networks to perceive and track the 3D liquid state.

To summarize, this thesis investigates both learning-based and model-based approaches

to robotic interaction with liquids. Our results with deep learning, a learning-based approach,

show that deep neural networks are proficient at learning to perceive liquids from raw sensory

data and at learning basic physical properties of liquids. Our results with liquid simulation,

a model-based approach, show that physics-based models are very good at generalizing to

a wide variety of tasks. And finally out results with combining these two show how the

generalizability of models may be combined with the adaptability of deep learning to enable

the application of several robotics methodologies.

TABLE OF CONTENTS

Page

List of Figures . iv

Chapter 1: Introduction . 1

1.1 Motivation . 3

1.2 Problem Statement . 6

1.3 Contributions . 9

1.4 Overview . 10

Chapter 2: Related Work . 13

2.1 Robotics . 13

2.2 Computational Fluids . 18

Part I: Learning-Based Methods . 24

Chapter 3: Learning to Pour: A First Look at Liquid Manipulation 25

3.1 Experimental Setup . 27

3.2 Methodology . 29

3.3 Evaluation . 35

3.4 Results . 36

3.5 Discussion . 38

Chapter 4: Learning to See: Teaching Robots to Perceive Liquids 40

4.1 Task Overview . 41

4.2 Simulated Data Set . 42

4.3 Robot Data Set . 47

4.4 Learning Methodology . 54

4.5 Evaluation . 61

i

4.6 Results . 65

4.7 Discussion . 73

Chapter 5: Learning to See & Pour: Combining Manipulation and Perception . . . 76

5.1 Technical Approach . 77

5.2 Experiments & Results . 88

5.3 Conclusion and Future Work . 96

Chapter 6: Learning to See Through Objects: Reasoning about Occluded Liquid . 98

6.1 Task Overview . 99

6.2 Data Set . 99

6.3 Learning Methodology . 101

6.4 Evaluation . 104

6.5 Results . 106

6.6 Discussion . 109

Part II: Incorporating Fluid Physics Models . 112

Chapter 7: From 2D to 3D: Reasoning About Liquids Using Liquid simulators . . 113

7.1 Open-Loop Liquid Simulator . 115

7.2 Closed-Loop Liquid Simulators . 118

7.3 Experimental Setup . 123

7.4 Experiments & Results . 129

7.5 Discussion . 135

Chapter 8: SPNets: Combining Deep Learning with Liquid Simulation 139

8.1 Position Based Fluids . 141

8.2 Smooth Particle Networks . 144

8.3 Evaluation & Results . 150

8.4 Combining Perception and SPNets . 161

8.5 Discussion . 169

Chapter 9: Conclusion . 172

9.1 Summary . 172

9.2 Discussion . 174

ii

9.3 Future Work . 177

Bibliography . 179

iii

LIST OF FIGURES

Figure Number Page

1.1 Outline of the problems studied in this thesis. The columns, perception, rea-
soning, and manipulation, comprise each of the problems in logical order.
Each column lists the tasks we explore in this thesis as it pertains to that
problem. The dashed boxes indicate which tasks are covered in each chapter
(best viewed in color). 2

3.1 The robot used in these experiments. It is a Rethink Robotics Baxter Research
Robot, equipped with two 7-DOF arms. Also shown is the experimental setup
with the cup in the robot’s gripper positioned above the table, with the bowl
resting on top of the scale. 27

3.2 The neural network used to learn the policy. The input layer is fed into
a fully-connected hidden layer, and then the output of the hidden layer is
element-wise multiplied by the input layer, which is finally fed into the output
layer. 34

3.3 The error in grams after each iteration. The error is how far the robot was
from the pouring target at the end of the rollout. 37

4.1 The scene used to simulate pouring liquids. The background sphere is cut-
away to show its interior. From left to right: The scene shown without any
texture or materials; The background image sphere texture added; The video
on the plane added in addition to the background texture; and The scene fully
textured with all materials. 42

4.2 The objects used to generate the simulated dataset. The first row are the
three source containers. The last row are the 3 target containers. The objects
are each shown here with 1 of their possible 7 textures. 44

4.3 Examples of frames from the simulated dataset. The top row is the raw RGB
images generated by the renderer; the bottom row shows the ground truth
liquid location for visible liquid. 46

4.4 The robot used in the experiments in this chapter. It is shown here in front
of a table, holding the bottle in its right gripper, with the fruit bowl placed on
the table. 47

iv

4.5 An example of obtaining the ground truth liquid labels from the thermal
camera. From left to right: The color image from the RGBD camera; The
thermal image from the thermal camera transformed to the color pixel space;
The result after thresholding the values in the thermal image; and An overlay
of the liquid pixels onto the color image. 48

4.6 The objects used to collect the dataset. The first row are the three source
containers. The last two rows are the 6 target containers. 50

4.7 The target containers used to create the testing set. 53

4.8 Different images of the same frame from the same sequence. The upper part
of this figure shows the different types of network inputs (RGB, grayscale,
optical flow, RGB+optical flow, and grayscale+optical flow). The lower part
shows the desired network outputs (pixel labels for liquid and not-liquid). . . 55

4.9 The 3 different types of input blocks. The first is used when the network
takes only a single type of input; the second two are used when combining
two different types of input. Here gray boxes are the feature representations at
each level of the network, and the colored squares are the layers that operate
on each representation. Gray boxes immediately adjacent indicate channel-
wise concatenation. 58

4.10 The three types of networks we tested. The first is a standard FCN. The second is an

FCN that takes in a series of consecutive frames. The final is a recurrent network that uses

an LSTM layer to enable the recurrence. As in Figure 4.9, the gray boxes are the feature

representations at each level of the network, and the colored squares are the layers that

operate on each representation. Gray boxes immediately adjacent indicate channel-wise

concatenation (the dashed line in the MF-FCN indicates a concatenation over the range of

inputs). NI indicates the size of the output of the input block, with NI = 2 for the late-

fusion blocks and NI = 1 for all other blocks. The LSTM-FCN takes its own output from

the previous timestep as input (lower-left), convolves it through 3 layers, and concatenates

it with the output of the input block. The LSTM layer is implemented using the layout

described in Figure 1 of [41] . 60

4.11 Example frames from the 3 network types on the detection task on the sim-
ulated dataset. The sequences shown here were randomly selected from the
test set and the frame with the largest amount of liquid visible was selected.
The last sequence was selected to show how the networks perform when no
liquid is present. 66

v

4.12 Precision-recall curves for the simulated dataset. The first three show the
curves for the three network types on the fixed-view subset. The last graph
shows the performance of the LSTM network on the multi-view subset. The
different lines show the different amounts of slack, i.e., how far a positive
classification can be from a true positive to still count as correct. The area
under the curve (AUC) is shown for the 0 slack curve. 67

4.13 The area under the curve (AUC) for the precision-recall curves for the net-
works for the detection task on the robot dataset. The top table shows the
AUC for the single-frame FCN; the bottom shows the AUC for the LSTM-
FCN. The tables show the AUC for different types of input, with rows for
different types of image data (RGB or grayscale) and the columns for differ-
ent types of optical flow (none, early-fusion, or late-fusion). Each cell shows
the AUC on the train set (upper) and the AUC on the test set (lower), all
computed with 0 slack. 69

4.14 Example frames for the LSTM-FCN for the detection task on the robot dataset
with different types of input images. The first row shows the color image for
reference and the row immediately below it shows the ground truth. All these
images are from the test set with target object not seen in the train set. The
last row shows the output of the baseline. 70

4.15 The area under the curve on the test set at each iteration of training. The
red line shows the performance of the LSTM-FCN trained solely on the robot
dataset; the blue line shows the performance of the LSTM-FCN initialized
from the simulated dataset. 72

5.1 The Baxter robot used in our experiments. In its right gripper it holds the cup
used as the source container. On the table in front of the robot are the three
target containers (from left to right): the small bowl, tan mug, and redgray
mug. 77

5.2 The entire robot control system using the recurrent neural network for de-
tections and the multi-frame network for volume estimation. The recurrent
detection network (top) takes both the color image and its own detections
from the previous time step and produces a liquid detection heatmap. The
multi-frame network (center) takes a sequence of detections cropped around
the target container and outputs a distribution over volumes in the container.
The output of this network is fed into a HMM, which estimates the volume
of the container. This is passed into a PID controller, which computes the
robot’s control signal. 78

vi

5.3 An example frame from a pouring sequence. The left image shows the color
camera from the robot’s perspective, the left-middle image shows a heatmap of
the thermal camera after it has been registered to the color camera, the right-
middle image shows the water labeled by thresholding the thermal image, and
the right image shows the output of the detection network based on the RGB
input. 79

5.4 Diagram of the camera looking into the target container. The blue shows
where the liquid is expected to be, given a volume and the corresponding fill
height, ht. The blue lines show pixels expected to be classified as liquid and
the orange lines show pixels that are expected to be classified as not-liquid.
The gray shows pixels outside the container and not used by our algorithm. . 82

5.5 The plot shows the scale reading compared to the thermal camera with the
model based method for each of the target containers. 89

5.6 Root mean squared error in milliliters of each of the methods for volume
estimation. The left plot shows the error for the model-based method using
either the thermal image or the output of the detection network as pixel labels.
The right plot shows the error for the model-free methods when the networks
take as input only the liquid detections (red), the liquid detections plus the
color image (green), and the liquid detections plus the depth image (blue). . 90

5.7 The volume estimates for the two model-based methods and the multi-frame
detection only model-free network. The black dashed line is the baseline
ground truth. We randomly selected one sequence for each target container
from our test set to display here. Best viewed in color. 91

5.8 Plot of the result of each pour using our model-free method as input to the
controller. The x-axis is the target amount that the robot was attempting to
reach, and the y-axis is the actual amount the robot poured as measured by
an external scale. The points are color-coded by the target container. The
black dashed line shows a 1:1 correspondence for reference. 93

5.9 Reference images for each of the three target containers. This is exactly the
perspective the robot sees when looking at the containers. Notice that a 50ml
difference is difficult to perceive even for a human (best viewed enlarged). . . 94

6.1 Examples of frames from the simulated dataset. The left column is the raw
RGB images generated by the renderer (for reference); the center column
shows the ground truth labeling output by the simulator; the right column
shows the ground truth liquid location for all liquid in the scene. 100

vii

6.2 Different images of the same frame from the same sequence. The upper part of
this figure shows the different types of network inputs (RGB, semantic labels,
and grayscale combined with optical flow). The lower part shows the type of
desired network output (all liquid). 102

6.3 The precision-recall curves for the tracking task on the simulated dataset.
The first 3 show the performance of the three network types on the tracking
task alone. The last graph shows the performance of the LSTM-FCN on the
combined detection & tracking task using the standard RGB format as input.
The different lines show the different amounts of slack, i.e., how far a positive
classification can be from a true positive to still count as correct. The area
under the curve (AUC) is shown for the 0 slack curve. 107

6.4 The performance on the combined detection & tracking task of the LSTM-
FCN that takes as input RGB images compared to the performance of the
LSTM-FCN that takes as input grayscale images plus optical flow using the
early-fusion input block. The upper graph shows the precision-recall plot for
both networks on both the train and test sets. The lower table shows the
corresponding area under the curve for each curve. Note that here for clarity
we don’t use any slack unlike in figures 6.3 (equivalent to a slack of 0). . . . 108

7.1 A comparison between open-loop and closed-loop liquid modeling. The left-
most figure shows the color image of the scene for reference and the left-center
figure shows the same image with the actual liquid pixels labeled. The right
two images show the color image, but with the liquid from the simulator shown.114

7.2 Objects used during the experiments. The top row shows the two containers
the robot poured from as well as the pipe junction. The leftmost bowl in the
bottom row was used in the pouring and the right two were used during the
pipe junction experiments. 124

7.3 The 3 types of blockages placed in the pipe junction. (left to right) Pipe
junction with no blockage; left leg is partially blocked; and left leg is fully
blocked. 125

7.4 Acquiring liquid labels from the thermal camera. The leftmost image is a color
image of the scene, the center-left shows the corresponding thermal image
transformed to the color image’s space. The center-right image shows the
liquid labels acquired via thresholding the thermal image, and the rightmost
shows the labels overlayed on the color image. 127

7.5 The table shows the IOU for each method. The graph shows the IOU at every
timestep across one of the pouring experiments (bottle filled to 30%). 129

viii

7.6 Probability distribution over the estimated initial fill amounts. They are ag-
gregated by the true fill amounts. From left to right and top to bottom they
are empty, 30% full, 60% full, and 90% full (indicated by the *). The blue
bars show results from the open loop method, cyan for the MAP filter, and
red for the warp field. 131

7.7 Probability distribution over the blockage location over time for a single in-
teraction. The 5 diagrams across the top correspond to the five different
simulations the robot ran, each color-coded to the corresponding line in the
plot. The true blockage was placed in the left leg and only partially blocked
the leg (in the keys in the top row, second from right). Best viewed in color. 134

8.1 The PBF algorithm. P is the list of particle locations, V is the list of particle
velocities, and ∆T is the timestep duration. 140

8.2 The layout for SPNet. The upper-left shows the overall layout of the network. The func-

tions SolvePressure, SolveCohesion, SolveSurfaceTension, and SolveObject-

Collisions are collapsed for readability. The lower-right shows the expansion of the

SolveObjectCollisions function, with the line in the top of the box being the input

to the SolveObjectCollisions in the upper-left diagram and the line out of the bottom

of the box being the line out of the box. The lower-left shows the expansion of the Solve-

Pressure function. For clarity, the input line (which represents the particle positions) is

colored green and the line representing the particle pressures is colored pink. 148

8.3 (Top) The ladle scene. The left two images are before and after snapshots,
the right image shows the particles projected onto a virtual camera image
(with the objects shown in dark gray for reference). (Bottom) The difference
between the estimated and ground truth fluid parameter values for cohesion
λc and viscosity λv after each iteration of training for both the L1 loss and
the projection loss. The color of the lines indicates the ground truth λc and
λv values. The cohesion parameter λc was initialized to 0.1 in all cases except
when the ground truth was 0.1, in which case it was initialized to 0.05. The
viscosity parameter λv was initialized to 60 in all cases except when the ground
truth was 60, in which case it was initialized to 30. 152

8.4 The control scenes used in the evaluations in this chapter. The top row shows
the initial scene; the bottom row shows the scene after several seconds. . . . 154

8.5 Diagram of the rollout procedure for optimizing the controls u. The dynamics
are computed forward (black arrows) for a fixed number of timesteps into
the future (shown here are 3). Then gradients of the loss are computed with
respect to the controls backwards (blue arrows) through the rollout using
backpropagation. 156

ix

8.6 Results from the liquid control task. From left to right and top to bottom:
The plate scene. The numbers in each bowl indicate the percent of particles
that were successfully placed in that bowl when that bowl was the target. The
pouring scene. The x axis is the targeted pour amount and the y axis is the
amount of liquid that was actually poured where the red marks indicate each
of the 11 pours. The catching scene. Shown is the percent of liquid caught
by the target cup where the rows indicate the initial direction of movement of
the source. 157

8.7 Diagram of the rollout procedure for optimizing the policy parameters θ. This
is very similar to the procedure shown in Figure 8.5. The dynamics are com-
puted forward (black arrows) for a fixed number of timesteps into the future
(shown here are 3). Then gradients of the loss are computed with respect to
θ backwards (blue arrows) through the rollout using backpropagation. 159

8.8 A diagram of the SolvePerception method. It takes as input the current
particle state (center-left) and the current RGB image (lower-left). The RGB
image is passed through the LSTM-FCN to generate pixel labels, the particle
state is projected onto 2D. From this, 2 gradient fields are computed, where
the gradient points in the direction of the closest liquid pixel. These fields are
then blended and projected onto the particles in 3D. 164

8.9 Diagram of the rollout procedure for optimizing the parameters of the per-
ception network θ. This is very similar to the procedures shown in Figures
8.5 and 8.7. The dynamics are computed forward (black arrows) for a fixed
number of timesteps into the future (shown here are 3). In this case the con-
trols u are fixed. The gradients of the loss are computed with respect to θ
backwards (blue arrows) through the rollout using backpropagation. The box
“Perception Correction” corresponds to the network shown in Figure 8.8 and
θ are its parameters. Note that here the inner loop of the PBF algorithm in
SPNets is shown (with 3 iterations) since this is how the perception correction
is intergrated into the dynamics. 166

8.10 Results when combining SPNets with perception. The images in the top and
bottom rows show 2 example frames. From left-to-right: the RGB image (for
reference), the RGB image with SPNets overlayed, and the RGB image with
SPNets with perception overlayed. In the overlays, the blue color indicates
ground truth liquid pixels, green indicates the liquid particles, and yellow
indicates where they overlap. 167

x

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Dieter Fox, who provided invaluable guidance

throughout my research. Dieter helped me to discover the topic of liquids and robots,

and helped me determine not only what would and wouldn’t work, but also what would

constitute a valuable contribution to the field of robotics research. I would also like to

thank my committee members Professor Maya Cakmak, who helped advise me during my

initial years of research, Professor Siddhartha Srinivasa, and graduate school representative

Professor Samuel Burden.

I would also like to thank my peers in graduate school and at some of the companies

I interned at while conducting this research. My fellow graduate students and postdocs in

the Robotics & State Estimation Lab (listed in no particular order) Daniel Gordon, Aaron

Walsman, Arunkumar Byravan, Tanner Schmidt, Yuyin Sun, Luis Puig, and Yu Xiang for

helping me with many of the technical aspects of this research and also providing guidance

on many research ideas. I want to thank Sudharsan Prabu for helping to collect much of the

data used in this research. I also appreciate the input of Jonathan Tompson of Google for

helping me to understand deep learning better and Miles Macklin of Nvidia for helping me

with Nvidia FleX.

Finally, I want to acknowledge the support I’ve received from several funding institutions.

Much of the research in this thesis was funded by the National Science Foundation either

via the Graduate Fellowship Research Program or a National Robotics Initiative grant, and

I greatly appreciate their support. I also appreciate the support of Nvidia, who funded me

via an internship for part of this research and also allowed me access to both their Nvidia

FleX software and team of experts who created it. I also want to thank the University of

xi

Washington Paul G. Allen School of Computer Science & Engineering for their support and

for providing me access to amazing researchers and facilities.

I would like to make one final acknowledgement. I want to acknowledge a chocolate cake.

Yes, I really do want to acknowledge the contribution of a chocolate cake to my research,

for it made a significant one. Growing up, my parents would bake a chocolate cake for my

birthdays or other special events. However, when I moved far from home to begin graduate

school, this was no longer possible. A normal person in this situation would just learn to

bake one on their own, but I am not a normal person; I am a roboticist and I automate things

for a living. So instead I endeavoured to design a robot that could make such cakes for me.

It was during this process that Dieter and I discovered the relative dearth of research around

liquids and robots. We decided to focus on this research area because it was something

important for robots to understand if they ever wanted to solve the cake baking task, or for

that matter a wide variety of other household tasks. So I really do want to thank a chocolate

cake, because the desire for it set in motion all the research in this thesis.

xii

DEDICATION

This thesis is dedicated to Dr. Schutte.

xiii

1

Chapter 1

INTRODUCTION

Liquids are everywhere. They cover 70% of our planet’s surface. Life began in liquid [33],

and liquids are necessary for life to exist at all [7]. Humans use liquids everyday in a variety

of tasks from taking a shower to drinking coffee to washing dishes. There are even large

plumbing infrastructures in place to transport liquids to and from homes, offices, and other

buildings. It is clear that liquids play a vital role in everyday life. Thus any robotic system

that is designed to assist humans in common household tasks must be able to effectively

deal with liquids. For example, a cooking robot must be able to handle liquid ingredients, a

robot washing dishes must be able to handle liquid cleaner, and a robot server must be able

to transport open-top full containers without spilling.

In this thesis, we investigate a framework to enable robots to intelligently handle liq-

uids. We break this framework down into three steps: 1) First the robot must perceive its

environment to locate the liquid. 2) Next the robot must reason about the liquid it sees in

order to infer relevant information (e.g., if a container may be full of liquid). 3) And finally

the robot must use this information to manipulate the liquid to a desired configuration.

Figure 1.1 shows this framework. We investigate several tasks for each of the steps of our

framework, which are shown in the figure. We specifically selected a more traditional model-

based approach with individual steps of the pipeline specified beforehand, as opposed to a

fully end-to-end opaque framework, because it allows us to analyze each step individually.

By doing so, we can inspect the components of each step in order to gain valuable insights.

The research done in this thesis is primarily an investigation into how robots might

perceive, reason about, and manipulate liquids. For the tasks we examine here, we look at

both how we can adapt existing methodology for other tasks to liquids as well as how we can

2

Chapter 3
Chapter 5

Chapter 4

Chapter 6

Chapter 7

Chapter 8

Perception Reasoning

Detecting liquids using a
fully convolutional neural
network

Localizing liquid in an
image using a
thermographic camera
and heated water

Manipulation

Pouring specific amounts of
liquid from one container to
another

Position based liquid control
using a fully differentiable fluid
dynamics model

Learning liquid control policies
with a differentiable fluid
dynamics model

Tracking liquid over time
using a fully convolutional
recurrent neural network

Using a liquid simulator to
infer unknown state variables
from observations

Figure 1.1: Outline of the problems studied in this thesis. The columns, perception, reason-

ing, and manipulation, comprise each of the problems in logical order. Each column lists the

tasks we explore in this thesis as it pertains to that problem. The dashed boxes indicate

which tasks are covered in each chapter (best viewed in color).

extend and develop our own methods to add to the robot’s repertoire. We develop several

systems in this thesis including a deep learning architecture for perceiving liquids, a method

for precise pouring of liquids from raw RGB feedback, and a method for integrating deep

neural networks with fluid dynamics. Our results reveal multiple insights about how robots

can interact with liquids, such as the importance of integrating temporal information on

the difficult perception task or the reasoning power of 3D physics-based models for inferring

unknown information about liquids. We believe that the conclusions and insights in the

following pages of this thesis constitute a significant contribution to our understanding of

how robots can interact intelligently with liquids.

3

1.1 Motivation

Interacting with liquids is not a trivial task, but humans have been doing it for a long

time. In fact humans interact with liquids from a young age. Studies have shown that

even infants can distinguish between rigid objects and “substances”, or liquids [51]. They

have also shown that infants as young as five months have knowledge about how substances

behave and interact with solid objects [50]. Furthermore, infants as young as 10 months

have the ability to distinguish quantities of non-cohesive substances as greater or less than,

although the quantity ratio must be larger for substances than for solid objects, suggesting

that humans use a different mechanism to quantify substances than to quantify objects

[154]. This supports the claim that liquids are important to human environments since

even young infants have at least some capacity to reason about them. Thus if liquids are

so important to humans, then they must also be important for robots wishing to operate

alongside humans. Furthermore, other studies have shown a correlation between humans’

understanding of fluid dynamics and what would be expected of a probabilistic fluid physics

model [8], which suggests that humans have more than a simple perceptual understanding

of fluid physics. This implies that liquids have their own reasoning pathways in the brain,

suggesting that generic rigid object reasoning is not sufficient for handling liquids. Thus

for robots to operate in human environments, they may need reasoning capabilities beyond

just rigid body physics. In this thesis, we investigate ways to enable robots to have these

capabilities.

Robots in industrial settings have been performing tasks involving liquids for many

years [55, 109, 85, 86, 78, 157]. So if robots can already handle liquids, why investigate

these capabilities any further? The primary drawback to industrial approaches is that these

robots are often given highly constrained tasks and specialized hardware, obviating the need

for any precise understanding of the liquids they work with. For example, a pancake batter

dispensing robot suspended from a gantry above a griddle may only know that it needs to

open and close its valve on a fixed schedule without any knowledge of how the batter is re-

4

leased onto the griddle. This is acceptable in a highly constrained task environment such as

a factory. However, this is not feasible for a robot in an unstructured environment such as a

kitchen. For the robot to make a pancake, it would need to know the relative locations of the

objects and be able to monitor and control the flow of batter onto the griddle to create the

desired shape. In the research here we are interested in robots that can interact in everyday

human environments. Single-purpose robots are only useful in factories, where economies of

scale apply; but in unstructured environment like homes they are uneconomical. Instead, we

must rely on more general-purpose robots, which cannot rely on the structure imposed in a

factory and instead must be able to understand their environment on their own. For this

reason, we focus here on robotic interaction with liquids in unstructured environments and

the capabilities such a robot must have.

To better understand exactly what capabilities a robot in this kind of environment would

need to handle liquids, let us consider a prototypical task: baking a cake. The first step

involves mixing together eggs, wet ingredients such as heavy cream and vanilla, and dry

ingredients such as flour and sugar. To do this, the robot must be able to 1) localize the

objects such as the mixing bowl, eggs, and containers with the ingredients, 2) accurately

perceive the location and amounts of ingredients, 3) reason about the results of manipulating

the objects, and 4) perform precise, closed-loop actions to manipulate those objects and

their ingredients. 1) has been well-studied in the robotics and computer vision literature

[84, 160, 20, 53, 59, 119, 147, 115, 158]. 3) and 4), at least for rigid objects, have also been

studied by prior work in [74, 73, 63, 95, 36, 168, 9, 61] and [30, 110, 138, 82, 5, 24, 28]

respectively. However there has been relatively little research relevant to 2) or to 3) and 4)

as it pertains to liquids such as heavy cream or granular media such as flour. We go into

detail on what research there is pertaining to those areas in chapter 2

The next step, after thoroughly mixing all the ingredients, is to pour the cake batter into

a pan. While robotic pouring has been examined in various contexts [79, 18, 108, 144, 127],

all of this work has focused on the general task of moving liquid from one container to

another. Pouring cake batter into a pan differs from the general pouring task in that it is

5

necessary that the cake batter in the pan be evenly distributed, which can be done either

via moving the source container to distribute the batter or by applying a spoon after. Either

way, it requires the robot to have a detailed understanding of the state of the liquid and

how to precisely manipulate it. After this the cake pan needs to be placed in the oven for

a fixed amount of time. Grasping and moving rigid objects subject to constraints (in this

case the pan must remain upright) has much prior work [61, 48, 4, 139, 10, 70]. Once the

cake has been removed from the oven after baking, the last step is to frost it. Creating the

frosting is very similar to creating the cake batter (mixing dry and wet ingredients together)

and requires largely the same skills. However, spreading the frosting requires that the robot

be able to perceive and manipulate via a tool a highly viscous fluid (the frosting) in order

to spread it over an uneven surface (the cake). There has been one work that has looked at

using a tool to manipulate granular media [161], although they focused on the related but

different task of cleaning.

What is missing? What capabilities do modern robots lack in order to bake a cake in

an unstructured kitchen? While there has been a lot of research directly applicable to many

components of the task such as localizing objects or grasping and moving objects, there has

been a relative dearth of research as it pertains to the skills necessary for robots to manipulate

liquids and granular media. This is not unexpected; liquids and granular media are hard.

They’re non-rigid, which means a tool or container is required to manipulate them; a robot

can’t just grasp them directly. They’re non-rigidity also means that their state space is high

dimensional, unlike rigid objects who’s state can be represented by a 6 degree-of-freedom

translation and rotation. Furthermore, they are simply more dangerous to robots than rigid

objects; a grain of sand in a joint or a splash of water on a circuit can easily damage an

expensive robot. That is not to say there has been no research that has attempted to work

around these limitations for cooking tasks. Both [169] and [98] examined ways for robots

to hold and break eggs, and [40, 14, 74] attempted to create a full robotic cooking system,

however [40, 14] only reasoned about the tasks at an abstract level, leaving hand-tuned

primitives to carry out the low-level functions, and [74] only performed cooking in simulation

6

with a course approximation for non-rigid substances, making it difficult to transfer to a real

robot. Indeed, there has been very little work to this point that has investigated how a robot

can fill in the gaps in its cake-baking skillset to allow it to manipulate liquids and granular

media in an intelligent manner.

While both granular media and liquids are interesting areas for research and are necessary

to fully enable a robot to bake a cake, in order to focus this thesis we look at only liquids

here. Given the similarities between liquids and granular media (e.g., non-rigidity, high-

dimensional state space), some of our research may also be applicable to granular media,

although here we only focus on liquids due to many of the unique problems posed by them

(e.g., many liquids are translucent, which many granular media are not). However, in our

concurrent work [134] we investigate one method for enabling robots to manipulate granular

media. One goal for future work is to determine how our methods in this thesis may be

applied or extended to granular media.

1.2 Problem Statement

In this thesis we focus on studying the capabilities that a robot would need to solve problems

similar to the cake baking task described in the previous section. That is, tasks where the

robot is placed in relatively unstructured environment and must use liquids with human-level

precision to solve tasks. Specifically, we consider the baseline setup to be a robot with an

arm and attached gripper placed in front of a tabletop1. The robot is then given a task

and must use its suite of sensors to perceive its environment and decide on what actions to

take. We primarily focus on the task of pouring, since it is such a common task involving

liquids, however we also consider other tasks as well. We break down our tasks to focus on

the different components of liquid manipulation that a robot must solve in order to complete

the tasks. We look at how robots can perceive liquids, reason about liquids, and finally

1While there are many interesting tasks that involve mobile robots and liquids (e.g., carrying an open-top
container without spilling), in this thesis for simplicity we consider only a stationary robot manipulating
liquids over a tabletop.

7

manipulate liquids. Figure 1.1 shows each of these components and the corresponding tasks

we investigate.

Perceiving Liquids: The task of perceiving liquids is a challenging one. Common

liquids such as water are translucent, making them difficult to perceive with a color camera

and meaning they often scatter the light from infrared-based depth cameras in a difficult-to-

predict manner. Furthermore, due to their non-rigidity, liquids need to be contained in other

often opaque objects, obscuring much of the liquid from view. However, in recent years deep

learning has shown a lot of success solving difficult perception tasks [72, 29, 38, 47, 82, 87].

This strongly suggests that it may be possible to perceive liquids as well.

In this thesis, we examine ways in which we can apply these advances in deep learning

to perceiving liquids. We evaluate deep neural networks on the task of detection. Detection

is essentially the task of finding where the liquid is in the robot’s perceptual data stream.

Here we focus primarily on vision as the main sensor, so detection in the vision domain is

determining whether each pixel in an image contains liquid or not. That is, the robot’s task

is to label each pixel in its camera image as liquid or not-liquid. This task is well-suited for

analyzing robotic perception of liquid as it requires solving all the difficult parts of liquid

perception while also focusing only on the perception without conflating it with other tasks.

In chapter 4 we analyze how deep learning methods can be applied to solve this task.

Reasoning About Liquids: Reasoning about liquids is also quite difficult. Their non-

rigidity means that to accurately represent the full state of the liquid it must be relatively

high-dimensional, on the order of thousands to tens of thousands of degrees of freedom

(DOF). But many robotic algorithms are only designed with lower-dimensional state rep-

resentations in mind and have difficulty extending to such high DOFs [146, 83, 24, 80].

One solution studied in the literature is to summarize the liquid state in a few variables

(e.g., amount of liquid in a container) so that it can be used with traditional robotics algo-

rithms [164, 165, 79]. However, the drawback to this method is that it limits the reasoning

capability of the robot to being only task specific or to only applying at a very high-level.

This is problematic if a robot wishes to perform fine-grained reasoning about liquids.

8

In this thesis, we examine how robots can use high-dimensional liquid state represen-

tations to reason about liquids. We define reasoning about liquids to mean inferring any

unknown about the liquid that is not directly observable or given by the problem. For exam-

ple, the robot may infer from seeing the surface of a liquid in a container that the container

below that point is also filled with liquid since it may know (or learned) that liquid is heavier

than air and that no air can exist under it. Or, given the liquid’s current state, a robot

may use its knowledge of liquid physics to infer future states. The goal of reasoning about

liquids is to use knowledge a robot gained elsewhere about liquids and their behavior (either

through learning or a model) to “fill in” unknowns in the robot’s environment. In chapter 6

we examine the task of inferring the liquid state in 2D (using pixels as the state represen-

tation) given only the observation. In chapter 7 we examine the task of using a full liquid

dynamics model to determine unobserved state variables in the environment by comparing

the model to observations.

Manipulating Liquids: The final component we examine in this thesis is manipulating

liquids. This is also difficult, in part due to its reliance on the previous two but also due to

difficulties related directly to manipulation of liquids. Due to its necessarily high-dimensional

state, liquid manipulation has a tendency to be chaotic, with small deviations amplified by

the many degrees of freedom. For example, a slight alteration in a pouring trajectory can

easily result in spilled liquid, or a slight over-torque on a mixing instrument can cause liquid

to splash to undesirable locations. Additionally, liquid interactions are often non-reversible,

e.g., when pouring the liquid can travel from the source to the target but not the other way.

Finally, manipulating liquids can be dangerous for robots. Both [44] and [14] covered their

robots in plastic to prevent damage from liquids.

In this thesis, we examine tasks where the robot must perform precise control tasks with

liquids. A precise task is one in which the robot must exhibit a deeper understanding of the

liquid and its physical properties. For example, in a pouring task, if the goal is simply to

move all contents from one container to the other, then it can be specified with constraints

on the orientation of the containers and a reward for holding one upended over the other,

9

which requires no understanding of the underlying contents of the container. Alternatively,

if the goal is to move a specific amount of liquid from one container to the other, the robot

must have some understanding of how the liquid is flowing from one container to the other

in order to transfer the correct amount. We look at tasks like this; tasks that require the

robot to have at least some understanding of the liquids involved so that it can precisely

control them. In chapters 3 and 5 we examine the task of pouring precise amounts of liquid

and in chapter 8 we examine moving liquid with rigid objects to desired goal configurations.

1.3 Contributions

Our focus in this thesis is on taking methods developed in robotics, computer vision, machine

learning, and fluid mechanics and applying them to robotic liquid manipulation tasks. This

is not as straightforward as it might seem. As stated in previous sections, liquids have many

qualitative differences with rigid objects, for which many of these methods were developed.

As such, in this thesis, much of the work focuses on adapting and modifying many existing

methods to be suitable for tasks involving liquids. We evaluate various ways to apply existing

methodology to liquid tasks, ways to modify existing methodology for liquid tasks, and even

develop our own methodology to combine different approaches. Our main contributions are

as follows:

• Evaluation of Deep Learning on Liquid Perception: We thoroughly evaluate

many variations of deep convolutional neural networks on liquid perception tasks. We

compare multiple architectures, training regimens, and input formats. We test them

on the detection task using water and report results on both a randomly selected

test set and a test set containing unseen objects. Our results show that the best

performance is achieved by networks that can integrate temporal information over time.

This strongly suggests that in order to perceive translucent liquids, it is necessary to

aggregate changes in visual appearance such as light refractions or reflections over time.

10

• Application of Closed-Loop Control for a Liquid Control Task: We also show

how these methods can be used to perform a closed-loop liquid control task. We

demonstrate the first instance in the literature of a robot utilizing a deep neural network

in order to precisely control liquids. Our experiments show how models learned from

data can be used to successfully pour specific amounts of liquid using only a color

camera. This suggests that learning-based approaches to liquid control can learn to

perform tasks with human-level accuracy.

• Using a Closed-Loop Fluid Simulator for Liquid Reasoning: We adapt stan-

dard fluid dynamics models for robotics and show how they can be used by a robot

to reason about liquids. We develop a way to use relatively simple perceptual models

combined with a fluid simulator to track the state of the liquid over time. We then

demonstrate how this can be used by a robot to perform reasoning tasks about its

environment such as determining how full a container is or where a hidden obstacle

might be. We show the versatility and generalizability of model-based methods for full

3D reasoning about liquids.

• Combining Fluid Simulation and Deep Learning: Finally, we show how we can

combine our learning-based methods that utilize deep networks with our model-based

methods that utilize fluid simulators. We propose SPNets, a framework that integrates

deep learning with fluid dynamics. We show how this can enable a robot to reason

about and control liquids robustly.

1.4 Overview

This thesis is split into two parts: the first part focuses on learning-based methods, and the

second focuses on model-based methods. The split in this thesis reflects the split in the field

of robotics in general. Traditional robotics methods rely on models of their environment to

operate, and they have shown considerable success in doing so [146, 64, 32, 150, 81, 136].

However, recently much work has shown how model-free learning-based methods, primarily

11

utilizing deep learning, can solve many difficult robotic tasks [82, 47, 34, 110, 124, 57]. This

has led to a split in the robotics literature between model-based methods and learning-based

(or model-free) methods. Both have their advantages and disadvantages. Learning-based

methods do not require pre-specified models and can adapt very well to a wide-variety

of tasks, however they tend to require large amounts of training data and have difficulty

generalizing outside of the trained task. Model-based methods, on the other hand, tend to

generalize better and don’t usually require copious amounts of training data, although they

require models to be specified in advance and have difficulty adapting to differences between

the model and the robot’s environment. In this thesis, we examine both types of methods

and then in chapter 8 we propose a way to combine both for liquid tasks. Figure 1.1 shows

which tasks we investigate in each chapter.

The rest of this thesis is laid out as follows. The next chapter, chapter 2, goes into detail

about prior work done in robotics, computer vision, machine learning, and fluid mechanics

that is related to robotic manipulation of liquids. Following this chapters 3 through 6 detail

our evaluation of learning-based methods to robotic tasks involving liquids. In chapter 3

we start our examination with a simple liquid manipulation task: pouring with direct in-

strumentation of the environment. We place a real-time scale under the target container

to directly measure liquid flow and we apply guided policy search [83] to train the robot to

pour precise amounts of liquid. However, in a real environment a robot cannot always rely

on direct instrumentation such as a scale, so the next step is to examine ways to use a more

general purpose sensor. In chapter 4 we do just that, looking at how a robot can use a color

camera to perceive liquids. We apply deep learning to the task of detection, i.e., labeling

pixels as liquid or not-liquid. We evaluate multiple deep architectures on both simulated and

real datasets. In chapter 5 we return to the task of pouring, this time utilizing the deep

networks developed in the previous chapter for perception instead of a scale. In chapter 6

we further evaluate our deep networks on a liquid reasoning task. We apply the networks to

the task of tracking, that is, tracking all the unseen liquid in an image given only the visible

liquid.

12

Chapters 7 and 8 detail our evaluation of model-based method for robotic tasks involving

liquids. In chapter 7 we examine ways in which a fluid simulator can be useful for a robot

operating in a real environment. We simulate the fluid state alongside the real state, using

simple perceptual models to “correct” deviations from the real liquid. This is then used by

the robot to perform reasoning tasks about its environment, such as how full an unobserved

container is or where a hidden object might be. In chapter 8 we propose SPNets, an extension

of a fluid simulator that allows it to directly interface with deep neural networks. We examine

how it can be used to reason about various liquid properties, solve liquid control tasks, and

integrate with the liquid perception deep networks from chapter 4. Finally, we finish this

thesis in chapter 9 with a discussion of the results of our experiments and avenues for future

work.

13

Chapter 2

RELATED WORK

The work in this thesis combines ideas from both robotics and computational fluids/fluid

dynamics. We draw on techniques in computer vision and robotics to both perceive and ma-

nipulate liquids. We also use methodology from computational graphics and fluid dynamics

to represent liquids and to implement their dynamics. By combining these, we can develop

tools for robots to perceive, reason about, and manipulate liquids. The rest of this chapter is

outlined as follows. The following section details related work in robotics pertaining to both

perceiving liquids and manipulating them. The section after that describes related work in

computational fluids, about both fluid dynamics models and learning as it relates to those

models.

2.1 Robotics

2.1.1 Liquid Perception

Liquids are difficult to perceive, often being clear or at least partially transparent and almost

always occluded by the container holding them. As a result, there has not been as much

emphasis in the literature on perceiving liquids. Nonetheless, there has been some work in

this area. Rankin et al. [120, 121] investigated ways to detect pools of water from an un-

manned ground vehicle navigating rough terrain. They relied on traditional computer vision

approaches (this work was performed prior to the wide-spread popularity of deep learning),

detecting water puddles via color features or based on sky reflections. By using stereo color

cameras mounted on an unmaned ground vehicle and taking advantage of the unique visual

properties of water (e.g., gradient of the saturation-to-brightness ratio as compared to sur-

rounding terrain), they were able to reliably detect pools of water along the robot’s path

14

and navigate around them. Work by Yamaguchi and Atkeson [165] also used color features

to detect liquids. In this work, they positioned a color camera directly across from a clear

plastic cup with a solid color backdrop as a robot poured colored water into the cup. This

allowed them to use a color filter to determined the amount of liquid in the cup. However,

the focus of this work was on robotic control for pouring liquids, so the perception system

relied on relatively simple computer vision techniques.

Yamaguchi and Atkeson followed their work in [165] with work focused more directly on

the liquid perception problem. In [163] they utilized stereo optical flow for liquid detection.

They placed a pair of calibrated color cameras opposite a cup, and then poured liquid into

the cup. During each pouring sequence, they calculated the optical flow in each camera image

and then used feature matching to match the flow features between the two cameras, resulting

in 3D locations for each feature. By using a known camera pose and some assumptions about

the nature of the task (e.g., the liquid stream tends to be above the target cup), they were

able to isolate the features associated with the liquid. These features were used to detect the

location of the liquid in the environment. Because the model relied primarily on non-learned

visual features, it was able to reliably detect a wide variety of liquids including water, cola,

and even beans. This was a key component to their model: without a lot of parameters to

train, it couldn’t overfit, and as a result was able to generalize quite well. On the other hand,

however, their results did indicate that the model suffered from a lack of precision, something

which a model trained from data could learn to overcome. In chapter 4 we evaluate many

variants of a learning-based method on the liquid detection task, including a method that

integrates insights from [163].

Similar to Yamaguchi and Atkeson, Do et al. [26] also developed a model-based technique

for liquid perception, albeit with a different approach. To detect the level of liquid in a

container, they utilized the infrared (IR) light from a projected light depth camera. When

the camera projects its IR pattern onto the scene, the light is refracted through liquid

differently than through air. Do et al. took advantage of this by developing an algorithm

that computes the expected image given either liquid or air refraction and then compares

15

that to the actual image. By using this technique in combination with a probabilistic state

estimate, they were able to successfully determine the level of the liquid in a target container

over a short time window. In that paper, the authors took advantage of the distortions in

the image caused by light refracting through the liquid to detect the liquid, however work by

Elbrechter et al. took the opposite approach. In [27] they used a depth camera to perceive

liquids and detect how they moved in order to discriminate between high viscosity and low

viscosity liquids. Unlike Do et al., Elbrechter et al. used opaque liquids which reflected the

IR light, allowing the depth camera to construct an accurate model of their surface. This

was crucial as the change in surface shape of the liquid over time was critical for determining

the viscosity of the liquid. By using this method, they were able to reliably distinguish

between different types of viscous liquids. Similarly, work by Paulun et al. [114] also used

liquid shape to discriminate viscosity. They generated liquid splatter sequences by utilizing

a liquid simulator, which also allowed them to extract binary liquid/not-liquid pixel labels

from a simulated camera. They then extracted hand-designed shape features from the binary

images and used them to train a model to discriminate liquid viscosity. Their model was

able to determine the viscosity with the same reliability as human participants.

Finally, no discussion on robotic liquid perception is complete without at least some men-

tion of the objects that contain them. Liquids can almost never be interacted with directly,

and so they spend most of their time in containers. Work by Griffith et al. [42, 43] has focused

on using behavior-grounded approaches to learning about containers. Specifically, in [44] the

robot placed containers under a constant water stream flowing from a faucet into a sink. The

robot utilized both auditory and proprioceptive data to learn about each container’s prop-

erties and discriminate containers from non-containers. Other work on containers for liquids

by Mottaghi et al. [101]1 focused on determining the volume of containers from color images.

In that work, they trained a deep neural network to predict the volume of containers from

individual color images as well as the potential amount of liquid contained in the container

1Several of the authors on this thesis are also co-authors on [101].

16

given the object’s pose. To do this, they generated a dataset with 3D models associated to

each visible container and then utilized a liquid simulator to estimate the resting maximum

fill amount of the containers for each pose.

2.1.2 Liquid Manipulation

Liquid manipulation is a complicated and oft-treacherous task. Liquids are highly de-

formable, chaotic, and a spill can easily damage or destroy an expensive robot. Never-

theless, several groups have undertaken research on liquid manipulation, primarily focusing

on the task of pouring. Work by Langsfeld et al. [79] used human demonstrations to teach

a robot how to succeed at a task involving pouring into a moving container. Cakmak and

Thomaz [18] evaluated a robot active learning system on prompting humans to provide useful

feedback when learning to perform various tasks including pouring. Okada et al. [108] cre-

ated a system that allowed a robot to perform motion planning for pouring and then verify

that the robot performed the correct motions after the fact. Finally, work by Tamosiunaite

et al. [144] used dynamic movement primitives to capture the goal and shape of a pouring

trajectory for a robot learner. These works applied a variety of techniques, from motion

planning to human demonstrations, to teach a robot how to pour from one container into

another.

However, the research in [79, 18, 108, 144] all focused on the broad motions of pouring

(e.g., moving the source over the target, rotating the source, etc.) rather than low-level

control or closed-loop feedback. Rozo et al. [127] developed a method that used real-time

closed-loop feedback to pour precise amounts. Specifically, they utilized human demonstra-

tions to teach their robot how to pour and proprioceptive sensors in the robot’s arm to

provide feedback on the amount that had been poured out. They were able to successfully

teach their robot to use feedback to pour 100 ml from a bottle into a cup. Other work by

Kennedy et al. [60] also used closed-loop feedback to perform precise pouring. In their ex-

periments, a robot was task with dispensing a precise amount of colored liquid from a source

container into a transparent target container. By placing a camera directly across from the

17

target, they were able to use a color filter to determine the height of the liquid, which was

then fed into a pouring model that determined the robot’s actions. This system allowed the

robot to robustly pour precise amounts of liquid. In chapters 3 and 5 we also examine the

problem of pouring precise amounts of liquid using a scale as feedback (chapter 3) and visual

input as feedback (chapter 5).

Precise dispension of liquids isn’t the only concern when pouring however. Another major

constraint is the final destination of the liquid, i.e., not spilling liquid outside the target. Yano

et al. [166] utilized precise liquid models to prevent sloshing during a pouring task. In a follow

up work, Sugimoto et al. [143] augmented those models to control the surface of the liquid

contained in a sprue cap to prevent it from spilling. Later research by Kuriyama et al. [75]

looked at a similar problem. They utilized a fluid simulator to plan motion trajectories that

minimized spillage of liquid in a spoon held in the robot’s end-effector. More recent work

by Pan and Manocha [111] used a physics simulator with simplified fluid dynamics to plan

trajectories that allowed the robot to pour liquid without spilling. In a follow up to their

work, Pan and Manocha [112] gathered pouring examples on real data, and then used a

neural network to infer the liquid-related parameters, which allowed their trajectory planner

to generate more accurate plans for the robot.

Pan and Manocha aren’t the only authors to utilize a simulator to prevent spillage.

Guevara et al. [46] also used approximate fluid dynamics to reason about spillage. In their

work, the robot first went through a calibration stage to determine the parameters of the

liquid, then an optimization stage to optimize the pouring motion for minimum spillage.

Yamaguchi and Atkeson also utilized approximations to reason about liquid spills. In [164]

they used small, rigid spheres in place of liquid in a rigid-body physics simulator. The robot

generated a motion trajectory using differential dynamic programming (DDP) and then

poured the spheres from a source into a target, using temporally decomposed dynamics along

with hand-designed features to simplify the problem. They followed this with [162] where

the robot solved the pouring task by composing different skills (e.g., grasping, tilting, etc.)

in a graph structure, optimizing each using DDP. While both [164] and [162] were entirely in

18

simulation, in [165] they applied their method on a real robotic system, successfully pouring

liquids with minimal spillage.

Even though it is primarily real robots that we are concerned with, simulation is nonethe-

less a powerful tool for reasoning about liquids. Work by Kunze and Beetz [73, 74] took ad-

vantage of a robot simulator to reason about potential actions available to the robot. They

focused on the task of making pancakes, which involves interactions with rigid objects, de-

formable objects, and liquids. Similar to Yamaguchi and Atkeson [164], they approximated

the liquids as rigid spheres. In the simulator, the robot could repeatedly perform the same

task (e.g., pouring pancake batter, breaking eggs) with different action parameters to reason

about the effect of the parameters on the outcome of the task. In chapter 7 we utilize a fluid

simulator to perform similar reasoning about liquids, although with a focus on hidden state

variables rather than action parameters.

2.2 Computational Fluids

2.2.1 Fluid Dynamics

In this thesis, we utilize fluid simulators to model liquids, enabling our robot to both reason

about and control them. Here we briefly discuss some of the background and related work in

the literature about fluid mechanics and simulation. Liquid simulation and fluid mechanics

are well researched in the literature [2, 105]. They are commonly used to model fluid flow in

areas such as mechanical and aerospace engineering [52], and to model liquid surfaces in com-

puter graphics [16, 23, 103]. The primary physical equations governing fluid mechanics are

the Navier-Stokes equations, developed by Claude-Louis Navier and Goerge Gabriel Stokes in

1822 [148]. Since then, several algorithms have been created to implement the Navier-Stokes

equations for fluid simulations. The predominant method is the Eulerian method, a finite

element method, where the space is divided into a fixed-size grid, and the fluid is modeled as

flow between adjacent grid cells [22]. This method has several advantages. First, it has been

extensively studied and has well-formulated and stable mathematical models. Second, the

19

representation of the fluid in a grid format makes is relatively straightforward to interface

the fluid representation with a deep neural network using a standard 3D convolutional layer.

Finally, there are many commercially available implementations of this algorithm (such as

the one included in [11]).

However, there are several drawbacks to the Eulerian method. The biggest issue is the

tradeoff between resolution and computational resources. To increase the accuracy of the

grid approximation, it is necessary to increase the spatial resolution of the grid, but doing

so increases both the processing time and memory requirements by O(n3) for an environ-

ment in 3D. This can make it infeasible to simulate large environments accurately, especially

when the fluid in those environments is very sparse. McAdams et al. [92] proposed a pos-

sible solution to this problem that utilized a multi-grid approach, simulating the fluid at

different levels of resolution and then combing them together. While this can alleviate the

extreme resolution vs. efficiency tradeoff somewhat, it has its own issues such as a difficult

implementation, a challenge to parallelize on a GPU (critical to efficient fluid simulations),

and many non-trivial failure cases. Instead, the main alternative to Eulerian fluid simula-

tions, Lagrangian simulation, doesn’t suffer from such an extreme tradeoff. Lagrangian fluid

simulation represents the fluid as a set of particles, where each particle carries with it its

own set of fluid properties, and a continuous vector field is approximated by interpolating

between particles for any point in space [39]. The primary difference between Eulerian and

Lagrangian methods is that the Eulerian method models the rate of fluid flow from one cell

to another, whereas the Lagrangian method models the movement of individual “packets”

of fluid. Bujack and Joy [17] phrased the difference well using an analogy:

On one hand, the Eulerian specification describes the flow passing through a

fixed spatial domain. It can be interpreted as the point of view of a stationary

observer standing at a rivers bank watching the water flow by... On the other

hand, the Lagrangian specification of a flow field describes the properties of a

fixed fluid parcel as it travels through space. This specification can be imagined

20

as the point of view of an observer that sits in a boat and moves along with the

flow of the river.

In this thesis we utilize the particle-based Lagrangian method because it is able to more

efficiently represent sparse liquids in a large environment. The main algorithm that im-

plements Lagrangian fluid dynamics is Smooth Particle Hydrodynamics (SPH) [39]. The

key feature of this algorithm is that all the fluid properties in the Navier-Stokes equations

(e.g., pressure, viscosity) are applied as physical forces to the particles, which are advected

according to their momentum. SPH has been used extensively for astrophysical applica-

tions [37, 126] as well as modeling fluids for applications such as modeling lubrication be-

tween mechanical parts [76]. We use SPH for our experiments in chapter 7. However, SPH

has one major drawback as it relates to liquids: it can’t accurately model incompressible

fluids such as water. There have been some proposals in the literature that offer various

methods for modifying SPH to handle incompressible fluids [142, 13, 3]. Macklin et al. [90]

proposed a different solution. They created Position Based Fluids (PBF), an extension of

SPH that combines the approximate constraint solutions of position based dynamics [104]

with the particle-based fluid representation of SPH. In PBF, the physical properties of fluids

related to incompressibility (e.g., pressure) are treated as constraints rather than physical

forces. During each update step, after the forces are applied and the particles advected,

PBF uses an iterative, approximate solver to solve the incompressibility constraint. This

way PBF is able to accurately and efficiently model incompressible fluids such as water. The

authors released an implementation of their PBF algorithm in the commercially available

physics simulator FleX [91]. We use PBF and FleX for our experiments in chapter 8.

Of course, incorporating fluid dynamics into our methodology adds complexity, so why

not rather approximate the liquids as a set of small, rigid spheres? In fact, this was the

methodology taken in [73, 74, 164, 165] when they needed to simulate liquids for their

experiments. The drawback to this approach is that while the broad dynamics are the same

(e.g., both will fall from an upturned container), the precise dynamics are not (e.g., rigid

21

objects don’t cohere as liquids do). For the work in this thesis, we are interested in enabling

precise reasoning and control of liquids. Thus a rough approximation is not sufficient; we

require a more precise model. So while using proper fluid dynamics does add complexity to

our model, that complexity is a necessary condition of the precision we desire.

2.2.2 Learning Fluid Physics

A key contribution we make in this thesis is adding learning to the computational fluid dy-

namics methodology. There have been several attempts in the literature to combine learning

and fluid dynamics. Elbrechter et al. [27] used a nearest neighbor and polynomial regres-

sion model to learn the correspondence between visual changes in a liquid’s surface and its

viscosity. In their experiments, the robot used a kinect depth camera to perceive the surface

of the liquid, then proceeded to apply a pushing motion. Their model was successfully able

to not only regress to known liquids, but also able to accurately predict the viscosity of

unknown liquids as well. Guevara et al. [46, 45] worked on a similar problem. However,

instead of regressing directly to viscosity as in [27], they used a fluid simulator to optimize

the parameters of the liquid. The robot performed an action with the liquid (either pouring

as in [46] or stirring as in [45]) and then would observe the changes caused by this action.

The robot then internally simulated the same environment in a fluid simulator (they used

Nvidia FleX [91]) and optimize the liquid parameters such as viscosity or cohesion until the

simulator matched the real environment. Given this estimate for the liquid parameters, the

robot could then successfully execute actions such as pouring without spilling. Relatedly,

work by Mottaghi et al. [100, 99] has shown how physical scene models extracted from real

data can be used to reason about physics, albeit rigid body physics in the case of [100, 99].

They utilized convolutional neural networks (CNNs) to convert an image into a description

of a scene, and then applied Newtonian physics to understand what would happen in the

future. Work on deformable objects, which share many properties with fluids (e.g., non-

rigidity, dense state, etc.), by Schulman et al. [137] utilized physics models and a depth

camera to track the surface of objects such as ropes, clothes, and sponges.

22

However the works in [27, 46, 45, 100, 99, 137] focused on utilizing physics for reasoning;

other work has focused on learning the dynamics of fluids. Yamaguchi and Atkeson as part of

[164, 162, 165] learned a dynamics model that used an abstract feature representation of the

state of the fluid. Here they represented the state using the relative positions of the objects,

the location and variance of the fluid stream, and the amount of fluid in the container vs. the

amount of fluid spilled. As a result, the dyanmics learned were only only in the most broad,

general terms over the abstract features. Kozek and Roska [71] were, to the best of the

authors’ knowledge, the first to directly model the full Navier-Stokes equations in a machine

learning framework. The used cellular neural networks to compute dense fluid dynamics on

a 2D grid, although the focus of [71] wasn’t on learning. Long et al. [88] extended [71] by

adding in a recurrent convolutional network to learn the motion of external forces (e.g., a

moving wall), which then allowed them to predict the dense 2D future state of the fluid in

the environment. Scott et al. [56] took a different approach, applying learning to the fluid

dynamics themselves. They used multilayer perceptrons and support vector machines to

learn to predict the height of waves in a bay along a coastline from detailed oceanographic

data such as wave conditions, ocean-current nowcasts, and reported winds. Other work has

also focused on learning detailed 2D dynamics. Schenck et al. [134]2 used fully convolutional

networks to learn the 2D changes in a height map over granular media after scooping actions.

While granular media and liquids are not the same, they share many similar properties, such

as non-rigidity and dense state representations.

There has, however, been work focusing on learning fluid dynamics directly from data.

Singh et al. [140] combined a standard fluid model with neural networks to learn air flow

over various geometries, producing results superior to the fluid model alone. Tompson et

al. [151] also combined a traditional fluid dynamics model with machine learning. They

computed the advection of the fluid specified by the Navier-Stokes equations using a standard

advection model and then used a convolutional neural network to solve the incompressability

2Several of the authors on this thesis were the primary contributors to this paper.

23

constraints. They represented the fluid using a dense 3D grid, which made it straightforward

to interface with a convolutional network. However in this thesis we use a sparse particle set

to represent fluid, which has better tradeoffs between computational resources and resolution.

It is less obvious, though, how to perform learning using this representation, although there

are some cases in the literature. Ladický et al. [77] learned fluid dynamics with a particle-

based representation. They used regression forests to learn 3D fluid dynamics and applied

the forest to each particle individually to compute it’s dynamics. In order to facilitate

particle-particle interaction, they pre-computed a set of features for each particle based on

its relation to its neighbors. Because of this, the forest only had to consider the set of features

for each particle and did not need to directly consider particle-particle relations. Mrowca

et al. [102] also used a particle-based representation to compute physical interactions, albeit

with deformable objects rather than fluids. They represented each object as a collection

of particles, and used hierarchical graph convolutions to learn the deformation properties

between particles belonging to the same object, allowing them to learn, for example, how

much an object compresses when dropped from a given height. In chapter 8 we develop a

similar method for computing particle-particle interactions using deep networks.

24

Part I

LEARNING-BASED METHODS

25

Chapter 3

LEARNING TO POUR: A FIRST LOOK AT LIQUID
MANIPULATION

For the first experiment in this thesis we focus on a stereotypical task involving liquids:

pouring. We task the robot with pouring a precise amount of liquid from a source container

into a target container. To focus the investigation, we augment the robot’s environment by

placing a scale capable of real-time feedback under the target container. We simplify the

perception of the robot in this chapter to allow us to get an initial sense of what a robot

needs to be able to do to solve this task. We then apply what we learn in this chapter to

investigations in future chapters.

To solve the pouring task in this chapter, we utilize reinforcement learning. Reinforcement

learning is a well studied problem in machine learning [6]. Many researchers have successfully

applied various reinforcement learning methods to different virtual domains [96, 15, 123, 93].

There have also been multiple studies applying reinforcement learning to other tasks on real

robotic systems [141, 65]. Work by Konidaris et al. [66, 68, 67] and Niekum [106, 107] looked

at how a robot can solve complicated tasks by chaining learned skills together. But these

works represented learning of rather imprecise, though complex, goals (e.g., pressing a large

button to open a door), which are not as suitable for learning precise control of liquids. Work

by Deisenroth et al. [25, 24] on the PILCO framework and Levine et al. [83, 82] on Guided

Policy Search (GPS) has shown how model-based reinforcement learning frameworks can be

used for precise control tasks such as cart-pole or block insertion. We evaluated both for use

in this chapter and empirically determined that the time-dependent locally-linear dynamics

model used by GPS was more suited to the task at hand.

0The contents of this chapter were published in [129].

26

In this chapter, we apply reinforcement learning to the real-world task of pouring precise

amounts of liquid from one container to another. Specifically, we utilize the reinforcement

learning algorithm Guided Policy Search (GPS) [83] to learn a policy for pouring water. The

goal of the robot is to pour a specific amount of liquid from a cup (source container) into a

bowl (target container). The precise nature of the pouring task necessitates that the robot

have at least a cursory understanding of the fluid dynamics involved, a highly non-trivial

problem.

To solve this task, the robot first trains a dynamics model from a set of example trajec-

tories. Then, given this dynamics model, it alternates between a single step of trajectory

optimization and updating the weights of a neural network policy to match the optimized

trajectories. Next, the robot rolls out the trained policy on the real system, using the re-

sulting sensor data to retrain the dynamics model. This process repeats until the robot

converges.

Our results show that a robot can successfully utilize this methodology to learn a policy

enabling it to pour a precise amount of liquid. We varied the initial amount of water in the

container, and for each initial amount, the robot attempted to pour a precise amount into

the bowl. The robot converged after approximately 25 iterations. It was able to pour within

10g of the target for all initial conditions.

The rest of this chapter is organized as follows. The next section describes our experi-

mental setup. Section 3.2 lays out the methodology we employed to solve this task in detail.

Section 3.3 describes how we evaluated the robot on the pouring task. Section 3.4 details

the results the robot was able to achieve. And finally section 3.5 concludes the chapter and

describes what our investigation discovered.

27

Figure 3.1: The robot used in these experiments. It is a Rethink Robotics Baxter Research

Robot, equipped with two 7-DOF arms. Also shown is the experimental setup with the cup

in the robot’s gripper positioned above the table, with the bowl resting on top of the scale.

3.1 Experimental Setup

3.1.1 Robotic Platform

The robot used for the experiments in this chapter was the Rethink Robotics Baxter Research

Robot, pictured in figure 3.1. It is an upper-torso humanoid robot with two 7-degree-of-

freedom arms. Each arm is equipped with an electric parallel gripper. The motors on

each joint can be controlled using position controls (via a built-in PID controller), velocity

controls, or torque controls. We controlled the robot’s arm using the velocity control mode.

The joints are equipped with joint encoders and torque sensors1. We use the robot’s left arm

for all experiments in this chapter.

1We empirically determined that the torque sensors built into the robot’s joints are not reliable and so
did not use them here.

28

3.1.2 Experimental Environment

The robot was place in front of a small table. On the table was an Adam Equipment HCB

3000 Highland Portable Precision Balance scale. The scale had a maximum capacity of three

kilograms and a resolution of one tenth of one gram. This scale was selected for its ability to

provide real-time readings via USB cable to an attached computer. The scale has a built-in

filter that introduces an approximately 0.5 to 1.0 second sensor delay in the measurements

taken from the scale. On top of the scale was placed a medium sized plastic mixing bowl.

A plastic cup was placed in the robot’s left gripper. This configuration is shown in figure

3.1. The cup was pre-filled by the experimenters with a precise amount of water between

two-hundred and four-hundred grams.

3.1.3 Data Collection

We ran 500 pouring trials. Each trial began with the cup already in the robot’s gripper and

pre-filled by the experimenter. The trial ended after exactly twenty-five seconds had passed,

regardless of whether or not the robot had poured any liquid. During each trial, the robot’s

joint angles, joint velocities, and the scale value were recorded at a rate of two hertz. While

the robot is equipped with many other sensors, the robot only used it’s own joint angles,

velocities, and the scale value to learn the pouring task.

3.1.4 State Space

In order to isolate the precise pouring task, we fixed the robot’s wrist over the bowl on the

table and gave it control only over it’s last joint (the wrist joint), effectively letting it control

only the angle of the cup. The robot used a four-dimensional state space. The first dimension

was the angle of the robot’s wrist in radians, shifted so that zero is when the cup is upright

and π when the cup is inverted. The second dimension is the amount, in grams, remaining

to pour until the robot reaches the pouring target. In this way, the target pouring amount

is implicitly built into the state space. The third dimension is the change in the second

29

dimension from the last timestep to the current one. And finally, the fourth dimension is

the amount of water in the cup. This amount is initialized to a specific, known amount, and

then updated throughout each trial by subtracting the change in the scale value.

3.2 Methodology

3.2.1 Problem Definition

Let X ∈ Rd be the d dimensional state space the robot operates in, and let Xinit ⊆ X be

the set of valid starting states. The goal of the robot is to learn a policy π(xt; θ)→ ut that

minimizes a cost function l, where xt is the state at time t, ut is the robot’s control signal at

time t, and θ is the learned policy parameters. The robot must learn a policy that, from any

initial state x1 ∈ Xinit, generates a trajectory (x1,u1), ..., (xT ,uT), (xT+1) that minimizes
T∑
i=1

[l(xi,ui)] + l(xT+1) over a fixed horizon T .

3.2.2 Algorithm Overview

We use a modified version of Guided Policy Search [83] to train policy parameters θ. The

robot is given N initial example trajectories τ = {(x1,u1), ..., (xT ,uT), (xT+1)}N , where xt

is the state of the robot at time t and ut is the control applied at time t. Next the robot

trains a time-based dynamics model f̂t(xt,ut)→ xt+1. Using this model, the robot alternates

between optimizing the trajectories τ using an iLQG [146] backward pass and optimizing

the policy parameters θ to match the updated trajectories. Next the robot uses the policy

π(xt; θ)→ ut to rollout from each starting state x1 in each trajectory τi. Finally, the robot

retrains the dynamics model f̂t and repeats this process until convergence.

3.2.3 Learning the Dynamics Model

We use a very similar learned dynamics model to [82]. The robot must learn the function

f̂(xt,ut)→ xt+1 mapping the state xt and control ut at the current timestep to the next state

xt+1. The dynamics model is a time-based, locally linear model with a Gaussian mixture

30

model over the prior. Since the model is local, the robot learns a separate model for each

of the N example trajectories. The rest of this section will describe the training process for

one model.

Given a training set τ̃ = {(x1,u1), ..., (xT ,uT), (xT+1)}M , where M is the number of

iterations so far, the robot learns a separate linear function f̂t(xt,ut)→ xt+1 for all timesteps

t. For applications on real robots, though, the number of training trajectories M can often

be too small compared to the dimensionality of the state space to fit a linear model at each

timestep, so instead the robot learns an equivalent model and uses shared dynamics between

timesteps to compensate for the small amount of training data at each timestep.

At each timestep, the robot fits a multivariate Gaussian N (µt,Σt) over the concatenated

vectors 〈xt,ut,xt+1〉 which we write as 〈x,u,x′〉 for simplicity. To predict the next state

after timestep t given x and u, the robot can simply condition the normal distribution on x

and u and solve for x′ as follows:

x′ = µx′ + Σx′〈x,u〉Σ
−1
〈x,u〉〈x,u〉

(
〈x,u〉 − µ〈x,u〉

)
where µa is the components of µ who’s elements pertain to a, and Σab is the covariance

between a and b extracted from Σ. Note that we only use the mean of the conditional

distribution over x′ in this paper.

Estimating the Model Parameters

Let µ̄ and Σ̄ be the empirical mean and covariance respectively for all 〈xt,ut,xt+1〉 for all

t. The robot estimates an inverse-Wishart prior over the parameters of the T Gaussian

distributions N (µt,Σt). The prior has parameters Φ, µ0, m, and n. The parameters µt and

Σt for the distribution at time t are estimated as follows:

µt =
mµ0 +Mµ̂t
m+M

Σt =
Φ +MΣ̂t + Mm

n+m
(µ̂t − µ0)(µ̂t − µ0)T

M + n0

where µ̂t and Σ̂t are the empirical mean and covariance respectively of the set {〈xt,ut,xt+1〉}M .

31

The prior parameters Φ, µ0, m, and n are estimated as

Φ = n0Σ̄ µ0 = µ̄ m = n0 = 1.

Approximating Non-Linearity With a Gaussian Mixture Model

While the above method for estimating the Gaussian parameters µt and Σt effectively re-

duces the number of training data points required at each time point t, the inverse-Wishart

prior enforces a global linearity assumption on the dynamics model, as opposed to a local

linearity assumption, which can make it difficult for the robot to operate in highly non-linear

environments.

To handle this, the robot fits a Gaussian mixture model [94] over the set {〈xt,ut,xt+1〉}Mt=1,...,T .

Then, for each t ∈ [1, T], the robot estimates the prior parameters Φ and µ0 (n0 and m remain

constant at 1) as

Φ =

∑
i

p({〈xt,ut,xt+1〉}M |µ̄i, Σ̄i)Σ̄i∑
i

p({〈xt,ut,xt+1〉}M |µ̄i, Σ̄i)

µ0 =

∑
i

p({〈xt,ut,xt+1〉}M |µ̄i, Σ̄i)µ̄i∑
i

p({〈xt,ut,xt+1〉}M |µ̄i, Σ̄i)

where µ̄i and Σ̄i are the mean and covariance of the ith mixing element. Essentially, Φ and

µ0 are the weighted average of each mixing element. In this paper, we used the standard

implementation of Gaussian mixture models built into the Matlab Statistics and Machine

Learning Toolbox [1].

3.2.4 Trajectory Optimization

Given a trained dynamics model f̂ and set of example trajectories τ , the robot must optimize

those trajectories with respect to a given cost function l. However, if the robot uses l directly

during trajectory optimization, the policy π may be unable to approximate the example

32

trajectories. Instead the robot uses the modified cost function

l∗(x,u, π) = l(x,u) + λ‖u− π(x)‖2

where ‖x‖ is the L2-norm and λ is the weight given to the second term of the equation.

Informally, the second term of l∗ enforces that whatever trajectory the optimizer finds, it

should stay close to the policy.

iLQG Backward Pass

For each trajectory τi ∈ τ , the robot performs an iLQG backward pass to optimize the

trajectory. It splits the combined optimization problem over u1, ...,uT into individual opti-

mizations for each ut by optimizing the Q-function backwards in time, starting at time T .

The Q-function is given by

Q(δxt, δut) = l∗(xt + δxt,ut + δut) + Vt+1(f̂(xt + δxt,ut + δut))

where δxt and δut are the updates to apply to xt and ut respectively, and Vt+1 is given by

Vt+1(x) = min
u

[
l∗(x,u) + Vt+2(f̂(x,u))

]
.

The robot minimizes Q with respect to δut by taking the first and second derivatives of Q.

V is intractable to differentiate directly, so the robot approximates Vt+1 by substituting the

next timestep’s result, Q(δxt+1, δut+1), in place of Vt+1. Thus it is necessary to work back-

wards through the trajectory so that Q(δxt+1, δut+1) is already computed when computing

Q(δxt, δut).

For further details of the iLQG algorithm, please refer to [146].

3.2.5 Policy Learning

Given the set of example trajectories τ = {(x1,u1), ..., (xT ,uT), (xT+1)}N , fitting the policy

parameters θ can be framed as a simple regression problem, i.e., train the parameters to

map every xt → ut. However, if N and T are small (e.g., 10 and 50, respectively), then that

33

can leave relatively few training points for high-dimensional state spaces, which can make it

difficult for the policy to smoothly fit a function over the uncovered areas of the space.

To solve this, the robot utilizes the gains matrices Lt generated during the iLQG backward

pass to generate more training data points. The matrix Lt is used as follows

ut = ût + Lt (xt − x̂t)

where x̂t and ût are the open-loop trajectory found by iLQG at time t, and xt and ut are

the actual state and controls when rolling out the trajectory on the real system. Intuitively,

Lt computes how much to alter the open-loop control ût based on the difference between the

open-loop state x̂t and the actual state xt. Thus, Lt makes the open-loop trajectory into a

local policy around that trajectory.

To generate more data points, the robot draws many samples from a small Gaussian

around each xt ∈ τ , and then uses the corresponding gains matrix Lt to generate the controls

for each sampled point. Adding these sampled data points to the original training data

points, the robot can then formulate learning the policy parameters θ as a standard regression

problem. For the experiments in this chapter, the robot used a neural network to learn the

policy.

Note that it is critical to the success of the robot to tightly interleave the trajectory opti-

mization and policy learning iterations. That is, the robot does exactly one iLQG backward

pass on each example trajectory, followed by updating the policy parameters θ to better fit

the example trajectories. The robot repeats this inner loop multiple times before rolling out

the policy in the real environment, and then returning to the inner loop. If the trajectory

optimization and policy learning were not tightly interleaved, then the trajectory optimiza-

tion could easily optimize the example trajectories in a way that would make it very difficult

or impossible for the policy to learn. Instead, interleaving them in this manner keeps the

policy “close” to the trajectory optimizer, and the policy deviation term in the cost function

prevents the trajectory optimizer from moving the trajectories too far from what the policy

can learn.

34

Input

Layer

Hidden

Layer

Element-Wise

Product

Output

Layer

Figure 3.2: The neural network used to learn the policy. The input layer is fed into a fully-

connected hidden layer, and then the output of the hidden layer is element-wise multiplied

by the input layer, which is finally fed into the output layer.

Training the Neural Network

The neural network layout used by the robot is shown in figure 3.2. The input xt is fed into

a hidden layer with |xt| hidden units. The output of each is the linear combination of its

input fed through a rectified linear function, i.e.,

hi(xt) = max (xt •wi, 0)

where wi is the set of weights for node i. Next, the output of the hidden layer is multiplied

element-wise with the input. Finally, the result of the element-wise product is combined

linearly into the output of the network.

This neural network was implemented using the Caffe deep learning framework [58]. We

used the built-in backpropagation to fit the weights of the network to the training data.

35

3.2.6 Handling Delay

In the experiments we run in this chapter, there is a non-trivial amount of sensor delay that

complicates the problem. In section 3.1.2, while describing the experimental environment,

we stated that the real-time scale underneath the target container has a delay of 0.5s to 1s

between when the weight changes and when it sends that change to the robot. Furthermore,

there is also delay between when the robot changes the pose of the source container and when

the liquid falls and lands in the target. Combined, these two mean that there will be a delay

between when the robot takes an action and when that action affects the state. In order

to learn in an environment with delay, the robot augments it’s reasoning about states to

include the previous n states. Thus, when learning the dynamics model, the function maps

the previous n states and controls to the next state, i.e., f̂(xt−n,ut−n, ...,xt,ut) → xt+1.

Additionally, when learning the policy, it takes into account the previous n states as well,

i.e., π(xt−n, ...,xt; θ) → ut. So long as the previous n states cover the length of the delay,

reasoning about them allows the robot to combine both delayed and non-delayed sensor

readings to predict the next state or control.

3.3 Evaluation

We evaluated the robot on the pouring task. The robot’s arm was fixed over the bowl, and

a cup was placed in its gripper. It was given control over its wrist joint so that it could

control the angle of the cup. The robot controlled the angle by setting the angular velocity

of its wrist joint. The cup was initialized upright before each trial and prefilled by the

experimenter. The goal of the robot was to pour a specific amount of water into the bowl,

and to be as accurate as possible.

We set the number of example trajectories N to 10, and varied the initial amount of

water in the cup for each trajectory uniformly between 200 and 400 grams, and we fixed

the pouring target at 100 grams. The trajectories were initialized using a standard PID

controller. We fixed n, the number of previous states to include, at 4 (i.e., the current state

36

plus the 3 previous). The horizon for every trajectory was fixed to 50 timesteps, which, given

a 2 hertz sampling rate, meant each trajectory lasted exactly 25 seconds. We chose to sample

at 2 hertz to balance between having n high enough to cover the entire length of the sensor

delay yet low enough to not cause the augmented state space to be too high-dimensional.

At the start of each iteration, the robot trained the dynamics model. Next, the robot

alternated between one step of trajectory optimization and fitting the policy 10 times each.

After finishing the inner loop of the algorithm, the robot rolled out each of the 10 trajectories

from their starting states on the real system using the learned policy. Finally, the robot

updated each example trajectory with the results of the real rollout, and then began the

next iteration.

3.4 Results

The results are shown in figure 3.3. The error is reported in the number of grams of deviation

the robot was from the target, that is, after a rollout, the difference between the number of

grams of water in the bowl and the desired number, with values closer to 0 meaning better

performance. Figure 3.3a shows the error for each example trajectory after each iteration.

Figure 3.3b shows the mean and standard deviation of the example trajectories shown in

figure 3.3a.

From the graphs, it is clear that the robot converged after approximately 25 iterations.

Looking closely at figure 3.3a, it is apparent that iteration 33 was the first iteration where

the robot was able to pour within 10 grams of the target for all trajectories. Furthermore,

figure 3.3b shows that after iteration 23, the standard deviation of the robot’s error falls

below 10 grams. In our experience, an accuracy of ±10 grams is approximately what can be

expected of a human performing the same task. Thus, the graphs in figure 3.3 show that the

robot, after approximately 25 iterations, was able to converge to human-level performance.

37

0 10 20 30 40 50
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

Iteration

E
rr

o
r

(g
)

(a) Error for each of the example trajectories

0 10 20 30 40 50
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

Iteration

E
rr

o
r

(g
)

(b) Mean and standard deviation of the error

Figure 3.3: The error in grams after each iteration. The error is how far the robot was from

the pouring target at the end of the rollout.

38

3.5 Discussion

In this chapter, we used Guided Policy Search to train a policy on a real robot to solve a

task with non-trivial sensor delay. Specifically, the robot learned a policy for the pouring

task. The goal of the robot was to pour a precise amount of water. It did this by iteratively

pouring with its current policy, training a dynamics model, and then updating the policy

using trajectory optimization. The robot was able to pour within 10 grams of the target

(100 grams) after 33 iterations.

We showed that the robot was able to reach human-levels of performance on the pouring

task. While this may not be high enough for tasks such as high precision manufacturing,

it is sufficient for many household tasks such as cooking. Furthermore, we showed that,

using a generic robotic platform, a robot can successfully learn to manipulate fluids. This

is important for work in later chapters. Here we showed how that if the robot could know

the rate of change of liquid from the cup to the bowl, then it can successfully pour precise

amounts. In the next chapter we examine how a robot can eschew the real-time scale and

instead use a generic color camera to perceive the liquids. After that, in chapter 5 we come

back to the problem of pouring precise amounts of liquids, albeit using a camera instead of

a scale. What we learned in this chapter showed us how a robot can pour specific amounts

of liquid, and we apply that in the next two chapters.

3.5.1 Practical Takeaways

In addition to the insights discussed above, there are several more technical insights we

found while performing the research in this chapter. Most of the motivation for our choices

in methodology was due to the sensor delay introduced by the real-time scale. The scale

used a proprietary algorithm built-in to the microcontroller in the scale itself to smooth

the output values. This algorithm was not consistent and caused a delay of approximately

0.5 to 1 seconds between when the mass on the scale changed and when it reported the

change. Additionally, because the algorithm was proprietary, we could not counteract this

39

varied delay in our own code. We initially attempted to use the PD controller (the controller

we used to initialize the example trajectories for GPS) to solve the task directly, without

significant learning. However, due to the variable delay, the PD controller’s performance was

inconsistent, sometimes performing well and sometimes overpouring by a significant amount

due to a large sensor delay. The only way to guarantee good performance was to make the

controller pour incredibly slowly, a not very practical approach.

Due to this unknown, variable delay, we determined that a learning approach was nec-

essary. We initially attempted to use PILCO [24], a framework for learning control policies

from data. Similar to GPS, PILCO uses the example trajectories to train a dynamics model.

However, PILCO uses Gaussian processes rather than a time-varying locally-linear model to

learn the dynamics, and uses the direct policy gradients method to update the parameters of

the policy. We spent much research time (several months) attempting to teach the robot to

pour using PILCO to no avail. The Gaussian processes were unable to accurately model the

dynamics, even with the inclusion of several prior states. We switched to the time-varying

locally-linear models used by GPS, which were able to model the dynamics, however only

locally. Because of this, the direct policy gradient method employed by PILCO was not

applicable, so we switched to GPS. By using GPS, we were able to successfully teach the

robot to pour precise amounts of liquid.

40

Chapter 4

LEARNING TO SEE: TEACHING ROBOTS TO PERCEIVE
LIQUIDS

In the last chapter we looked at how the robot could control liquids in a precise pouring

task. There, the robot used a real-time scale to sense the rate of transfer. However, this

kind of sensor will not always be available and it may not always be possible to augment the

environment with it. One alternative to a scale are the force-torque sensors in a robot’s arm.

While these may be useful in expensive industrial robots, in inexpensive modern robots,

the kind most likely to appear in unstructured homes due to their lower cost, force-torque

sensors are often noisy and unreliable, making them unsuitable for precision control. Another

alternative is to use a commercially available depth sensor such as a Microsoft Kinect, which

has been used for rigid object localization [135]. However, due to their translucent nature,

liquids do not reliably appear on depth cameras. Instead, we examine perceiving liquids

using a more common and inexpensive general-purpose sensor, a color camera.

Specifically, we examine the problem of perceiving liquids. That is, we ask the question

Where in the raw visual data stream is liquid? To solve this problem, we take advantage of

recent advances in the field of deep learning. This approach has been extremely successful

in various areas of computer vision, including classification [72], semantic labeling [29], and

pose regression [38], and it enabled computers to successfully play Atari games from raw

image data [47] and train end-to-end policies on robots [82]. The ability of deep networks to

process and make sense of raw visual data makes them a good fit for the task of perceiving

liquids.

In this chapter, we focus on the task of pouring as our exemplar task for learning

0The contents of this chapter were published in [130] and [133].

41

about liquids. While researchers have already worked on robotic pouring tasks, previ-

ous techniques made simplifying assumptions, such as replacing water by an easily visible

granular medium [165], restricting the setting such that no perceptual feedback is neces-

sary [79, 108, 144, 18], requiring highly accurate force sensors [127], detecting moving liquid

in front of a relatively static background [163], or dealing with simulated liquids only [73, 74].

Here, we show how fully-convolutional deep networks (FCNs) can be trained to robustly per-

ceive liquids and how they can be modified to perform better at generalization. To collect

the large amounts of data necessary to train these deep networks, we utilize a realistic liquid

simulator to generate a simulated dataset and a thermal camera to automatically label water

pixels in a dataset collected on the real robot.

Our results show that the methodology we propose in this paper is able to perceive liquids

quite well. Specifically, they show that recurrent networks are well-suited to this task, as

they are able to integrate information over time in a useful manner. We also show that, with

the right format of the input image, our neural networks can generalize to new data with

objects that are not included in the training set. These results strongly suggest that our

deep learning approach is useful in a robotics context, which we demonstrate in the following

chapter with a closed-loop water pouring experiment.

The rest of this chapter is laid out as follows. The next section describes the task we

investigate in this paper. The sections after that describe how we generate our simulated

dataset and performed the pouring trials on our robot, followed by a discussion of our learning

methodology. We then describe how we evaluate our networks and present experimental

results. And finally, the last section concludes the chapter with a discussion of the results.

4.1 Task Overview

In this chapter we investigate the task of perceiving liquids. We evaluate the robot on the

perception task of detection. We define detection to be determining what in the raw sensory

data is liquid, and what is not liquid. Specifically, given an image, the robot must produce

pixel-wise labels liquid for pixels containing liquid and not-liquid for pixels not containing

42

(a) Untextured (b) Background (c) Background+Video (d) Fully Textured

Figure 4.1: The scene used to simulate pouring liquids. The background sphere is cut-away

to show its interior. From left to right: The scene shown without any texture or materials;

The background image sphere texture added; The video on the plane added in addition to

the background texture; and The scene fully textured with all materials.

liquid. For this chapter, we focus on the task of pouring as it is a common task involving

liquids and presents a challenging perception problem. We also consider images in the context

of sequences, that is, we don’t consider images as static scenes in isolation but rather as a

part of a series, and we allow the robot to utilize that in solving the task.

We evaluate our neural networks on the task of detection in both simulation and on data

collected on a real robot. For the simulated dataset, we generated a large amount of pouring

sequences using a realistic liquid simulator. As it is simple to get the ground truth state

from the simulator, we can easily evaluate our methodology on the simulated data. For

evaluations using real-world data, we carried out a series of pouring trials on our robot. We

use a thermal camera in combination with heated water to acquire the ground truth pixel

labels.

4.2 Simulated Data Set

We use a simulated to perform some of the evaluations of our methodology. The dataset

contains 10,122 pouring sequences that are 15 seconds long each, for a total of 4,554,900

images. Each sequence was generated using the 3D-modeling program Blender [11] and the

43

library El’Beem for liquid simulation, which is based on the lattice-Boltzmann method for

efficient, physically accurate liquid simulations [69].

We divide the data generation into two steps: liquid simulation and rendering. Liquid

simulation involves computing the trajectory of the mesh of the liquid over the course of the

pour. Rendering is converting the state of the simulation at each point in time into color

images. Liquid simulation is much more computationally intensive than rendering1, so by

splitting the data generation process into these two steps, we can simulate the trajectory of

the liquid and then re-render it multiple times with different render settings (e.g., camera

pose) to quickly generate a large amount of data. We describe these two steps in the following

sections.

4.2.1 Liquid Simulation

The simulation environment was set up as follows. A 3D model of the target container was

placed on a flat plane parallel to the ground, i.e., the “table.” Above the target container

and slightly to the side we placed the source container. This setup is shown in Figure 4.1a.

The source container is pre-filled with a specific amount of liquid. The source then rotates

about the y-axis following a fixed trajectory such that the lip of the container turns down

into the target container. The trajectory of the liquid is computed at each timestep as the

source container rotates. Each simulation lasted exactly 15 seconds, or 450 frames at 30

frames per second.

For each simulation, we systematically vary 4 variables:

• Source Container - cup, bottle, or mug

• Target Container - bowl, dog dish, or fruit bowl

• Fill Amount - 30%, 60%, or 90%

1Generating one 15 second sequence takes about 7.5 hours to simulate the liquid and an additional 0.5
hours to render it on our Intel Core i7 CPUs.

44

Source Containers

(a) Cup (b) Bottle (c) Mug

Target Containers

(d) Bowl (e) Dog Dish (f) Fruit Bowl

Figure 4.2: The objects used to generate the simulated dataset. The first row are the three

source containers. The last row are the 3 target containers. The objects are each shown here

with 1 of their possible 7 textures.

• Trajectory - partial, hold, or dump

The 3 source containers we used are shown in Figures 4.2a, 4.2b, and 4.2c, and the 3 target

containers we used are shown in Figures 4.2d, 4.2e, and 4.2f. Each source container was filled

either 30%, 60%, or 90% full at the start of each simulation. The source was rotated along

one of three trajectories: It was rotated until it was slightly past parallel with the table,

held for 2 seconds, then rotated back to upright (partial); It was rotated until it was slightly

past parallel with the table, where it stayed for the remainder of the simulation (hold); or

It was rotated quickly until it was pointing nearly vertically down into the target container,

remaining there until the simulation finished (dump). The result was 81 liquid simulations

(3 sources × 3 targets × 3 fill amounts × 3 trajectories).

45

4.2.2 Rendering

To generate rendered pouring sequences, we randomly select a simulation and render pa-

rameters2. We place the camera in the scene so that it is pointing directly at the table

top where the target and source containers are. In order to approximate realistic reflections

on the liquid’s surface, we enclose the scene in a sphere with a photo sphere taken in our

lab set as the texture (shown in Figure 4.1b). Next we place a video of activity in our lab

behind the table opposite the camera (shown in Figure 4.1c). We took videos such that they

approximately match the location in the image on the background sphere behind the video

plane. We randomly select a texture for the source and target containers, and we render

the liquid as 100% transparent (but including reflections and refractions). We also vary the

reflectivity of the liquid as well as its index of refraction to simulate slight variations in the

liquid type. Figure 4.1d shows the full scene with textures, video, and background sphere.

We randomly select from the following N parameters for each rendered sequence:

• Source Texture - 7 preset textures

• Target Texture - 7 preset textures

• Activity Video - 8 videos

• Liquid Reflectivity - normal or none

• Liquid Index-of-Refraction - air-like, low-water, or normal-water

• Camera Azimuth - 8 azimuths

• Camera Height - high or low

• Camera Distance - close, medium, or far

2The number of parameters makes it infeasible to evaluate every possible combination.

46

RGB

Visible

Figure 4.3: Examples of frames from the simulated dataset. The top row is the raw RGB

images generated by the renderer; the bottom row shows the ground truth liquid location

for visible liquid.

There are 48 total camera viewpoints. The camera azimuth is randomly selected from 1 of 8

possibilities spaced evenly around the table. The height of the camera is selected such that

it is either looking down into the target container at a 45 degree angle (high, left column in

Figure 4.3) or it is level with the table looking directly at the side of the target (low, right

column in Figure 4.3). The camera is placed either close to the table, far from the table,

or in between. The output of the rendering process is a series of color images, one for each

frame of the sequence.

4.2.3 Generating the Ground Truth

We generate the ground truth for each image in each rendered sequence as follows. We set

the liquid mesh to render as a solid color irrespective of lighting. Then we make all other

objects in the scene solid black irrespective of lighting. This makes it simple to distinguish

between which pixels contain liquid and which do not. Several examples are shown in figure

4.3) with the rendered RGB image on the top and the corresponding pixel labels on the

bottom.

47

Figure 4.4: The robot used in the experiments in this chapter. It is shown here in front of a

table, holding the bottle in its right gripper, with the fruit bowl placed on the table.

4.3 Robot Data Set

4.3.1 Robot

The robot used to collect the dataset is shown in Figure 4.4. It is a Rethink Robotics Baxter

Research Robot, an upper-torso humanoid robot with 2 7-dof arms, each with a parallel

gripper. The robot is placed in front of a table with a towel laid over it to absorb spilled

water. The robot is controlled via joint velocity commands. In the experiments in this

chapter, the robot uses only one of its arms at a time. The arm is fixed above the target

container and the robot controls the joint velocity of its last joint, i.e., the rotational angle

of its wrist.

4.3.2 Sensors

The robot is equipped with a pair of cameras mounted to its front immediately below its

screen. The first camera is an Asus Xtion RGBD camera, capable of providing both color and

depth images at 640×480 resolution and 30 Hz. The second camera is an Infrared Cameras

48

(a) RGB (b) Thermal (c) Threshold (d) Overlay

Figure 4.5: An example of obtaining the ground truth liquid labels from the thermal camera.

From left to right: The color image from the RGBD camera; The thermal image from the

thermal camera transformed to the color pixel space; The result after thresholding the values

in the thermal image; and An overlay of the liquid pixels onto the color image.

Inc. 8640P Thermographic camera, capable of providing thermal images at 640×512 reso-

lution and 30 Hz. The thermal camera is mounted immediately above the RGBD camera’s

color sensor, and is angled such that the two cameras view the same scene from largely sim-

ilar perspectives. The Baxter robot is also equipped with joint-torque sensors, however the

signal from these sensors is too unreliable and so we did not use them in these experiments.

Calibration of the Thermal Camera

For our experiments, we use the thermal camera in combination with heated water to acquire

the ground truth pixel labels for the liquid. To do this, we must calibrate the thermal and

RGBD cameras to each other. In order to calibrate the cameras, we must know the corre-

spondence between pixels in each image. To get this correspondence, we use a checkerboard

pattern printed on poster paper attached to an aluminum sheet. We then mount a bright

light to the robot’s torso and shine that light on the checkerboard pattern while ensuring it

is visible in both cameras. The bright light is absorbed at differing rates by the light and

dark squares of the pattern, resulting in a checkerboard pattern that is visible in the thermal

49

camera3.

We then use OpenCV’s findChessboardCorners function to find the corners of the

pattern in each image, resulting in a set of correspondence points P therm and PRGB. We

compute the affine transform T between the two sets using singular-value decomposition.

Thus to find the corresponding pixel from the thermal image to the RGB image, simply

multiply as follows

Tptherm = pRGB

where ptherm is the xy coordinates of a pixel in the thermal image, and pRGB are its corre-

sponding xy coordinates in the RGB image.

It should be noted that T is only an affine transformation in pixel space, not a full

registration between the two images. That is, T is only valid for pixels at the specific depth

for which it was calibrated, and for pixels at different depths, Tptherm will not correspond

to the same object in the RGB image as ptherm in the thermal image. While methods do

exist to compute a full registration between RGB and thermal images [116], they tend to be

noisy and unreliable. For our purposes, since the liquids are always a constant depth from

the camera, we opted to use this affine transform instead, which is both faster and more

reliable, resulting in better ground truth pixel labels. While our RGBD camera does provide

depth values at each pixel, the liquid does not appear in the depth readings and thus we

could not use them to compute the full registration. Figure 4.5 shows an example of the

correspondence between the thermal image and the RGB image.

4.3.3 Objects

For the robot dataset, we used two sets of objects: source containers and target containers.

We used 3 different source containers, the cup, the bottle, and the mug, shown in 4.6a, 4.6b,

and 4.6c. The bottle and mug were both thermally insulated, and we wrapped the cup in

insulators. This was done so that the robot could use the same source container from trial

3Albeit inverted as the black squares absorb more light than the white, thus appearing brighter in the
thermal image. However we only care about the corners of the pattern, which are the same.

50

Source Containers

(a) Cup (b) Bottle (c) Mug

Target Containers

(d) Bowl (e) Fruit Bowl (f) Pan

(g) Small Bowl (h) Tan Mug (i) Redgray Mug

Figure 4.6: The objects used to collect the dataset. The first row are the three source

containers. The last two rows are the 6 target containers.

51

to trial without the object accumulating heat and appearing the same temperature as the

liquid in the thermal image. The only exception to this was the lid of the mug, which was

not thermally insulated. It was submersed in cold water between each trial to prevent heat

build-up.

We used two different types of target containers, 3 large containers and 3 small. The 3

large containers were the bowl, the fruit bowl, and the pan shown in Figures 4.6d, 4.6e, and

4.6f. The 3 small containers were the small bowl, the tan mug and the redgray mug shown in

4.6g, 4.6h, and 4.6i. Each target container was swapped out at the end of each trial to allow

it time to dissipate the heat from the hot liquid.

4.3.4 Data Collection

We collected 1,009 pouring trials with our robot. For every trial on our robot we collected

color, depth, and thermal images. Additionally we collected 20 pouring trials for evaluating

our methodology’s generalization ability with objects not present in the training set. We

collected 648 specifically for the perception task in this chapter while the remaining 361 were

collected while performing the pouring experiments in the next chapter4.

For the 648 pouring trails collected here on our robot we did the following. We fixed

the robot’s gripper over the target container and placed the source container in the gripper

pre-filled with a specific amount of liquid. The robot controlled the angle of the source by

rotating its wrist joint. We systematically varied 6 variables:

• Arm - left or right

• Source Container - cup, bottle, or mug

• Target Container - bowl, fruit bowl, or pan

4The experiments in the following chapter were conducted contemporaneously with the experiments in
this chapter and so we were able to add the data collected in those experiments to train the model-free
volume estimation networks to our dataset here since it is largely the same format.

52

• Fill Amount - empty, 30%, 60%, or 90%

• Trajectory - partial, hold, or dump

• Motion - minimal, moderate, or high

We used both arms, as well as varied the source containers. We also used the 3 large target

containers to contrast with the 3 small ones used in the other data (described in the next

chapter). In addition to various fill percents, we also included trials with no liquid to provide

negative examples (which we use for both training and evaluating our networks). The robot

followed three fixed pouring trajectories: one in which it tilted the source to parallel with the

ground and then returned to vertical; one in which it tilted the source to parallel with the

ground and held it there; and one in which the robot quickly rotated the source to pointing

almost vertically down into the target. Finally, we added motion to the data. For minimal

motion, the only motion in the scene was the robot’s with minimal background motion. For

moderate motion, a person moved around in the background of the scene while the robot

was pouring. For high motion, a person grasped and held the target container and actively

moved it around while the robot poured into it.

Test Data

We also collected 20 pouring trials on our robot to evaluate our methodology’s generalization

ability. We used the target containers in Figure 4.7 which were not included in the training

datasets described in the previous sections. For each object, we recorded 3 trials using the

mug as the source container, the robot’s right arm, and we filled the source initially 90%

full. We collected one trial for each of the pouring trajectories described previously (partial,

hold, and dump) with minimal background motion. We collected 2 more trials with each

object where we fixed the pouring trajectory (fixed as dump) and varied the motion between

moderate and high. Overall there were 5 trials per test object for a total of 20 test trials.

53

(a) Blue Bowl (b) Tan Bowl

(c) Gold Mug (d) Teal Mug

Figure 4.7: The target containers used to create the testing set.

4.3.5 Generating the Ground Truth from Thermal Images

We process the thermal images into ground truth pixel labels as follows. First, we normalize

the temperature values for each frame in the range 0 to 1. For all frames before liquid appears,

we use the normalization parameters from the first frame with liquid. We then threshold

each frame at 0.6, that is, all pixels with values lower than 0.6 are labeled not-liquid and all

pixels higher are labeled liquid.

While this results in a decent segmentation of the liquid, we can further improve it by

removing erroneously labeled liquid pixels. For example, during some sequences the robot

briefly missed the target container, causing water to fall onto the table and be absorbed by

the towel. While this is still technically liquid, we do not wish to label it as such because after

being absorbed by the towel, it’s appearance qualitatively changes. We use the PointCloud

Library’s plane fitting and point clustering functions to localize the object on the table from

the depth image, and we remove points belonging to the table5 Additionally, for some trials,

5We keep points above the lip of the target container in the image so as to not remove the stream of

54

the lid on the mug did not properly cool down between trials, and so for those trials we use a

simple depth filter to remove pixels too close to the camera (the source container is slightly

closer to the camera than the target).

4.4 Learning Methodology

We utilize deep neural networks to learn the task of detection. Specifically, we use fully-

convolutional networks (FCNs) [87], that is, networks comprised of only convolutional layers

(in addition to pooling and non-linear layers) and no fully-connected layers. FCNs are well

suited to the tasks in this paper because they produce pixel-wise labels and because they

allow for variable sized inputs and outputs. The following sections describe the different

types of inputs and outputs for our networks, as well as the different network layouts.

4.4.1 Network Input

We implemented 5 different types of input images to feed into our networks. The first was

the standard RGB image shown Figure 4.8a. This is the type of FCN input most commonly

seen in the literature [49, 125], and we use it as the primary type of input for tasks on the

simulated dataset. However, since the robot dataset is one tenth the size of the simulated

dataset, and thus is more prone to overfitting, we also desired to evaluate other types of

images that may help counteract this tendency to overfit. The most obvious type of image is

grayscale, which was very commonly used in computer vision methods prior to deep networks

[31]. Figure 4.8b shows a grayscale version of the RGB image in Figure 4.8a.

Inspired by prior work [163], we also evaluated optical flow as an input to the networks.

We computed the dense optical flow for a given frame by calling OpenCV’s calcOpticalFlowFarneback

on that frame and the frame immediately prior (for the first frame we used the following

frame instead). For the parameters to the function calcOpticalFlowFarneback, we set the

number of pyramid levels to 3 and the pyramid scale to 0.5, the window size to 15 and the

liquid as it transfers form the source to the target.

55

Inputs

(a) RGB (b) Grayscale (c) Optical Flow

(d) RGB+Optical Flow (e) Grayscale+Optical Flow

Output

(f) Visible Liquid

Figure 4.8: Different images of the same frame from the same sequence. The upper part

of this figure shows the different types of network inputs (RGB, grayscale, optical flow,

RGB+optical flow, and grayscale+optical flow). The lower part shows the desired network

outputs (pixel labels for liquid and not-liquid).

56

number of iterations to 3, and the pixel neighborhood size to 5 with a standard deviation of

1.2. Besides calling calcOpticalFlowFarneback, we did not perform any other filtering or

smoothing on the optical flow output.

The output of the dense optical flow was an xy vector for each pixel, where the vector was

the movement of that feature from the first frame to the second. We converted each vector

to polar coordinates (angle and magnitude), and further converted the angle to the sine and

cosine values for the angle, resulting in three values for each pixel. We store the resulting

vectors in a three channel image, where the first channel is the sine of each pixel’s angle, the

second is the cosine, and the third is the magnitude. An example is shown in Figure 4.8c

(converted to HSV for visualization purposes, where the angle is the hue and the magnitude

is the value). While [163] showed that optical flow at least correlates with moving liquid, it

is not clear that flow by itself provides enough context to solve the detection problem. Thus

we also evaluate combining it with RGB (Figure 4.8d) and grayscale (Figure 4.8e).

4.4.2 Network Output

The desired output of the network for detection is the locations of the visible liquid in the

scene. An example of this is shown in Figure 4.8f. Note that in the case of Figure 4.8f, most

of the liquid is occluded by the containers, so here the robot is detecting primarily the flow

of liquid as it transfers from the source to the target container. The output of each network

is a pixel-wise label confidence image, i.e., for each pixel, the network outputs its confidence

in [0, 1] that that pixel is either liquid or not-liquid.

4.4.3 Network Layouts

All of the networks we use in this paper are fully-convolutional networks (FCNs). That is,

they do not have any fully-connected layers, which means each intermediate piece of data in

the network maintains the image structure from the original input. This makes FCNs well-

suited for tasks which require pixel labels of the pixels from the input image, which our task

57

of detection requires. Additionally, they allow variable sized input and outputs, which we

take advantage of during training of our networks (described later in the evaluation section).

We use the Caffe deep learning framework [58] to implement our networks

Input Blocks

Each network we implement is built from one or more input blocks. Input blocks are combi-

nations of network layers with different types of input. Essentially each is the beginning part

of an FCN. We split our description of our neural networks into input blocks and network

types (below) to simplify it. We combine our different types of input blocks with our different

network types to create a combinatorially larger number of networks, which we then use to

solve the task of detection.

Figure 4.9 shows the 3 different types of input blocks that we use in this paper. The first

(Figure 4.9a) is the standard input block used by most of our networks. It takes as input

a single image, which it then passes through 5 conv-pool layers, which apply a convolution,

then a rectified linear filter, and finally a max pooling operation. The first two conv-pool

layers have a stride of two for the max pooling operation; all other layers have a stride of

one. The output of this input block is a tensor with shape 32× H
4
× W

4
where H and W are

the height and width of the input image respectively.

The second two input blocks are used for networks that take two different types of images

as input (e.g., RGB and optical flow). Figure 4.9b shows the early-fusion approach, which

combines the two images channel-wise and feeds them into a block otherwise identical to the

standard input block. Figure 4.9c shows the late-fusion approach, which feeds each image

into separate copies of the standard input block, and then concatenates the resulting tensors

channel-wise, resulting in a 64 × H
4
× W

4
tensor. Some work in the literature has suggested

that the late-fusion approach tends to perform better than the early-fusion approach[153],

however in this paper we evaluate this premise on our own tasks.

58

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
2
0
0
×
1
5
0

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
1
7
×
1
7

3
2
×
1
0
0
×
7
5

(a) Standard Input Block

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
2
0
0
×
1
5
0

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
1
7
×
1
7

3
2
×
1
0
0
×
7
5

(b) Early Fusion Input Block

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
2
0
0
×
1
5
0

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
1
7
×
1
7

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
2
0
0
×
1
5
0

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
5
×
5

3
2
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

3
2
@
1
7
×
1
7

3
2
×
1
0
0
×
7
5

3
2
×
1
0
0
×
7
5

(c) Late Fusion Input Block

Figure 4.9: The 3 different types of input blocks. The first is used when the network takes

only a single type of input; the second two are used when combining two different types of

input. Here gray boxes are the feature representations at each level of the network, and the

colored squares are the layers that operate on each representation. Gray boxes immediately

adjacent indicate channel-wise concatenation.

59

Network Types

We use 3 different types of networks in this paper:

FCN The first is a standard FCN shown in Figure 4.10a. It takes the output of the input

block and passes it through 2 1×1 convolutional layers and a final transposed con-

volution6 layer (written as Conv> in the figure). The 1×1 convolutional layers take

the place of fully-connected layers in a standard neural network. They take only the

channels for a single “pixel” of the input tensor, acting similar to a fully-connected

layer on a network that takes the image patch of the response region for that pixel.

Each 1×1 convolutional layer is followed by a rectified linear filter.

MF-FCN The second network type is a multi-frame FCN shown in Figure 4.10b. It takes as

input a series of sequential frames, and so has an input block for each frame. Each input

block shares parameters, e.g., the first convolutional layer in the first input block has

the exact same kernels as the first convolutional layer in the second input block, and so

on. The output tensors of all the input blocks are concatenated together channel-wise.

This is then feed to a network structured identical to the structure for the previous

network (two 1×1 convolutional layers followed by a transposed convolution layer).

LSTM-FCN The last network type is a recurrent network that utilizes a long short-term

memory (LSTM) layer [54] shown in Figure 4.10c. It takes the recurrent state, the cell

state, and the output image from the previous timestep in addition to the frame from

the current timestep as input. The output tensor from the input block is concatenated

channel-wise with the recurrent state, and with the output image from the previous

timestep after it has been passed through 3 conv-pool layers. The resulting tensor is

then fed into the LSTM layer along with the cell state. The LSTM layer uses the cell

state to “gate” the other inputs, that is, the cell state controls how the information

in the other inputs passes through the LSTM. The resulting output we refer to as the

6Sometimes referred to in the literature as upsampling or deconvolution.

60

Input Block

C
o
n
v
:
6
4
@
1
×
1

6
4
×
1
0
0
×
7
5

C
o
n
v
:
6
4
@
1
×
1

6
4
×
1
0
0
×
7
5

C
o
n
v
>
:
2
@
1
6
×
1
6

(a) FCN

Input Block

t = k

Input Block

t = 1

3
2
N

I
×
1
0
0
×
7
5

3
2
N

I
×
1
0
0
×
7
5

C
o
n
v
:
6
4
@
1
×
1

6
4
×
1
0
0
×
7
5

C
o
n
v
:
6
4
@
1
×
1

6
4
×
1
0
0
×
7
5

C
o
n
v
>
:
2
@
1
6
×
1
6

(b) MF-FCN

Input Block

C
o
n
v
-P

o
o
l:

2
0
@
5
×
5

2
0
×
2
0
0
×
1
5
0

C
o
n
v
-P

o
o
l:

2
0
@
5
×
5

2
0
×
1
0
0
×
7
5

C
o
n
v
-P

o
o
l:

2
0
@
5
×
5

3
2
N

I
×
1
0
0
×
7
5

2
0
×
1
0
0
×
7
5

2
0
×
1
0
0
×
7
5

2
0
×
1
0
0
×
7
5

Previous Recurrent State Next Recurrent State

Previous Cell State

Next Cell State
L
S
T
M

:
4

g
a
te
s
w
it
h

2
0

1
×
1

k
e
r
n
e
ls

ea
c
h

2
0
×
1
0
0
×
7
5

2
0
×
1
0
0
×
7
5

C
o
n
v
:
2
0
@
1
×
1

2
0
×
1
0
0
×
7
5

C
o
n
v
>
:
2
@
1
6
×
1
6

(c) LSTM-FCN

Figure 4.10: The three types of networks we tested. The first is a standard FCN. The second is an FCN

that takes in a series of consecutive frames. The final is a recurrent network that uses an LSTM layer to

enable the recurrence. As in Figure 4.9, the gray boxes are the feature representations at each level of the

network, and the colored squares are the layers that operate on each representation. Gray boxes immediately

adjacent indicate channel-wise concatenation (the dashed line in the MF-FCN indicates a concatenation over

the range of inputs). NI indicates the size of the output of the input block, with NI = 2 for the late-fusion

blocks and NI = 1 for all other blocks. The LSTM-FCN takes its own output from the previous timestep

as input (lower-left), convolves it through 3 layers, and concatenates it with the output of the input block.

The LSTM layer is implemented using the layout described in Figure 1 of [41]

61

“recurrent state” because it is feed back into the LSTM on the next timestep. The

LSTM layer also updates the cell state for use on the next timestep. In addition to being

used in the next timestep, this recurrent state is also fed through a 1×1 convolutional

layer and then a transposed convolution layer to generate the output image for this

timestep. To maintain the fully-convolutional nature of our network, we replace all the

gates in the LSTM layer with 1×1 convolutional layers. Please refer to Figure 1 of [41]

for a more detailed description of the LSTM layer.

4.5 Evaluation

4.5.1 Simulated Data Set

We evaluate all three of our network types on the simulated dataset. For this dataset, we

use only single input image types, so all networks are implemented with the standard input

block (Figure 4.9a). We report the results as precision and recall curves, that is, for every

value between 0 and 1, we threshold the confidence of the network’s labels and compute

the corresponding precision and recall based on the pixel-wise accuracy. We also report the

area-under-curve score for the precision and recall curves. Additionally, we report precision

and recall curves for various amounts of “slack,” i.e., we count a positive classification as

correct if it is within n pixels of a true positive pixel, where n is the slack value. This

slack evaluation allows us to differentiate networks that are able to detect the liquid, albeit

somewhat imprecisely, versus networks that fire on parts of the image not close to liquid.

We evaluate our networks on two subsets of the simulated dataset: the fixed-view set and

the multi-view set. The fixed-view set contains all the data for which the camera was directly

across from the table (camera azimuth of 0 or 180 degrees) and the camera was level with

the table (low camera height), or 1,266 of the pouring sequences. Due to the cylindrical

shape of all the source and target containers, this is the set of data for which the mapping

from the full 3D state of the simulator to a 2D representation is straightforward, which is

useful for our networks as they operate only on 2D images. The multi-view set contains all

62

data from the simulated dataset, including all camera viewpoints. The mapping from 3D to

2D for this set is not as straightforward.

We trained all three networks in a similar manner. Due to the fact that the vast majority

of pixels in any sequence are not-liquid pixels, we found that trying to train directly on

the full pouring sequences resulted in networks that settled in a local minima classifying all

pixels as not-liquid. Instead, we first pre-train each network for 61,000 iterations on crops of

the images and sequences around areas with large amounts of liquid (due to the increased

complexity of the LSTM-FCN, we initialize the pre-training LSTM-FCN with the weights

of the pre-trained single-frame FCN). We then train the networks for an additional 61,000

iterations on full images and sequences. This is only possible because our networks are fully-

convolutional, which allows them to have variable sized inputs and outputs. Additionally,

we also employ gradient weighting to counteract the large imbalance between positive and

negative pixels. We multiply the gradient from each not-liquid pixel by 0.1 so that the error

from the liquid pixels has a larger effect on the learned weights.

The full input images to our networks were scaled to 400×300. The crops taken from

these images were 160×160. The single-frame networks were trained with a batch size of 32.

The multi-frame networks were given a window of 32 frames as input and were trained with

a batch size of 1. The LSTM networks were unrolled for 32 frames during training (i.e., the

gradients were propagated back 32 timesteps) and were trained with a batch size of 5. We

used the mini-batch gradient descent method Adam [62] with a learning rate of 0.0001 and

default momentum values. All error signals were computed using the softmax with loss layer

built-into Caffe [58].

4.5.2 Robot Data Set

For the robot dataset, we evaluate our networks on the task of detection. However, detection

on the robot dataset is more challenging than on the simulated dataset as there is less data

to train on. This is a general problem in robotics with deep learning. Deep neural networks

require vast amounts of data to train on, but it is difficult to collect this much data on a

63

robot. While there have been some proposed solutions for specific problems [82, 152], there is

no generally accepted methodology for solving this issue. Here we evaluate utilizing different

types of input images to help prevent the networks from overfitting on the smaller amount

of data.

Specifically, we train networks for each of the following input types (with the correspond-

ing input block in parentheses):

• RGB (standard input block)

• Grayscale (standard input block)

• Optical Flow (standard input block)

• RGB+Optical Flow (early-fusion input block)

• Grayscale+Optical Flow (early-fusion input block)

• RGB+Optical Flow (late-fusion input block)

• Grayscale+Optical Flow (late-fusion input block)

We train LSTM networks on all of these different types of inputs, as well as the single-frame

networks since they are necessary to initialize the weights of the LSTM networks. We use

the same learning parameters and training methodology as on simulated data (pre-training

on crops, gradient weighting, etc.). For brevity, we report our results as area under the curve

for the precision and recall curves for each network.

Unlike for the simulated dataset, where the train and test sets are created by dividing

the dataset, for the robot dataset, we created an explicit test set. To test the robot’s

generalization ability, we used target containers that did not appear in the train set. We

train all networks on the entire dataset and test on this explicit test set. To gauge the extent

to which our networks overfit to their training set, we report the performance of the networks

on both the train set and the test set.

64

4.5.3 Baseline for the Robot Data Set

For comparison, we implement as a baseline the liquid detection methodology described in

[163] for the detection task on the real robot dataset. We briefly describe that implementation

here. For each image in a sequence, we compute the dense optical flow using the same

methodology as for the neural network method. Next, we compute the magnitude of the

flow vector for each pixel, and create a resulting flow magnitude image. We then perform

the following steps to filter the image as described in Section II.A of [163]:

1. Erode the image with a square kernel of size 3.

2. Dilate the image with a square kernel of size 3.

3. Apply a temporal filter with size 5 to each pixel, replacing the value in the pixel with

the OR of all the pixels covered by the filter.

4. Dilate the image with a square kernel of size 7.

5. Erode the image with a square kernel of size 11.

6. Dilate the image with a square kernel of size 13.

7. Convolve the image with a 12×1 filter (12 pixels high, 1 wide) where each value in the

filter is 1/12.

8. Use the result of the prior step to apply as a mask to the result of step 3.

9. Apply the same filter to the result as in step 7.

10. Scale the magnitudes in the resulting image to be in the range 0 to 1.

Note that some of the hyper parameters we used are adjusted from the values used in [163]

to account for the difference in image sizes (640×480 vs. 400×300 in this paper).

65

There are two primary differences between our implementation and the implementation

in [163]. The first is the way in which background motion is removed. In that paper, the

authors utilized stereo RGB cameras to localize the optical flow in 3D, and then fixed a

region of interest around the liquid, removing all motion not in that region. In our work, we

use a single camera, however our camera also uses structured infrared light combined with

an infrared camera to determine the depth of each point in the image. In order to remove

background motion, we generate a mask by including only pixels whose value is closer than

one meter from the camera. We then smooth this mask by eroding, then dilating twice, then

eroding again, all with a square kernel of size 7. This mask is applied to the optical flow

before applying the filter steps above.

The second difference between our implementation and that in [163] is that, in order to be

comparable to our methodology, it must compute a distribution over the class labels, rather

than a single label. In [163] they compute only a binary mask for each image. However, in the

following section we utilize precision-recall curves to compare our methods, which requires

a probability distribution over class labels to compute. We approximate this distribution

using the magnitude of the flow at each pixel, that is, the more a pixel is moving, the more

likely it is liquid.

4.6 Results

4.6.1 Simulated Data Set

Figures 4.11 and 4.12 show the results of training our networks for the detection task on

the simulated dataset. Figure 4.11 shows the output of each network on example frames.

From this figure it is clear that all networks have the ability to at least detect the presence of

liquid. However, it is also clear that the MF-FCN is superior to the single-frame FCN, and the

LSTM-FCN is superior to the MF-FCN. This aligns with our expectations: As we integrate

more temporal information (the FCN sees no temporal information, the MF-FCN sees a

small window, and the LSTM-FCN has a full recurrent state), the networks perform better.

66

Input Labels FCN MF-FCN LSTM-FCN

Figure 4.11: Example frames from the 3 network types on the detection task on the simulated

dataset. The sequences shown here were randomly selected from the test set and the frame

with the largest amount of liquid visible was selected. The last sequence was selected to

show how the networks perform when no liquid is present.

67

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5

AUC=7.9%

(a) FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5

AUC=12.0%

(b) MF-FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5AUC=47.5%

(c) LSTM-FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5

AUC=31.4%

(d) MV LSTM-FCN

Figure 4.12: Precision-recall curves for the simulated dataset. The first three show the curves

for the three network types on the fixed-view subset. The last graph shows the performance of

the LSTM network on the multi-view subset. The different lines show the different amounts

of slack, i.e., how far a positive classification can be from a true positive to still count as

correct. The area under the curve (AUC) is shown for the 0 slack curve.

68

The quantitative results in Figure 4.12 confirm these qualitative results. For reference, all

the networks have a very similar number of parameters (414,336, 477,824, and 437,508 for

the FCN, MF-FCN, and LSTM-FCN networks respectively), so it is clear that the success of

the LSTM-FCN is not simply due to having more parameters and “remembering” the data

better, but that it actually integrates the temporal information better.

Since the LSTM-FCN outperformed the other two network types by a significant margin,

we evaluated it on the multi-view set from the simulated dataset. The performance is shown

in Figure 4.12d. Even with the large increase in camera viewpoints, the network is still able

to detect liquid with only a relatively small loss in performance. These results combined

with the performance of the LSTM-FCN in Figure 4.12c clearly show that it is the best

network for performing detection and is the reason we focus on this network for detection

on the robot dataset.

4.6.2 Robot Data Set

Figure 4.14 shows example output on the test set of the LSTM-FCN with different types of

input. From this figure, it appears that the best performing network is the one that takes

as input grayscale images plus optical flow with the early-fusion input block. Indeed, the

numbers in the table in Figure 4.13b confirm this. Interestingly, the grayscale + optical flow

early-fusion network is the second worst performing network on the train set, but performs

the best on the test set. This suggests that the other networks tend to overfit more to the

training distribution and as a result don’t generalize to new data very well.

The table in Figure 4.13a reflects a similar, albeit slightly different, result for single-frame

FCNs. While the grayscale plus optical flow early-fusion network has one of the highest

performances on the test set, it is outperformed by the network that takes only optical flow

as input. As counter-intuitive as it may seem, this makes some sense. The single-frame

FCN does not have the ability to view any temporal information, however since optical flow

is computed between two frames, it implicitly encodes temporal information in the input

to the network. As we saw in the section on detection on the simulated dataset, temporal

69

Optical Flow

train
test

None Early-Fusion Late-Fusion

RGB 76.1%
18.2%

63.3%
17.5%

48.8%
25.1%

Gray 70.7%
22.0%

57.0%
30.5%

73.8%
24.1%

Neither 41.3%
35.1%

(a) FCN

Optical Flow

train
test

None Early-Fusion Late-Fusion

RGB 95.1%
23.7%

48.3%
13.4%

93.1%
33.1%

Gray 82.9%
17.9%

81.5%
49.4%

92.8%
41.7%

Neither 82.7%
37.4%

(b) LSTM-FCN

Figure 4.13: The area under the curve (AUC) for the precision-recall curves for the networks

for the detection task on the robot dataset. The top table shows the AUC for the single-

frame FCN; the bottom shows the AUC for the LSTM-FCN. The tables show the AUC for

different types of input, with rows for different types of image data (RGB or grayscale) and

the columns for different types of optical flow (none, early-fusion, or late-fusion). Each cell

shows the AUC on the train set (upper) and the AUC on the test set (lower), all computed

with 0 slack.

70

C
o
lo

r
L

a
b

e
ls

R
G

B
G

ra
y

R
G

B
+

F
lo

w

E
a
rly

-F
u

s.

G
ra

y
+

F
lo

w

E
a
rly

-F
u

s.

R
G

B
+

F
lo

w

L
a
te-F

u
s.

G
ra

y
+

F
lo

w

L
a
te-F

u
s.

F
lo

w
B

a
selin

e

Figure 4.14: Example frames for the LSTM-FCN for the detection task on the robot dataset

with different types of input images. The first row shows the color image for reference and

the row immediately below it shows the ground truth. All these images are from the test set

with target object not seen in the train set. The last row shows the output of the baseline.

71

information is very important for the detection task and the network that takes only optical

flow is forced to only use temporal information, thus allowing it to generalize to new data

better. In the case of the LSTM-FCN, this effect is less pronounced because the network can

store temporal information in its recurrent state, although performance of the optical flow

only network is still better than performance of the networks that do not use optical flow in

any way.

Baseline Comparison

We also computed the performance of the baseline method based on the methodology of

[163]. It achieved 5.9% AUC on the training set and 8.3% AUC on the testing set. The

last row of Figure 4.14 shows some examples of the output of the baseline. While it is

clear from the figure that the baseline is at least somewhat able to detect liquid, it does

not perform nearly as well as the neural network based methods. However, it is important

to note that this method was developed by [163] for a slightly different task in a slightly

different environment and using stereo cameras rather than monocular, so it would not be

expected to perform as well on this task. Nonetheless, it still provides a good baseline to

compare our methods against.

The biggest advantage of the baseline method over learning-based methods is it’s re-

silience to overfitting due to its lack of trained parameters. However, this lack of learning

also means it can’t adapt to the problem as well. Inspired by the resilience of the baseline

method, we combined it with our deep neural network architectures to soften the effect of

overfitting while maintaining the adaptability of learning-based methods. As shown in Figure

4.13b, the methods using optical flow as an input tended to have a smaller disparity between

their training set and testing set performance. While this didn’t completely alleviate all

overfitting, it is clear that combining these two methods is superior to using either alone.

72

0 5 10 15 20 25

Iteration (x1,000)

10

20

30

40

50

A
re

a
 U

n
d

e
r

th
e

 C
u

rc
e

 (
%

)

No-Sim
Sim-Init

Figure 4.15: The area under the curve on the test set at each iteration of training. The red

line shows the performance of the LSTM-FCN trained solely on the robot dataset; the blue

line shows the performance of the LSTM-FCN initialized from the simulated dataset.

Initializing on Simulated Data

We evaluated whether or not the simulated data set, with its larger size, could be used to

pre-train the weights of a network that would then be trained on the robot data. Since the

LSTM-FCN with grayscale plus optical flow early-fusion as input generalized the best in the

previous section, we trained another LSTM-FCN on the same type of input. However, instead

of pre-training it on cropped images from the robot dataset, we went through the full training

process for a detection network on the simulated dataset, and used those weights to initialize

this network, which was then trained on the robot dataset. The networks converged to the

same performance after 61,000 iterations of training. Figure 4.15 shows the performance of

both the network not initialized with any simulated data as compared to the performance of

this network on the test set at each iteration. The network initialized with simulated data

does seem to converge slightly faster, although not by a large amount.

73

4.7 Discussion

In this chapter, we showed how a robot can solve the task of detection for liquids using deep

learning. We evaluated 3 different network architectures, FCN, MF-FCN, and LSTM-FCN,

all of which integrated different amounts of temporal information. We also evaluated eight

different types of input images to our networks, including RGB and grayscale combined

with optical flow. We tested these networks on both data we generated in a realistic liquid

simulator and on data we collected from a real robot.

Our results clearly show that integrating temporal information is crucial for perceiving

and reasoning about liquids. The multi-frame FCN was able to outperform the single-frame

FCN because it incorporated a window of frames, giving it more temporal information. Fur-

thermore, the LSTM-FCN is able to learn to remember relevant information in its recurrent

state, enabling it to outperform the MF-FCN since it keeps information much longer than

the fixed window of the MF-FCN.

The results also showed that, for the purposes of generalizing to new objects and settings,

standard RGB images lead to overfitting and are not as well suited as images converted to

grayscale and early-fused with optical flow. Networks trained on RGB images tended to

perform very well on sequences drawn from the same distribution as their training set, but

their performance dropped considerably when those sequences were drawn from a slightly

different setting. However, while networks trained on grayscale early-fused with optical flow

did not reach the same level of performance on data taken from the training distribution,

their generalization to new settings was significantly better.

In this chapter we discovered many new insights on perceiving liquids. First, we found

that deep learning can be applied to address this challenging perception task with the right

architecture. Second, we introduced a novel technique using a thermographic camera and

hot water to automatically generate ground truth labels for our real robot dataset. Third, we

investigated different deep network structures and showed through experimental evaluation

how different types and combinations of inputs affect a networks ability to solve the detection

74

task. In the following chapter we use these insights to apply our perception model to the

pouring control task.

4.7.1 Practical Takeaways

While generating the results for this chapter, we also gained several technical insights. The

first major issue we encountered in this research was the negative label bias. In the images

we used, the vast majority of the pixels were non-liquid. When we trained networks from

scratch on these images, they all settled in a local minima, labelling all pixels as non-liquid

and none as liquid, even when they contained liquid. We multiplied the loss for liquid pixels

by a large value to encourage the network to not misclassify them, but by itself this did not

have an effect (in this chapter we used a 10:1 ratio for liquid pixel error versus non-liquid

pixel error, but we increased this ratio as high as 10,000:1 with no noticeable effect when

used alone). What did work was first training the networks on crops around large amounts

of liquid pixels, which balanced the ratio of liquid to non-liquid pixels. This combined with

weighting the loss on liquid pixels higher had a significant effect on performance. On the

other hand, changing variables such as the number of kernels in a layer, the size of the kernels,

or even the number of convolutional layers in network had little effect on the performance

of the networks.

Since these results were generated, the technique of domain randomization [149] has be-

come a popular technique for enabling sim-to-real transfer. This is the technique of training

a neural network in a simulation environment while varying the visual properties of said

environment. This forces the network to operate under a wide variety of visual conditions,

which then allows it to work when applied in a real environment. In this chapter we applied

domain randomization (before it was called that) to our generation of the simulated dataset.

However, we found that it had only a small effect on the performance of our network on the

real data (it converged slightly faster when training on real data, but did not directly trans-

fer). While deep networks require a lot of data to train, we generated 4.5 million images or

about 2.5TB of data. For the LSTM-FCN, with a batch size of 5 and unroll of 32 timesteps

75

during training for 61,000 iterations, it would have been trained on approximately 9.7 mil-

lion images, which means it would have seen each image in our dataset about twice. This

makes it unlikely that generating more data would have improved the sim-to-real transfer.

Ultimately, what we discovered here was that varying the visual properties of the data can

only help a neural network so much; if the visual parameter space does not encompass the

real environment, then it will be more difficult for sim-to-real transfer.

76

Chapter 5

LEARNING TO SEE & POUR: COMBINING
MANIPULATION AND PERCEPTION

In the previous chapters we examined two different components of a robotic liquid control

pipeline. In chapter 3 we looked at how a robot can pour precise amounts of liquid given a

means to measure the rate of transfer from the source container to the target. In chapter 4 we

examined several methods for using fully convolutional neural networks (FCNs) to solve the

detection task, i.e., labelling each pixel in an RGB image as liquid if it is liquid or not-liquid

if not. In this chapter we reexamine the pouring task, however here we combine it with the

perception pipeline we developed in chapter 4.

Here we introduce a framework to allow robots to pour specific amounts of liquid using

only RGB feedback. The intuition behind our approach is based on the insight that people

strongly rely on visual cues when pouring liquids. For example, a health study revealed

that the amount of wine people pour into a glass is strongly biased by visual factors such

as the shape of the glass or the color of the wine [156]. We thus propose a framework

that uses visual feedback in a closed-loop pouring controller. Specifically, we train a deep

neural network structure to estimate the amount of liquid in a cup from raw visual data.

Our network structure has two stages. In the first stage, a network detects which pixels

in a camera image contain water. The output of the detection network is fed into another

network that estimates the amount of liquid already in the container. This amount is used

as real-time feedback in a PID controller that is tasked to pour a desired amount of water

into a cup.

To generate labeled data needed for the neural networks, we use the experimental setup

0The contents of this chapter were published in [132].

77

Figure 5.1: The Baxter robot used in our experiments. In its right gripper it holds the

cup used as the source container. On the table in front of the robot are the three target

containers (from left to right): the small bowl, tan mug, and redgray mug.

from the previous chapter that uses a thermal camera calibrated with an RGBD camera to

automatically label which pixels in the color frames contain (heated) water. Experiments

with a Baxter robot pouring water into three different containers (two mugs and one bowl)

indicate that this approach allows us to train deep networks that provide sufficiently accurate

volume estimates for the pouring task.

5.1 Technical Approach

5.1.1 Task Overview

In the experiments in this chapter, the robot is tasked with pouring a specific amount of

liquid from a source container into a target container. This task is more difficult than prior

work on robotic pouring which primarily focuses on pouring all the contents of the source

container into the target container, whereas we focus on pouring only a limited amount from

the source containing an unknown initial amount of liquid. To accomplish this, the robot

78

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

1
7×

1
7

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
2
0

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
2
0

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
2
0

5×
5

k
e
r
n
e
ls

L
S
T
M

2
0

1×
1

k
e
r
n
e
ls

1
×
1

C
o
n
vo

lu
tio

n
6
4

k
e
r
n
e
ls

D
eco

n
vo

lu
tio

n
6
4

1
6×

1
6

k
e
r
n
e
lsRecurrent

State Cell
State

Recurrent
StateCell

State

C
o
n
ca

ten
a
tio

n
c
h
a
n
n
e
l-w

ise

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

F
u
lly

C
o
n
n
ected

2
5
6

n
o
d
e
s

F
u
lly

C
o
n
n
ected

2
5
6

n
o
d
e
s

F
u
lly

C
o
n
n
ected

1
0
0

n
o
d
e
s

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

1
7×

1
7

k
e
r
n
e
ls

............

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

5×
5

k
e
r
n
e
ls

C
o
n
vo

lu
tio

n
3
2

1
7×

1
7

k
e
r
n
e
ls

Crop
160×160

HMM PID
Controller

Robot
Control
Signal

zt vt

Figure 5.2: The entire robot control system using the recurrent neural network for detections

and the multi-frame network for volume estimation. The recurrent detection network (top)

takes both the color image and its own detections from the previous time step and produces

a liquid detection heatmap. The multi-frame network (center) takes a sequence of detections

cropped around the target container and outputs a distribution over volumes in the container.

The output of this network is fed into a HMM, which estimates the volume of the container.

This is passed into a PID controller, which computes the robot’s control signal.

79

(a) RGB (b) Thermal (c) Thresholded thermal (d) Network detections

Figure 5.3: An example frame from a pouring sequence. The left image shows the color

camera from the robot’s perspective, the left-middle image shows a heatmap of the thermal

camera after it has been registered to the color camera, the right-middle image shows the

water labeled by thresholding the thermal image, and the right image shows the output of

the detection network based on the RGB input.

must use visual feedback to continuously estimate the current volume of liquid in the target

container. Our approach has 3 main components: First the robot detects which pixels in its

visual field are liquid and which are not. Next the robot uses these detections to estimate the

volume of liquid in the target container. Finally, the robot feeds these volume estimates into

a controller to pour the liquid into the target. Figure 5.2 shows a diagram of this process. We

structure the problem in this manner as opposed to simply training one end-to-end network

as it allows us to train and evaluate each of the individual components of the system, which

can give us better insight into its operation.

5.1.2 Pixel-Wise Liquid Detection

In order for the robot to solve this task, the robot must first classify each pixel in the image as

liquid or not-liquid. In the prior chapter we developed two methods for acquiring these pixel

labels: a thermographic camera in conjunction with heated water, and a fully-convolutional

neural network[87]. While the thermal camera works well for generating pixel labels, it is

also rather expensive and must be registered to an RGBD sensor. We also evaluate using

80

a color camera to acquire the pixel labels. To do this, we use the deep neural network

from the previous chapter. Specifically, we use the LSTM-FCN (i.e., the recurrent network)

because it had the best performance. Additionally, we use RGB images as input. The

results in chapter 4 showed that the input type that had the best generalization performance

was the grayscale with optical flow early-fusion. However the RGB input had the highest

performance when evaluated on objects it had seen before. Here we assume the robot has a

chance to interact with the target containers prior to evaluation, so we use RGB as input.

The network layout is shown in the upper part of figure 5.2.

5.1.3 Volume Estimation During Pouring Sequences

We propose two different methods for estimating the volume of liquid in a target container.

The first is a model-based method, which assumes we have access to a 3D model of the

target container and infers the height of the liquid based on the camera pose and binary

pixel labels. The second is a model-free method that trains a neural network to regress to

the volume of liquid in the target container given labeled pixels.

Filtering using a HMM

Before describing our volume estimation methods, we first describe our filtering method,

which will make our notation in the following sections clearer. Because of the temporal

nature of the task, we utilize a hidden Markov model (HMM) to filter the volume estimates

over time. Let t be the current timestep, vt be the volume of liquid in the target container at

time t (the hidden state in the HMM), and let zt be the observation at time t (described in

detail in the following sections). To compute the probability distribution over vt we can apply

Bayes rule. HMMs make the Markovian assumption, that is, vt is conditionally independent

of all prior observations and states given vt−1 and zt is conditionally independent of all prior

observations and states given vt. Thus we can write the posterior as

P (vt|zt, vt−1) ∝ P (zt|vt)P (vt|vt−1).

81

For this chapter, we represent the distribution over v as a histogram over a fixed range, and

so the transition probability P (vt|vt−1) is a summation over the bins in the histogram

P (vt|vt−1) =
∑
i

P (vt|vt−1 = i)P (vt−1 = i). (5.1)

The transition probability P (vt|vt−1) is inferred from the training data.

The following two sections describe how we compute the observation probability p(zt|vt),

which varies for the model-based and model-free methods. During task execution, we com-

pute the volume of liquid at a given timestep t by taking the median over the posterior

distribution on vt
1.

Model-Based Volume Estimation

Our model-based method for estimating the volume of liquid in a target container assumes

we have a 3D model of the container and that we can use the pointcloud from our RGBD

sensor to find its pose in the scene. The observation zt for this method is the set of pixel-wise

liquid labels for the image at time t, computed as described in section 5.1.2. Intuitively, to

compute the observation probabilities, this method compares the actual observation zt to

what the robot would expect to see if the volume of liquid in the container were vt.

More formally, we compute P (zt|vt = i) as follows. First, we assume conditional inde-

pendence between every pixel pjt ∈ zt. Thus the observation probability becomes

P (zt|vt = i) =
∏
j

P (pjt |vt = i).

For this product, we only consider the set of pixels that view the inside of the container,

i.e., the set of pixels that could potentially be labelled liquid. An example of this is shown

in Figure 5.4. The dashed lines show the pixels whose rays intersect the interior of the

container, whereas the gray areas represent the pixels whose rays do not. Since the pixels

1We also evaluated using other methods such as the expectation or maximum likelihood, but we empiri-
cally determined that median produced more stable and less skewed estimates, although all the methods
only had minor differences.

82

ht

Figure 5.4: Diagram of the camera looking into the target container. The blue shows where

the liquid is expected to be, given a volume and the corresponding fill height, ht. The blue

lines show pixels expected to be classified as liquid and the orange lines show pixels that are

expected to be classified as not-liquid. The gray shows pixels outside the container and not

used by our algorithm.

83

in the gray area can not see liquid in the container, they have no effect on the observation

probability and thus are not considered.

To compute P (pjt |vt = i), we use the 3D mesh of the container and fill it with vt = i

volume of liquid. We then project that liquid back into the camera to get the expected pixel

label p̂jt . The observation probability is then

P (pjt |vt = i) =P (pjt |p̂
j
t = liquid)P (p̂jt = liquid|vt = i) +

P (pjt |p̂
j
t = not-liquid)P (p̂jt = not-liquid|vt = i).

To compute P (p̂jt |vt = i), we assume that the liquid is resting level in the container2. At

rest, the surface of the liquid will be parallel to the ground, and so we find the height ht of

the surface. We place a plane parallel to the ground at ht and check whether the ray from

pixel pjt intersects that plane prior to intersecting the 3D mesh of the container. We set

P (p̂jt = liquid|vt = i) to be 1 if the ray intersects the plane first (and 0 otherwise), and we

set P (p̂jt = not-liquid|vt = i) to be 1 if the ray intersects the mesh first (and 0 otherwise).

Figure 5.4 shows an example. The blue dashed lines show pixels that intersect the plane,

whereas the orange dashed lines show pixels that intersect the mesh before intersecting the

plane. To compute P (pjt |p̂
j
t), we use the following table:

pjt

Liquid Not-liquid

p̂jt
Liquid 90% 10%

Not-liquid 20% 80%

To compute the height of the surface of the liquid ht, we use binary search in combination

with the signed tetrahedron volume method [167]. That is, given a height ht, we can compute

the volume of the interior of the container below that height using its 3D mesh by applying

the method described in [167]. This volume under the plane corresponds to the volume of

2While not strictly true throughout the entire duration of a pour, this assumption still allows for a good
measurement.

84

liquid resting in the container. We then perform binary search over the height to find the ht

that corresponds to vt = i. Note that because the distribution over vt is a histogram with a

fixed set of bins, we can precompute the height for each value of vt for each 3D mesh.

Model-Free Volume Estimation

Our model-free method replaces the object pose inference of the model-based method with

a neural network. The neural network takes in pixel labels and produces a volume estimate.

We use only the output of the detection network described in section 5.1.2 for the pixel labels,

so we directly feed the heatmap over the pixels into the volume estimation network. We also

evaluate adding as inputs either the color or depth images, which we append channel-wise

to the pixel labels before feeding into the network. We crop the input to the network around

the target container.

Formally, the network computes the function f(zt) = ṽt, where zt is the observation and

ṽt is an estimate of the volume in the container. The estimate ṽt is used as the observation

in the HMM, i.e., we use P (ṽt|vt) in place of P (zt|vt) since ṽt is a function of the observation

zt. The output of the network is a distribution over ṽt. To compute P (ṽt|vt), we sum over

all values for ṽt

P (ṽt|vt) =
∑
k

P (vt|ṽt = k)P (ṽt = k)

where P (ṽt = k) is computed by the network. The conditional probability P (vt|ṽt = k) is

inferred from the training data.

We evaluated three different network architectures: a single-frame convolutional neural

network (CNN)3, a multi-frame CNN, and a recurrent LSTM CNN. We use the Caffe deep

learning framework [58] to implement our networks

Single-Frame CNN: The single-frame network is a standard CNN that takes as input a

single image. It then passes the image through 5 convolution layers, each of which is followed

3Note that for the volume estimation networks, we use CNNs and not FCNs as we do for the detection
network. This is because the output of the volume estimator is a single value, not a value for each pixel,
so a CNN is more suited to the task.

85

by a max pooling and rectified linear layer. Every layer has a stride of 1 except for the first

3 max pooling layers, which have a stride of 2. It passes the result through 3 fully connected

layers, each followed by a rectified linear layer. These last 3 layers are also followed by

dropout layers during training, with a drop rate of 10%. The single-frame network (CNN) is

similar to the multi-frame network shown in the center row of Figure 5.2, with the exception

that it only takes a single frame and does not have the concatenation layer or the convolution

layer immediately following it.

Multi-Frame CNN: The multi-frame network (MF-CNN) is shown in the center row of

Figure 5.2. It takes as input a set of temporally sequential images. Each image is passed

independently through the first 5 layers of the network, which are identical to the first 5 con-

volutional layers in the single-frame network. Next, the result of each image is concatenated

channel-wise and passed through another convolution layer (which is also followed by max

pooling and rectified linear layers). This is then fed into 3 fully connected layers, which are

identical to the last 3 layers of the single-frame CNN.

Recurrent LSTM CNN: The LSTM-CNN is identical to the single-frame network, with

the exception that we replace the first fully connected layer with the LSTM layer. In addition

to the output of the convolution layers, the LSTM layer also takes as input the recurrent

state from the previous timestep, as well as the cell state from the previous timestep. Each

gate in the LSTM layer is a 256 node fully connected layer. Please refer to Figure 1 of [41]

for a detailed layout of the LSTM layer.

5.1.4 Robot Controller

For this chapter, we want to investigate whether, given good real-time feedback, pouring can

be performed with a simple controller. We place a table in front of the robot, and on the

table we place the target container. We fix the source container in the robot’s right gripper

and pre-fill it with a specific amount of water not known to the robot. We also fix the robot’s

arm such that the source container is above and slightly to the side of the target container.

To pour, the robot controls the angle of its wrist joint, thus directly controlling the angle

86

of the source container. We use a modified PID controller to execute the pour. This is

in contrast to the policy learned via guided policy search we used in chapter 3, which was

necessary to handle the unknown, variable sensor delay present there, however that delay is

not present here, so a PID controller suffices. For the PID controller, the robot first tilts the

container to a pre-specified angle (we use 75 degrees from vertical), then begins running the

PID controller, using the difference between the target volume and the current volume in

the target container as its error signal, which it uses to set the angular velocity of its wrist

joint. Since pouring is a non-reversible task (liquid cannot return to the source once it has

left), the integral term does nothing except push the robot to pour faster, so we set its gain

to 04. We set the proportional and derivative gains to 0.01π
180

and 0.2π
180

respectively, which we

empirically determined to perform well for the pouring task. Once the target volume has

been reached, the robot stops the PID controller and rotates the source container until it is

vertical once again.

5.1.5 Implementation Details

Finding the Container in the Scene

Both our model-based and model-free methods require finding the target container on the

table in front of the robot (though only the model-based needs a 3D model). To find the

container, we use the robot’s RGBD camera to capture a pointcloud of the scene in front of

the robot and then utilize functions in the PointCloud Library (PCL) [128] to find the plane

of the table and cluster the points on top of it. To acquire the pose for the model-based

method, we use iterative closest points to find the 3D pose of the model in the scene. Next

we use this pose to label each pixel in the image as either inner (inside of the container),

outer (outside of the container), or neither.

4We refer to the controller as a PID controller for easier comprehension by the reader, but it is technically
a PD controller.

87

Generating Ground Truth Pixel Labels

We use a thermal camera in combination with water heated to approximately 93◦Celsius to

get the ground truth pixel labels for the liquid. To register the thermal image to the color

image, we use a paper checkerboard pattern attached to a 61×61 centimeter metal aluminum

sheet. We then direct a small, bright spotlight at the pattern, causing a heat differential

between the white and black squares, which is visible as a checkerboard pattern in the

thermal image. We use OpenCV’s built-in function for finding corners of a checkerboard

to find correspondence points and compute an affine transformation5. We use an adaptive

threshold based on the average temperature of the pixels associated with the target container

(which includes the pixels for the liquid in the container). The result of this is a binary image

with each pixel classified as either liquid or not-liquid. Figure 5.3 shows a color image, its

corresponding thermal image transformed to the color pixel space, and a simple temperature

threshold of the thermal image. Note that the thermal camera provides quite reliable pixel

labels for liquid detection with minimal false positives

Acquiring Ground Truth Volume Estimates for Training and Evaluation

In order to train our networks in the previous section, and to evaluate both our model-based

and model-free methods, we need a baseline ground truth volume estimation. To generate

this baseline, we utilize the thermal camera in combination with the model-based method

described in section 5.1.3. However, since this analysis can be done a posteriori and does not

need to be real-time, we can use the benefit of hindsight to improve our estimates, i.e., future

observations can improve the current state estimate. While we acknowledge that this method

does not guarantee perfect volume estimates, the combined accuracy of the thermal camera

and after-the-fact processing yield robust estimates suitable for training and evaluation.

To compute this baseline we replace the forward method for HMM inference described

5While there has been prior work on performing full registration between thermal and color images [116],
because the depth of the pour is fixed, we opted for this simpler approach. We cannot use the depth sensor
because water does not appear on the depth image.

88

in section 5.1.3 with Viterbi decoding [12]. We replace the summation in equation 5.1 in

the computation of the prior P (vt|vt−1) with a max to compute the probability of each

sequence. We use a corresponding argmax to compute the previous state from the current

state, starting at the last time step and working backwards. At the last time step, we start

with the most probable state. Thus using this method we can generate a reliable ground

truth estimate of the volume of liquid in the target container over the duration of a pouring

sequence to use for training our learning algorithms and evaluating our methodology.

5.2 Experiments & Results

5.2.1 Robotic Platform

All of our experiments were performed on our Rethink Robotics Baxter Research Robot,

shown in Figure 5.1. It is equipped with two 7-dof arms, each with an electric parallel

gripper. For the experiments in this paper, we use exclusively the right arm. The robot

has an Asus Xtion Pro mounted on its upper-torso, directly below its screen, which includes

both an RGB color camera and a depth sensor, each of which produce 640×480 images at

30Hz. Mounted on the robot immediately above the Xtion sensor is an Infrared Cameras

Inc. 8640P Thermal Imaging Camera, which reads the temperature of the image at each

pixel and outputs a 640×512 image at 30Hz.

5.2.2 Experimental Setup

For all experiments, the robot poured from the cup shown in its gripper in Figure 5.1. We

used three target containers, also shown in Figure 5.1. We collected a dataset of pours using

this setup in order to both train and evaluate our methodologies. We collected a total of

279 pouring sequences, in which the robot attempted to pour 250ml of water into the target

using the thermal camera with the model-based method, with the initial amount in the cup

varied between 300ml, 350ml, and 400ml. Each sequence lasted exactly 25 seconds and was

recorded on both the thermal and RGBD cameras at 30Hz. We randomly divided the data

89

0 100 200 300 400

Scale (ml)

0

100

200

300

400

T
h
e
rm

a
l-
M

o
d
e
l
(m

l)

redgray mug

small bowl

tan mug

Figure 5.5: The plot shows the scale reading compared to the thermal camera with the model

based method for each of the target containers.

75%-25% into train and evaluation sets. After the data was collected, we used the thermal

images to generate ground truth pixel labels as well as we used the Viterbi decoding method

described in section 5.1.5 to generate ground truth volume estimates, which we compare

against for the remainder of this section.

5.2.3 Validating Thermographic Ground Truth Methodology

Before we can evaluate our methodologies, we must first verify that our method for generating

ground truth volume estimates is accurate. We can compare a static volume measurement

with a scale to static estimates from the thermal camera combined with the model-based

method to gauge the accuracy of our method. Figure 5.5 shows a comparison between

measurements from a scale (x-axis) and the corresponding measurement from the thermal

camera using the model-based method (y-axis) for each of the three target containers. The

black dashed line shows a 1:1 correspondence for reference. From the figure it is clear that

the model-based method overestimates the volume for each container. In order to make our

90

The
rm

al

D
et

ec
tio

n

0
5

10
15
20
25
30
35
40
45
50
55
60

E
rr

o
r

(m
l)

(a) Model-Based

C
N
N

M
F-C

N
N

LS
TM

-C
N
N

0
5

10
15
20
25
30
35
40
45
50
55
60

E
rr

o
r

(m
l)

Det Only

RGB+Det

Depth+Det

(b) Model-Free

Figure 5.6: Root mean squared error in milliliters of each of the methods for volume esti-

mation. The left plot shows the error for the model-based method using either the thermal

image or the output of the detection network as pixel labels. The right plot shows the error

for the model-free methods when the networks take as input only the liquid detections (red),

the liquid detections plus the color image (green), and the liquid detections plus the depth

image (blue).

baseline as accurate as possible, we fit a linear model for each container and use that to

calibrate the baseline ground truth estimates described in section 5.1.5.

Note that we only use this calibration for computing the ground truth baseline, and

not when computing estimates for the model-based methodology. This is done on purpose,

since a robot would not be able to pre-calibrate its estimates for every object in a household

setting. While it might be reasonable to assume that a robot can acquire a 3D model for each

target container via existing object databases, we believe that performing a pre-calibration

using a scale and multiple pouring experiments for each object would be overly demanding.

91

0 200 400 600

Timestep

0

100

200

300

400

V
o

lu
m

e
 (

m
l)

Thermal

Detection

MF-CNN

Baseline

(a) Small bowl

0 200 400 600

Timestep

0

100

200

300

400

Thermal

Detection

MF-CNN

Baseline

(b) Tan mug

0 200 400 600

Timestep

0

100

200

300

400

Thermal

Detection

MF-CNN

Baseline

(c) Redgray mug

Figure 5.7: The volume estimates for the two model-based methods and the multi-frame

detection only model-free network. The black dashed line is the baseline ground truth. We

randomly selected one sequence for each target container from our test set to display here.

Best viewed in color.

5.2.4 Comparing Methods for Volume Estimation

For our model-free methodology, every network was trained using the mini-batch gradient

descent method Adam [62] with a learning rate of 0.0001 and default momentum values. Each

network was trained for 61,000 iterations, at which point performance tended to plateau. All

single-frame networks were trained using a batch size of 32; all multi-frame networks with a

window of 32 and batch size of 5; and all LSTM networks with a batch size of 5 and unrolled

for 32 frames during training. The input to each network was a 160 × 160 resolution crop

of either the liquid detections only, the color image and detections appended channel-wise,

or the depth image and detections appended channel-wise. We discretize the output to 100

values for the range of 0 to 400ml (none of our experiments use volumes greater than 400ml)

and train the network to classify the volume. The error signal was computed using the

softmax with loss layer built into Caffe [58]. In our data we noticed that approximately

2
3

of the time during each pouring sequence was spent either before or after pouring had

92

occurred, with little change in the volume. We found that the best results could be achieved

by first pre-training each network on data from the middle of each sequence during which the

volume was actively changing, and then training on data sampled from the entire sequence.

We discretize vt and the output of the network into 20 values6.

Figure 5.6 shows the root mean squared error in milliliters on the testing data for each

method with respect to our baseline ground truth comparison described in section 5.1.5. It

should be noted that although both our baseline ground truth estimate and the thermal

estimate in Figure 5.6a are derived from the same data, the difference between the two can

be largely attributed to the fact that the baseline method is able to look backwards in time

and adjust its estimates, whereas the thermal model-based method can only look forward

(which is necessary for control). For example, in the initial frames of a pour, as the water

leaves the source container, it can splash against the side of the target container, causing the

forward thermal estimate to incorrectly estimate a spike in the volume of liquid, whereas the

baseline method can smooth this spike by propagating backwards in time.

While the error for both model-based methods are relatively small, it is clear that some of

the model-free methods are actually better able to estimate the volume of liquid in the target

container. Surprisingly, the best performing model-free estimation network is the multi-

frame network that takes as input only the pixel-wise liquid detections from the detection

network. The networks trained on detections only are the only networks that receive no

shape information about the target container (both the depth and color images contain some

information about shape), so intuitively, it would be expected that they would be unable

to estimate the volume of more than a single container, and thus perform more poorly

than the other networks. However, a lot of the temporal and perceptual information used

by our methodology is already provided in the pixel-wise liquid detections, thus temporal

information in addition to either color or depth images are not as beneficial to the networks.

We can verify that this is indeed the case by looking at the volume estimates on randomly

6While this may seem rather coarse, we found it works well in practice.

93

0 50 100 150 200 250 300 350

Target (ml)

0

50

100

150

200

250

300

350

A
c
tu

a
l
(m

l)

small bowl

tan mug

redgray mug

Figure 5.8: Plot of the result of each pour using our model-free method as input to the

controller. The x-axis is the target amount that the robot was attempting to reach, and the

y-axis is the actual amount the robot poured as measured by an external scale. The points

are color-coded by the target container. The black dashed line shows a 1:1 correspondence

for reference.

selected pouring sequences from the test set, one for each target container. Figure 5.7 shows

the volume estimates for the two model-based methods and the multi-frame detection only

method as compared to the baseline. It is clear from the plots that the multi-frame network is

better able to match the baseline ground truth than either of the model-based methods. Not

only does the multi-frame network outperform the model-based methods, but unlike them,

it does not require either an expensive thermal camera or a model of the target container.

For these reasons, we utilize this method in the next section for carrying out actual pouring

experiments with closed-loop visual feedback.

94

(a) 200ml (b) 100ml (c) 150ml

(d) 250ml (e) 150ml (f) 200ml

Figure 5.9: Reference images for each of the three target containers. This is exactly the

perspective the robot sees when looking at the containers. Notice that a 50ml difference is

difficult to perceive even for a human (best viewed enlarged).

95

5.2.5 Pouring with Raw Visual Feedback

Estimating the volume a posteriori and using a volume estimator as input to a pouring

controller are two very different problems. A volume estimation method may work well

analyzing the data after the pouring is finished, but that does not necessarily mean it is

suitable for control. For example, if the estimator outputs an erroneous value at one timestep,

it may be able to correct in the next since the trajectory of the pour does not change.

However, if this happens during a pour and the estimator outputs an erroneous value, this

may result in a negative feedback loop in which the trajectory deviates more and more from

optimal, leading to more erroneous volume estimates, etc. To verify that our chosen method

from the previous section is actually suitable for control, we need to execute it on a real

robot for real-time control.

We test the best performing method from the previous section: the multi-frame network

with detections from the detection network. To test the multi-frame network with detections

only, we executed 30 pours on the real robot using the PID controller described in section

5.1.4. We ran 10 sequences on each of the three target containers. For each sequence, we

randomly selected a target volume in {100, 150, 200, 250, 300} milliliters and we randomly

initialized the volume of water in the source container as either 300, 350, or 400 milliliters,

always ensuring at least a 100ml difference between the starting amount in the source and

the target amount (so the robot cannot simply dump out the entire source and call it a

success). Each pour lasted exactly 25 seconds, and we evaluated the robot based on the

actual amount of liquid in the target container (as measured by a scale) after the pour was

finished.

Figure 5.8 shows a plot of each pour, where the x-axis is the target amount and the

y-axis is the actual volume of liquid in the target container as measured by an external

scale after the pour finished. Note that the robot performs approximately the same on all

containers. This is particularly interesting since the volume estimation network is never

given any information about the target container, and must simply infer it based on the

96

motion of the liquid. Additionally, almost all of the 30 pours were within 50ml of the target.

In fact, the average error over all the pours was 38ml. For reference, Figure 5.9 shows 50ml

differences for each of our 3 containers from the robot’s perspective. As is apparent from

this figure, 50ml is a small amount, and a human solving the same task would be expected

to have a similar error.

5.3 Conclusion and Future Work

In this chapter, we introduced a framework for visual closed-loop control for pouring specific

amounts of liquid into a container. To provide real-time estimation of the amount of liquid

poured so far, we developed a deep network structure that first detects the presence of water

in individual pixels of color videos and then estimates the volume based on these detections.

We then showed how the volume estimate could be given to a PID controller to perform

real-time pouring of liquid.

Our experiments indicate that the deep network architecture can be trained to provide

real-time estimates from color only data that are slightly better than the model-based esti-

mates using thermal imagery. Furthermore, once trained on multiple containers, our volume

estimator does not require a matched shape model of the target container. We incorporated

our approach into a PID controller and found that it on average only missed the target

amount by 38ml. While this is not accurate enough for some applications (e.g., some in-

dustrial settings), it is well suited for similar pouring tasks in standard home environments.

The results here are important for the following chapters in this thesis. We showed that by

using deep neural networks, a robot can robustly control a liquid even in the presence of

noisy inputs to pour precise amounts of liquid. In the following chapter we investigate this

perception model on a related task: reasoning about liquids.

5.3.1 Practical Takeaways

In this chapter we made many technical and practical insights as well as theoretical. The first

was our use of a PD controller. In chapter 3 we performed the same task as in this chapter,

97

albeit there we used guided policy search (GPS) to learn a control policy. However, here

we used only a simple PD controller with no learned policy. Why the change? The biggest

difference between chapter 3 and here is the delayed sensor measurements. There the delay

in the scale reading made it impossible for a PD controller to solve the task consistently.

When we began running the evaluations for this chapter, we initially began by training a

policy using GPS. However, we quickly realized that the lack of sensor delay here meant that

a PD controller with the right gains could solve the task fairly well. Given the complexity

of the volume estimation pipeline, we decided to remove the potential extra confounding

variables and use the PD controller in this chapter.

Another practical insight we had was on the issue of overfitting. We thoroughly ana-

lyzed this issue in chapter 4 and we found that the LSTM-FCN network with RGB input

performed the best on known objects, but that it did tend to overfit to those objects. In

this chapter we made the assumption that the robot would have had prior interactions with

the objects, so we selected this network since it outperformed all others under these circum-

stances. However, we did still experience issues due to overfitting. For example, significant

changes in lighting between the training data and when the robot was evaluated resulted in

under performance of the network. Since this was the first step in the pouring pipeline, this

would then cascade into the rest of the pipeline, degrading performance on the task. For the

experiments in this chapter, we attempted to ensure similar conditions during evaluation as

in the training set (e.g., similar lighting conditions), however it remains an open problem

to see how performance can be maintained even when visual conditions of the environment

may change.

98

Chapter 6

LEARNING TO SEE THROUGH OBJECTS: REASONING
ABOUT OCCLUDED LIQUID

In this chapter, we examine a liquid reasoning task. We look at how a robot can locate

the unseen liquid in a scene given the visible liquid. This is an important ability for a robot.

Liquids are non-rigid, which makes it difficult if not impossible to directly manipulate them.

Instead, in order to manipulate liquids, a tool or container must be used. This often has

the undesirable side effect of occluding much of the liquid, making it difficult to perceive the

full state of the liquid directly from sensors. Instead, the robot must rely on its knowledge

of liquids to infer the locations of hidden liquid from observations, for example, by inferring

the existence of liquid in a cup after observing the liquid’s surface.

Here we examine the problem of reasoning about liquids, that is, we ask the question

Can the visible liquid be used to infer where all liquid is? Specifically we look at the task

of tracking. For tracking, we assume the robot has access to a perceptual system that

can provide semantic labels for each pixel, like the one described in chapter 4 that can

discriminate visible liquid from raw RGB images or like the ones in [87, 159] which provide

labels for rigid objects. The robot’s objective here is then to use that to find all liquid in the

scene, both visible and occluded. This task requires the robot to reason about the relative

relations between the various objects in the scene and the visible liquid in order to infer

where hidden liquid is. For example, if the robot sees a group of pixels with the semantic

label “cup” and a group of pixels with the label “liquid” exiting out the side of the cup, it

can then infer that there must be liquid contained below that point in the cup. We use deep

neural networks to allow the robot to learn these kinds of inferences directly from data.

0The contents of this chapter were published in [130] and [133].

99

This chapter is arranged differently from prior chapters. Unlike previous chapters, this

chapter is not standalone; it builds significantly on chapter 4 and uses many of the same

methods and datasets. We will describe the overview and differences in methodology here

and refer the reader to that chapter for more details. The rest of this chapter is layed out as

follows. The next section describes the task. The section after that describes the dataset used

in the experiments in this chapter. The following section describes the learning methodology

we use. The section after that details how we evaluate our methodology, and the following

section contains our results. We finish this chapter with a discussion of the results and how

they inform this thesis’s investigation into robotic manipulation of liquids.

6.1 Task Overview

In this chapter we investigate the task of reasoning about liquids. We define reasoning to be,

given semantic labels for the visible objects and liquid, determining where all the liquid is,

even if it may not be directly perceivable (e.g., liquid inside a container). We call this task

tracking. Specifically, we assume that the robot is given an image where each pixel in the

image is labelled as the name of the visible object at that pixel (i.e., liquid, cup, etc.), and

must output a binary label liquid or not-liquid for each pixel, where liquid labels also apply

to liquid occluded by rigid objects. We assume the robot has access to a semantic labelling

system in order to isolate the tasks of reasoning from the task of perception, however later

in this chapter we also briefly examine combining the two together. We utilize deep neural

networks to learn the inference of all liquid locations from semantic labels. For this chapter,

we focus on the task of pouring as it requires reasoning about both where the visible liquid

is as well as where hidden liquid is.

6.2 Data Set

We use the same simulated dataset as described in chapter 4 for all experiments in this chap-

ter. Note that we do not use the real robot dataset from that chapter as the thermographic

camera only gives labels for visible liquid and not all liquid, which means we cannot get the

100

RGB Labels All

Figure 6.1: Examples of frames from the simulated dataset. The left column is the raw RGB

images generated by the renderer (for reference); the center column shows the ground truth

labeling output by the simulator; the right column shows the ground truth liquid location

for all liquid in the scene.

101

ground truth to train against on the real robot. However, due to the known state in the

simulator, we can “see-through” objects in order to get the ground truth on the simulated

dataset. We refer the reader to chapter 4 for a full description of the simulated dataset. The

rest of this section describes how we make the data generated for that dataset suitable for

the task of tracking.

We generated the ground truth for each image in each rendered sequence as follows. For

each object (source container, target container, and liquid), we set that object to render as

a solid color irrespective of lighting (red, green, and blue respectively). Then we made all

other objects in the scene invisible, and rendered the resulting scene. We then combine the

images for the objects as separate channels of a single image (center column of Figure 6.1).

For the ground truth, we need the pixel labels for all the liquid, even the occluded liquid.

The blue channel rendered in this way gives us the pixel labels we need. However, the input

to the robot needs to be only the visible liquid as well as the labels for the topmost object. To

do this, we render the scene again with each object rendered as its respective color, and then

we encode which object is on top in the alpha channel of the ground truth image described

in the last paragraph. Some examples of the result are shown in Figure 6.1. The left column

shows the rendered color image for reference, the center column shows the ground truth pixel

labels (absent the alpha channel), and the right column shows the liquid pixel labels for all

liquid.

6.3 Learning Methodology

We use the same learning methodology as in chapter 4. Here we briefly summarize that

methodology and we refer the reader to chapter 4 for more details. Our learning methodology

utilizes deep neural networks to solve the tracking task.

We evaluate three different types of input formats for our network. The primary input

type is the semantic label input. Each pixel of the input image is labelled with the type of

object that is visible at that pixel. In the experiments in this chapter, there are 3 semantic

labels: cup (for the source container), bowl (for the target container), and liquid. We imple-

102

Inputs

(a) Visible Objects (b) RGB

(c) Grayscale+Optical Flow

Output

(d) All Liquid

Figure 6.2: Different images of the same frame from the same sequence. The upper part of

this figure shows the different types of network inputs (RGB, semantic labels, and grayscale

combined with optical flow). The lower part shows the type of desired network output (all

liquid).

103

ment the labelling as 3 separate binary masks appended together channel-wise. Figure 6.2a

shows an example with the red channel the label for the cup, the green channel the label for

the bowl, and the blue channel the label for the liquid. Note that for each pixel, the vector

of labels is one-hot, i.e., there is exactly one 1 and the rest are 0s, since only one object can

be visible at once. We also perform an experiment where we combine the detection problem

from chapter 4 with tracking into a single network. For that experiment, we evaluate both

RGB (the default baseline input format) and grayscale combined with optical flow (the type

with the best generalization performance in chapter 4) as inputs to the network. An example

is shown in figures 6.2b and 6.2c.

For tracking, the desired output is the location of all liquid in the scene, including liquid

occluded by the containers. Here the network must learn to infer where liquid is in the scene

based on other clues, such as determining the level of liquid in the source container based

on the stream of liquid that is visible coming from the opening. An example of this is shown

in Figure 6.2d. The output the network is a pixel-wise label confidence image, i.e., for each

pixel, the network outputs its confidence in [0, 1] that that pixel is either liquid or not-liquid.

For the network architecture we use the same layouts as described in chapter 4. We

evaluate all three network architectures: FCN, MF-FCN, and LSTM-FCN. The FCN is a

standard fully convolutional network (FCN); it takes in an input image, passes it through

a series of convolutional and non-linearity layers, and outputs pixel-wise labels. The second

architecture, the multi-frame FCN (MF-FCN), is similar to the FCN, with one major differ-

ence. It takes in a series of frames in sequence and passes each individually through a set of

convolutional and non-linearity layers, then combines the output channel-wise and passes the

combination through a final set of layers before producing pixel-wise labels. The advantage

of this layout over the standard FCN is that it is able to see movement via the sequence

of images, potentially making it easier to reason about liquids. The final architecture we

evaluate is the LSTM-FCN. This architecure replaces one of the final convolutional layers

of the FCN with a long short-term memory (LSTM) layer [54]. This allows the network to

have an explicit memory that it can pass forward from timestep to timestep. Additionally,

104

we add the network’s output from the previous timestep as an input, again giving it the

ability to “remember” from one frame to the next. Figure 4.10 in chapter 4 shows each of

these networks and describes them more in detail.

One final difference between the methodology in this chapter and that in chapter 4 is the

use of input blocks. In that chapter, part of out evaluation was whether or not to combine

input types and if so to use early or late fusion. However, here our focus is on the tracking

task and so for both the semantic label input and RGB we use the standard input block,

and for grayscale with optical flow input we use the early-fusion input block since it had the

best performance in chapter 4.

6.4 Evaluation

We evaluate all three of our network types on the task of tracking on the simulated dataset.

We report the results as precision and recall curves, that is, for every value between 0 and 1,

we threshold the confidence of the network’s labels and compute the corresponding precision

and recall based on the pixel-wise accuracy. We also report the area-under-curve score for

the precision and recall curves. Additionally, we report precision and recall curves for various

amounts of “slack,” i.e., we count a positive classification as correct if it is within n pixels of a

true positive pixel, where n is the slack value. This slack evaluation allows us to differentiate

networks that are able to track the liquid, albeit somewhat imprecisely, versus networks that

fire on parts of the image not close to liquid.

In chapter 4 we evaluated the network on two subsets of the data: the fixed-view set and

the multi-view set. The fixed-view set contains all the data for which the camera was directly

across from the table (camera azimuth of 0 or 180 degrees) and the camera was level with

the table (low camera height), or 1,266 of the pouring sequences. Due to the cylindrical

shape of all the source and target containers, this is the set of data for which the mapping

from the full 3D state of the simulator to a 2D representation is straightforward, which is

useful for our networks as they operate only on 2D images. The multi-view set contains

all the simulated camera viewpoints, rather than just the ones directly facing the objects.

105

The mapping from 3D to 2D for this set is not as straightforward and thus we focus our

evaluation in this chapter for tracking on just the fixed-view set. This is a limitation of our

2D reasoning methodology which we will address in future chapters.

For the task of tracking, we trained the networks on segmented object labels (Figure

6.2a). That is, assuming we already have good detectors for what is visible in the scene, can

the robot find the liquid that is not visible? Note that here we use the ground truth labels

as shown in Figure 6.2a and not the output of the detection network as input to the tracking

network, however we do also evaluate combining the two. Since the input image is already

somewhat structured, we scale it down to 130×100 pixel resolution. Unlike for detection in

chapter 4, here we don’t pre-train the networks on crops, but we do utilize the same gradient

weighting scheme, i.e., we weight the loss on negative (not-liquid) pixels by 0.1 to emphasize

the loss on positive (liquid) pixels. This is to overcome the imbalance in the dataset as the

vast majority of pixels do not contain liquid.

We used the Caffe deep learning library to implement all our networks [58]. We trained

each network for 61,000 iterations. The single-frame networks were trained with a batch size

of 32. The multi-frame networks were given a window of 32 frames as input and were trained

with a batch size of 1. The LSTM networks were unrolled for 160 frames during training

(i.e., the gradients were propagated back 160 timesteps) and were trained with a batch size

of 5. We used the mini-batch gradient descent method Adam [62] with a learning rate of

0.0001 and default momentum values. All error signals were computed using the softmax

with loss layer built-into Caffe [58].

Finally, we also evaluated the performance of combined detection (from chapter 4) &

tracking with a single network. The networks take in the same 400×300 images that the

detection networks take, and output the location of all liquid in the scene. We initialize

these networks with the weights of their corresponding detection network and train them on

full images. We use the same gradient weighting scheme as for the two tasks separately. We

train the networks for combined detection & tracking using the same learning parameters as

for training the detection networks as described in chapter 4.

106

6.5 Results

Figure 6.3 shows the performance of the 3 network types on the tracking task. As expected,

the only network with an explicit memory, the LSTM-FCN, performs the best. However,

the other two networks perform better than would be expected of networks with no memory

capability. This is due to the fact that, given segmented input, the networks can infer where

some of the liquid likely is. Although it is clear that LSTM-FCNs are best suited for this

task. We additionally tested the LSTM-FCN on the combined detection & tracking task

since it had the best performance on each task individually. The results when using the

standard RGB format as input are shown in Figure 6.3d. The network in this case is able

to do quite well, with only a minor drop in performance as compared to the LSTM-FCN on

the tracking task alone.

We also wish to compare the best performer on the detection task with the default baseline

of RGB input. In chapter 4 we found that to be grayscale with optical flow combined using the

early-fusion input block. Chapter 4 showed that an LSTM-FCN taking as input grayscale

early-fused with optical flow has the ability to generalize better than any other type of

network we evaluated. This result was achieved on the detection task, and we wanted to see

if this translates to the tracking task. However, since the robot data set used in that chapter

does not contain the ground truth for tracking, we use the simulated dataset to test this

hypothesis.

We train two networks: one that takes the default input of RGB images and one that takes

grayscale images early-fused with optical flow. We train them on the combined detection

& tracking task. They are trained in the same manner as described previously for doing

combined detection & tracking. The advantage of using this alternative input type is its

ability to generalize to new data, so we hold out all pouring sequences with one of the target

containers (the dog dish) during training. This includes during training of all pre-trained

networks such that the final weights of the networks were never influenced by any data

containing the test object.

107

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5 AUC=68.3%

(a) FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5 AUC=80.6%

(b) MF-FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5 AUC=84.0%

(c) LSTM-FCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

0

1

2

3

4

5 AUC=80.0%

(d) Combined LSTM-FCN

Figure 6.3: The precision-recall curves for the tracking task on the simulated dataset. The

first 3 show the performance of the three network types on the tracking task alone. The last

graph shows the performance of the LSTM-FCN on the combined detection & tracking task

using the standard RGB format as input. The different lines show the different amounts

of slack, i.e., how far a positive classification can be from a true positive to still count as

correct. The area under the curve (AUC) is shown for the 0 slack curve.

108

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

RGB - Train
Gray+Flow Early-Fusion - Train
RGB - Test
Gray+Flow Early-Fusion - Test

(a) Precision-Recall

Train Test

RGB 63.6% 40.1%

Gray+Flow Early-Fusion 57.6% 52.2%

(b) AUC

Figure 6.4: The performance on the combined detection & tracking task of the LSTM-FCN

that takes as input RGB images compared to the performance of the LSTM-FCN that takes

as input grayscale images plus optical flow using the early-fusion input block. The upper

graph shows the precision-recall plot for both networks on both the train and test sets. The

lower table shows the corresponding area under the curve for each curve. Note that here for

clarity we don’t use any slack unlike in figures 6.3 (equivalent to a slack of 0).

109

Figure 6.4 shows the performance of the two networks on both the train and test sets.

From this figure it is clear that the RGB network outperforms the other on the training

set, however, the gray+flow early-fusion network outperforms the RGB network on the test

set. This confirms the results we found in the chapter 4: Networks trained with grayscale

early-fused with optical flow generalize better to new situations for tasks dealing with raw

perceptual input.

6.6 Discussion

In this chapter we evaluated a robot’s ability to reason about liquids via the tracking task.

In this task, the robot was required to determine the locations of all liquid in a scene (visible

and occluded) given only semantic labels of the visible objects. We evaluated the same

network architectures as in chapter 4: FCN, MF-FCN, and LSTM-FCN. As in that chapter,

we found the best performance was by the LSTM-FCN, the only network with an explicit

memory mechanism. We also evaluated our networks on combining the detection task from

chapter 4 with the tracking task. Once again, the LSTM-FCN had the best performance,

reinforcing our conclusion that in order to effectively reason about liquids, the robot must

be able to integrate information over time.

This chapter revealed several useful insights about a robot’s ability to reason about

liquids. First of all, it is possible to learn basic, intuitive properties of liquids from data,

such as if there is liquid pouring from the lip of a cup then there must be liquid filling the cup

below the lip, if liquid disappears from sight into a container it remains in the container even

if unseen, or if liquid is unsupported it will fall. Also, good semantic labels can enable the

robot to robustly reason about the behavior of liquid in its environment. And finally, when

reasoning about liquids some notion of memory or state passed forward from frame to frame

can enable the robot to reason more robustly, rather than reconstructing it’s knowledge at

every timestep.

However this chapter also reveals one major flaw in our methodology so far. We only

evaluated our networks on the fixed-view set because that set viewed the objects directly

110

from the side, creating an almost one-to-one correspondence between the 2D pixel labels

and the true 3D liquid state. This is not always the case, as exemplified by the multi-view

set, which we excluded from our analysis for this reason. In real environments, the true

state of liquid is 3D, but our image-based methodology can only reason in 2D. If we really

want robots to robustly reason about liquids, they’ll need full 3D reasoning capabilities. In

deep learning there has not been very much work on combining 3D fluid dynamics with

deep neural networks (what work there is we discussed in chapter 2). However there is a

significant amount of work in the fields of fluid dynamics and computational graphics on

handling liquids in 3D. In the next part of the thesis we switch tracks and examine how we

can use this work to enable robots to reason about liquids in 3D.

6.6.1 Practical Takeaways

In the process of executing the research in this chapter, we had to make several method-

ological choices due to practical or technical reasons. The first was the use of the simulated

dataset from chapter 4 for training and evaluation, and not the real dataset also generated

in the same chapter. Ideally, we would like to evaluate on data collected in a real environ-

ment. However, unlike for a simulated dataset, “seeing-through” the sides of real objects

to acquire ground truth labels is more challenging. One possibility is to use a container

made of a transparent material such as glass. But while glass allows visible light to pass

through, infrared light, the light used by our thermal camera to acquire ground truth labels,

is blocked. An alternative is to use a container made of a material that is transparent to

infrared light such as silicon, which would allow us to generate ground truth labels for the

tracking task but also disallow the robot from seeing into the container with RGB (unlike

glass). For this work we attempted to locate a container made of silicon for precisely this

purpose, however modern kitchen containers advertised as made of silicon are actually made

of silicon combined with another material, resulting in them being opaque to infrared light.

Thus if we wanted a pure silicon container, we would have had to make it ourselves, which

from a practical standpoint is prohibitively expensive. So for this chapter, we focused our

111

evaluation on where it was feasible, the simulated dataset.

Another methodology choice we made was the design of the LSTM-FCN. For the task in

this chapter, tracking, the ability to remember information from frame to frame is important,

even more so than for the detection task from chapter 4. So the fact that only the LSTM-

FCN has an explicit memory seems odd. Why not give the FCN and MF-FCN access to their

own output from the previous timestep so they can also have an explicit memory? Imagine

that we do this, we alter the FCN such that it also takes its own output from the previous

timestep. During training, we need to feed something for this input into the network. We

could use the ground truth pixel labels, but if we do this the network will become too reliant

on having very accurate and precise labels from the prior timestep so that when we evaluate

it and it inevitably deviates, it will be unable to correct because it assumes the previous

labels are highly accurate. We could instead feed in all zeros, however in this case the

network would simply learn to ignore the previous labels. The best way to do this is to train

the network to correct for its own mistakes by unrolling it in time (the same way we train

the LSTM-FCN), thus passing its own actual output to itself during training. The issue

with this is that once the network is unrolled for more than a few timesteps, it runs into

the exploding/vanishing gradient problem (that is, there are enough multiplications in a row

during the backward pass to cause the gradients to overflow/underflow the amount that can

be stored in a floating point value). To prevent this, we need to insert an LSTM layer, which

is explicitly designed to handle this problem, into the network. The result of modifying the

FCN in this way is exactly the LSTM-FCN. This is in fact the line of reasoning we followed

to create the LSTM-FCN in the first place.

112

Part II

INCORPORATING FLUID PHYSICS MODELS

113

Chapter 7

FROM 2D TO 3D: REASONING ABOUT LIQUIDS USING
LIQUID SIMULATORS

In the previous chapters, we investigated using deep convolutional neural networks to

enable robotic interaction with liquids. That work focused largely on model-free learning-

based methodologies. However, as we noted in the last chapter, the biggest limitation to

that is its reliance on 2D images for reasoning. Real liquid state is in 3D and there is not

always a straightforward mapping to 2D for every task (as was the case for the multi-view

set). So in this chapter, we make the leap from 2D to 3D reasoning. Research on interfacing

3D data with deep networks is somewhat limited, especially as it concerns liquids, so we start

by applying known methods to this task. We utilize physics-based fluid dynamics models to

represent the 3D state of the liquid and perform reasoning tasks.

Physics-based models are very general tools for enabling robots to reason about their

environments. Work on rigid-body actions using physics-based models has enabled robots to

perform a wide variety of tasks [145, 117, 21]. However, to use such models requires tracking

their state using real-time perception. For rigid-body models and deformable objects such as

clothing and towels, there has been a lot of work on tracking the modeled state using sensory

feedback [97, 135, 137]. For liquids, though, there has not yet been any work connecting

physics simulation with real-time perception for robotic tasks. Unlike modeling rigid or

deformable bodies, modeling liquids is much higher dimensional and lacks the same kind

of inherent structure, thus small perturbations can quickly lead to large deviations. As an

example, Figure 7.1 shows a comparison between real liquid (Figure 7.1b) and the result

of performing a carefully tuned liquid simulation with the same setup (Figure 7.1c). It is

0The contents of this chapter were published in [131].

114

(a) Color image (b) Ground Truth (c) Open-loop sim (d) Closed-loop sim

Figure 7.1: A comparison between open-loop and closed-loop liquid modeling. The left-most

figure shows the color image of the scene for reference and the left-center figure shows the

same image with the actual liquid pixels labeled. The right two images show the color image,

but with the liquid from the simulator shown.

clear that without any feedback, the liquid simulator and the real liquid have significant

differences.

In this chapter, we investigate ways to incorporate sensory feedback into physics-based

liquid simulation. By closing the loop between simulation and real-time observations, a robot

can track liquids with much higher accuracy, as illustrated in Figure 7.1d. Ultimately, the

ability to accurately track the state of a liquid will enable a robot to reason about liquids in a

wide variety of contexts, addressing questions such as “How much water is in this container?”,

“Where did this liquid come from?”, “What is the viscosity of this liquid?”, or “How can

I move a specific amount of this liquid without spilling?”. Toward this goal, our work only

assumes that the robot can track 3D mesh models of the objects in its environment and can

differentiate between liquid and everything else in its camera observations, both tasks that

have been addressed in prior work [136, 35]. We demonstrate that our closed-loop liquid

simulation enables a robot to reason about liquids in ways that were infeasible before, such

as estimating the amount of water in an opaque container during a pouring task, or detecting

partial obstruction in water pipes.

The rest of this chapter is laid out as follows. We start in the next section by giving a

115

detailed description of the liquid simulator we use as the base for our closed-loop physics-

based model. After that we describe two different methods for using the observations of real

liquid to correct errors in the base liquid simulator. Next we describe three experiments we

performed using this methodology and their results. We end the chapter with a discussion of

the implications of our method and how it informs our investigation of liquid manipulation.

7.1 Open-Loop Liquid Simulator

Our physics-based model is based on a liquid simulator. The state of the simulator tracks

the liquid over time, simulating it forward while observations prevent it from deviating from

the real liquid dynamics. In this section, we describe how the liquid simulator computes the

dynamics of the liquid, and in the following section we describe how the observation modifies

the liquid state.

To simulate the trajectory of liquid in a scene, the liquid is represented as a set of

particles and the Navier-Stokes equations [2] are applied to compute the forces on each

particle. The Navier-Stokes equations require certain physical properties of liquid (e.g.,

pressure, density) to be defined for all points in R3. This is implemented using Smoothed

Particle Hydrodynamics (SPH) [155], which computes the value of a property at a specific

location in space as the weighted average of the neighboring particles. This is in contrast

to finite element liquid simulations [122], which divide the scene into a voxel grid and store

the values of the given property at each location in the grid. One major disadvantage of

the finite element simulations is that as the size of the environment grows, the requirements

of the voxel grid in both memory and run time grows as O(n3), making them inefficient

for large environments with sparsely located liquids. This is the case for the simulations in

this chapter and thesis as well, and so we chose to use SPH, which is better suited to this

type of task. The implementation used in this chapter is based off the implementation from

the particle simulation library Fluidix [89]. The rest of this section briefly describes that

implementation.

Smoothed Particle Hydrodynamics is essentially a method for representing a continuous

116

vector field of a physical property in space via a discrete set of particles. It is based around

the following equation for evaluating that field at any arbitrary point in space, where A is

the physical property in question:

A(r) =
∑
j

mj
Aj
ρj
W (|r − rj|, h)

where mj is the mass of particle j, Aj is the value stored in particle j, ρj is the density

of particle j, W is a kernel function that weights the contribution of each particle by its

distance, and h is the cutoff distance for W . In SPH, the mass mj of each particle is

constant, however the density ρj is not, and must be computed via the SPH equation above.

That is, the physical value we want to compute A is set to be the density ρ, which results

in ρ appearing on the right side of the equation twice. The issue of recurrence (requiring

the density to be known in order to compute the density) is handled by the density in the

denominator canceling out:

ρ(r) =
∑
j

mj
ρj
ρj
W (|r − rj|, h) =

∑
j

mjW (|r − rj|, h).

To implement a liquid simulation using SPH, each particle must store 6 physical prop-

erties: 3D position (without orientation however since particles are infinitesimally small

points), velocity, force, mass, density, and pressure. As stated above, the mass for each

particle is constant. At each timestep, the force is used to update the velocity as follows:

vt+1
i = vti +

f ti
ρi

∆T

where ∆T is the amount of simulation time one timestep corresponds to. The position at

each timestep is then updated by the velocity in a similar manner

rt+1
i = rti + vti∆T.

The density of each particle at each timestep is computed using the equation in the previous

paragraph. The pressure is computed as

pi = c2
i (ρi − ρ0)

117

where c2
i is the speed of sound and ρ0 is the reference density of the liquid.

The force is computed by summing the contributions from pressure, viscosity, gravity,

and surface tension. The pressure force at particle i is defined as:

fpressurei =
∑
j

−mj

ρj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇W (ri − rj).

The force due to viscosity is

f viscosityi =
∑
j

−µmj

ρj

(
vi
ρ2
i

+
vj
ρ2
j

)
∇2W (ri − rj)

where µ is the viscosity constant of the liquid (recall that vi is the velocity of particle i). To

compute the surface tension acting on each particle, we must first compute the normal of

each particle:

ni =
∑
j

mj

ρj
∇W (ri − rj).

Intuitively, the normal ni for any particle in the center away from the surface of the liquid

will have approximately equal contributions from all directions, resulting in the magnitude

of ni being small. Conversely, for particles near the surface, ni will have a large contribution

from particles in the direction of the interior of the liquid and very little contribution in the

direction of the surface, resulting in an ni with a large magnitude in the direction away from

the surface. The force due to surface tension is computed as

f tensioni = −σ ni
|ni|

∑
j

mj

ρj
∇2W (ri − rj)

where σ is the liquid’s tension constant. To prevent numerical instability when |ni| is small,

we only compute the tension force when the normal magnitude is greater than a threshold,

i.e., the particle is near the surface.

To simulate the flow of liquid in a scene during an interaction, we assume the simulator

is given 3D models of the objects that interact with the liquid as well as their 6D poses

over the course of the interaction (obtained for example from an object tracking system such

118

as [136]). We initialize the liquid particles in the scene (details on this in section 7.4) and

simulate the particles forward at each timestep as the simulator tracks the objects’ poses.

Our liquid simulator is implemented using the particle simulation library Fluidix [89],

which efficiently computes particle interactions on the GPU. We performed a best-first grid

search over the space of parameters (e.g., the viscosity constant) to find the set of values

that best match the real liquid dynamics. For each set of parameters in the grid, we used

the evaluation criteria described in section 7.3.4 to score them with respect to the data we

collected (described in section 7.3.2), and selected the parameters that best fit the real data.

In doing so, we attempted to make our open-loop simulation as close as possible to the real

liquid dynamics. For efficiency reasons, we use between 2,000 and 8,000 particles in our

experiments. For a detailed derivation of Smoothed Particle Hydrodynamics, please refer

to [155].

7.2 Closed-Loop Liquid Simulators

While liquid simulators model fluid dynamics based on physical properties, they often don’t

model every possible force that could affect the liquid; and even the best simulators still

have some error relative to real liquids. Over time, even small errors can lead to a large

divergence between real and simulated liquid behavior. While this may not be a problem in

some cases (e.g., in 3D animation it may only be necessary for a liquid to appear realistic),

if we wish to use liquid simulation as a robot’s internal model of its environment, it must

match the real liquid behavior as closely as possible.

One potential method for alleviating this issue is to improve the fidelity of the simulator.

However, this method has many pitfalls. It requires knowledge of every possible force that

could affect the trajectory of the liquid, not only the standard forces such as pressure and

viscosity, but also forces for example due to vacuum suction (as in the case of a plunger),

which may require modeling additional elements of the environment. It can also be very brit-

tle, as every property of every object in the environment must be known ahead of time (e.g.,

the friction constants over the entire surface of every object). Finally, and most importantly,

119

even if the simulator is almost perfectly accurate, the initial state of the simulator might not

be known (e.g., unknown amount of water in a cup), and it will still deviate slightly from

reality and thus accumulate drift, which a purely open-loop system has no way to estimate

or correct for.

We propose two methods for dealing with noise when tracking real liquid dynamics using

a simulator. Both methods involve closing the loop, that is, utilizing observations of real

liquid dynamics in order to better approximate them in the simulation. The first, inspired

by standard Bayes filters in robotics, is a MAP filter, which uses the observation to “correct”

simulation errors relative to the observation. The second, based on modeling physical forces

in the simulator, applies a warp field that pulls particles toward observed liquid. We describe

these two methods in the following sections.

7.2.1 Bridging the Observation and the State

Before describing our two closed-loop methods, we briefly describe how we map the full 3D

state of the liquid simulator into the robot’s perception space. In this chapter, we assume

that the robot’s camera only provides 2D images labeled with pixel detections, based on

the observation that most liquids, especially water, are not detected by depth cameras (this

is the same as the output of our networks in chapter 4). At any timestep t, the robot’s

perception is thus a binary image It, with pixels labeled as liquid or not-liquid. In order to

directly compare the particles representing the 3D liquid state with the 2D image, the pose

of the particles must be projected into the image. This is done using the following equation:

x̂it = Axit

([
0 0 1

]
xit

)−1

where xit is the pose of particle i at time t, x̂it is that pose projected onto the 2D image plane,

and A is the camera intrinsics matrix:FLx 0 PPx

0 FLy PPy

120

where FL is the focal length and PP is the principle point of the camera. When projecting

particles into the image plane, we can take into account occlusions by casting a ray from the

particle’s 3D pose into the camera’s 3D pose and checking if it collides with any of the rigid

objects in the scene. Any particle whose ray collides with an object is not included when

updating the dynamics of the simulator as there is no way to directly observe that particle.

For the particles that are not occluded, we can compute the distance in 2D space between

pixels in the image and liquid particles, which can then be used to inform the dynamics of

the liquid simulator.

Additionally, we can use this projection to compute the likelihood of an image, that

is, how well the overall set of liquid particles “explains” each of the observed pixels. We

define the function Φ to be the coverage function that maps a pixel location to the number

of particles that cover that pixel. To compute this, we place a small, fixed radius sphere

at each liquid particle location, then project those spheres back into the camera, ignoring

occluded spheres. The value of Φ at a given pixel location is then simply the number of

these spheres that projected onto that pixel. We use this function in both our closed-loop

methods.

7.2.2 MAP Filter Simulator

We use a maximum a posteri (MAP) filter as one of our closed-loop simulation methods.

We model each particle as its own filter, with its own set of hypotheses, and use the MAP

hypothesis at each time step to compute the dynamics. Let Pt be a set of liquid particles

in a scene at time t, Ot be the objects and their corresponding 6D poses, and It be the

observation. We define S (Pt−1,Ot) = Pt to be the function as described in section 7.1 that

computes the state of the liquid particles at timestep t given the previous state of the liquid

particles.

At the beginning of each timestep t, all the liquid particles are propagated forward in

time by one step via S using the objects and their poses Ot. Since S is deterministic, we

perform the dynamics sampling step in the filter separately. Given a liquid particle xit, we

121

sample one hypothesis particle x̃i,nt for each location in a grid centered at that liquid particle’s

position. The grid has dimension 3 × 3 × 3 and the size of each grid cell is set at a small,

fixed constant (we use 5mm in this chapter). This results in 27 hypotheses sampled for each

liquid particle.

Next we must compute P (x̃i,nt |It,Pt), the probability of each hypothesis particle given

the observation and the set of liquid particles. Here, we must condition on all particles in

order to take into account that these particles may already “explain” a certain liquid pixel.

We first apply Bayes rule

P (x̃i,nt |It,Pt) ∝ P (It|x̃i,nt ,Pt)P (x̃i,nt |Pt).

For simplicity, we use a uniform prior P (x̃i,nt |Pt) over all hypothesis particles that are feasible,

eliminating those that violate physical constraints, such as moving through a 3D object mesh.

Thus, for all feasible hypothesis particles,

P (x̃i,nt |It,Pt) ∝ P (It|x̃i,nt ,Pt).

When computing P (It|x̃i,nt ,Pt), what we really want to know, since this is a MAP filter,

is which x̃i,nt maximizes this probability. However, the interaction between It, x̃
i,n
t , and Pt

is highly complex and difficult to compute analytically. Instead, we approximate this value

with an activation function Ψ which we define to be

Ψ(It, x̃
i,n
t ,Pt) =

∑
j∈liquid(It)

W (|̂̃xi,nt − jt|, h)

Φ(jt,Pt) + 1

where liquid(It) is the set of all liquid pixels in It, W is a kernel function, ̂̃xi,nt is x̃i,nt projected

onto the image plane (as described in the previous section), h is the limiting radius for W ,

and Φ returns the coverage of jt by Pt (also described in the previous section). Intuitively,

this function sums the number of liquid pixels around x̃i,nt , weighted by their distance to ̂̃xi,nt
divided by their coverage, i.e., how well explained that pixel is by Pt. Thus, the more liquid

pixels around a hypothesis particle, the higher its Ψ value, and the less the pixels are covered

by the liquid particles, the higher the Ψ value. For W we use a squared exponential kernel

122

with a length scale of 1
332

, and we set the limiting radius to 100. Intuitively, this means that

the unit length under this kernel is 33 pixels with a limiting radius of 100 pixels.

Finally, we set xit from the MAP hypothesis particles as follows:

xit = argmax
x̃i,nt

Ψ(It, x̃
i,n
t ,Pt).

Note that we also adjust the velocity of xit to match the change in position from xit−1 so as

to preserve the correct momentum.

7.2.3 Warp Field Simulator

The second method we use for closing the loop in the simulator is a warp field, somewhat

similar to the approach applied in [137]. Here, the observation applies a force in the simulator

that attempts to make the liquid particles better match the observed liquid. Each observation

point is essentially a magnet in the scene, pulling nearby particles towards it. However, if

all observation points pulled with the same amount of force, then particles would tend to

clump around a subset of the observation points, leaving other observation points with no

nearby particles as the forces from the former cancel out those from the latter. Thus, the

amount of force an observation point applies to nearby particles must vary with the number

of nearby particles. When taken together, all the observation points create a field of forces

that warp the particles to better match the real liquid observations.

Once again let Pt be a set of liquid particles in a scene at time t, Ot be the objects and

their corresponding 6D poses, It be the observation, and S be the function that computes

the dynamics of the particles for a single timestep. The force due to the observation warp

field is computed as

f̂ i,obst =
∑

j∈liquid(It)

λ
uijt

Φ(jt,Pt) + 1
W (|x̂it − jt|, h)

where λ is the warp constant, liquid(It) is the set of all liquid pixels in It, u
ij
t is a unit vector

pointing from particle x̂it (projected onto the image plane as described in section 7.2.1) to

123

liquid pixel jt, Φ(jt,Pt) is the coverage of pixel jt (described in section 7.2.1) and W is the

same kernel function used in the MAP simulator (with same parameters). The warp constant

λ adjusts the strength of the warp force, with higher values resulting in a higher warp force

and lower values in a lower force.

Again, the coverage of a pixel Φ(jt,Pt) is a measure of how many liquid particles “cover”

it, that is, how many liquid particles are nearby. The force applied to each particle by each

liquid pixel is divided by that pixel’s coverage, thus as more particles cover an observed liquid

pixel, it pulls particles to it with less force. Conversely, pixels that have lower coverage pull

particles to them with more force, thus encouraging the simulator to move particles so as to

fill the contour of the observed liquid.

The force f̂ i,obst is then projected back into 3D space. This is done by applying the inverse

of the projection described in section 7.2.1. Because this is 2D to 3D, the projection has an

unspecified degree of freedom. To compensate for this, we assume that the force vector is

in a plane parallel to the image plane in 3D space. Finally, we apply the SPH equation to

smooth the forces across the particles

f̄ i,obst =
∑
j

mj
f j,obst

ρj
W (|ri − rj|, h).

The resulting force f̄ i,obst is then added to the other forces described in section 7.1 and S is

computed as normal.

7.3 Experimental Setup

7.3.1 Robot & Sensors

The robot used in the experiments in this chapter was an upper-torso robot with two 7-DOF

arms, each with an electric parallel gripper. A table was fixed in front of the robot. To

sense its environment, the robot used its Asus Xtion Pro RGBD camera, which recorded

both color and depth images at 640 × 480 resolution at 30 Hz during each interaction, and

its Infrared Cameras Inc. 8640P Thermal Imaging camera, which recorded thermographic

124

(a) Cup (b) Bottle (c) Pipe Junction

(d) Pan (e) Bowl (f) Fruit Bowl

Figure 7.2: Objects used during the experiments. The top row shows the two containers the

robot poured from as well as the pipe junction. The leftmost bowl in the bottom row was

used in the pouring and the right two were used during the pipe junction experiments.

images at 640 × 512 resolution at 30 Hz during each interaction. The thermal camera was

used in combination with heated water to acquire the ground truth pixel labelings. The

cameras were locked in fixed relative positions and placed just below the robot’s head at

approximately chest height.

7.3.2 Data Collection

Pouring

We collected 16 pouring interactions. We varied the source container (cup, Figure 7.2a, or

bottle, Figure 7.2b) and its initial fill amount (empty, 30%, 60%, or 90% full). Before each

125

(a) Unblocked (b) Partial (c) Blocked

Figure 7.3: The 3 types of blockages placed in the pipe junction. (left to right) Pipe junction

with no blockage; left leg is partially blocked; and left leg is fully blocked.

pouring interaction, a bowl (the pan, Figure 7.2d) was placed on the table in front of the

robot. Next the source was placed in the robot’s gripper, filled with water, and the gripper

moved over the bowl. The robot then proceeded to rotate it’s wrist along a fixed trajectory

such that the opening of the container tilted down towards the bowl and water poured out.

During each pouring interaction, the robot recorded from its RGBD and thermal cameras

as well its joint poses. We collected two trials for each combination of source container and

fill amount.

Pipe Junction

We collected 5 pipe junctions interactions. Before each of the pipe junction interactions, two

bowls (bowl, Figure 7.2e, and fruit bowl, Figure 7.2f) were placed side-by-side on the table

in front of the robot. Next, the robot held the ends of the pipe junction (Figure 7.2c) with

its grippers over the bowls and recorded from its RGBD and thermal cameras while 1 liter

of water was poured in the top opening. Each leg of the pipe junction could be fully blocked

or partially blocked, i.e., the flow going to that leg could be partially restricted or entirely

stopped. A diagram of the pipe junction and how the blockages affected flow is shown in

Figure 7.3. The blockage can be placed in either leg, for a total of 5 possible configurations.

126

7.3.3 Data Processing

Before we can use our simulators to track the flow of liquid in the interactions described in

the previous section, we must first perform some post-processing on the data. First, both the

open-loop and closed-loop simulators require the object poses to be known over the course

of the interaction. We utilize an object tracking method based on point cloud data to do

this. Second, both closed-loop simulators require an image with pixels labels for the liquid.

We use a thermal camera to acquire this labeling. We perform these steps offline, however

both are capable of operating in real-time in online situations.

Object Tracking

We use the software program DART [136] (Dense Articulated Real-Time Tracking) to track

the objects in each interaction. DART uses depth images to track objects over time. We

initialize the pose of the bowls by using the Point Cloud Library’s [128] built-in tabletop

segmentation algorithm to find the point cluster on the table, and then set their initial pose

to the centroid. We initialize the containers by computing the robot’s forward kinematics to

find the gripper pose. Once initialized, DART returns a pose for each object at each point

in time over the interaction.

Liquid Labeling

For each pouring and pipe junction interaction, the water was heated to a temperature

significantly above the surrounding environment but below its boiling point. The interactions

were recorded with a thermal camera, and the thermal image was simply thresholded to

locate the liquid pixels. Figure 7.4b shows an example thermal image recorded during a pipe

junction interaction, and Figure 7.4c shows its corresponding thresholded values.

In addition to generating labels from the thermal image, it must also be calibrated to the

depth image (the object poses generated by DART, and thus the entire simulator, operate

in the depth camera frame of reference). That is, for each pixel in the thermal camera, we

127

(a) RGB (b) Thermal (c) Threshold (d) Overlay

Figure 7.4: Acquiring liquid labels from the thermal camera. The leftmost image is a color

image of the scene, the center-left shows the corresponding thermal image transformed to the

color image’s space. The center-right image shows the liquid labels acquired via thresholding

the thermal image, and the rightmost shows the labels overlayed on the color image.

must determine which pixel in the depth camera it corresponds to. This is not as simple as it

may appear. Water is not visible in the depth image as the projected infrared light does not

reflect properly off the surface. However, our depth camera also collects color images and

calibrates it to the depth frame automatically. We can use the color image then to calibrate

the thermal camera.

While there exist methods for doing a full registration between color and thermal images

[116], these tend to be noisy and unreliable. In this chapter, because the water remains at

a fixed distance from the camera, we use a simpler solution. First we take a checkerboard

pattern printed on a wooden board and place it under a high-intensity halogen lamp. The

light and dark pattern on the board absorbs light from the lamp at different rates, causing

the dark squares to heat faster than the light squares. We then hold this board in front

of both the thermal and color cameras at the same distance as the water. The differential

heating causes the checkerboard pattern to be visible in both cameras, allowing us to find

correspondence points between the two images. We then use these points to compute an

affine transformation between the images, and use it to transform the thermal image onto

the color image. Figures 7.4a and 7.4b show an example color image and its corresponding

128

thermal image transformed onto the color space (the thermal camera has a narrower field

of view than the color camera, which is why there are no thermal values around the edge

of Figure 7.4b). Figure 7.4d shows the thresholded thermal image overlayed onto the color

image.

7.3.4 Evaluation Criteria

We use two criteria for evaluating our methodology. The first is intersection over union

(IOU). In this case, the state of the liquid simulation is projected into the camera by placing

small spheres at each particle location and projecting those into the camera, taking into

account occlusions by objects. We then compare the set of pixels labeled as liquid by this

projection to the set of pixels labeled as liquid by the thermal image. The IOU is simply the

intersection of these two sets divided by the union.

When comparing the probability of multiple simulations for the purposes of estimating

hidden state, we use P (Îπ|Iπ) where Îπ is a set of predicted images for interaction π, and

Iπ is the set of ground truth images. To compute this, we first apply Bayes rule

P (Îπ|Iπ) ∝ P (Iπ|Îπ)P (Îπ).

For our experiments, we assume the prior P (Îπ) is uniform. To compute P (Iπ|Îπ), we assume

each pixel is independent and simply multiply their individual probabilities together

P (Iπ|Îπ) =
T∏
t=1

∏
j

P (j|ĵ)

where we set P (j|ĵ) equal to δ if j and ĵ are equal (both liquid or both not-liquid), and to

1− δ if they are not. Due the the large number of pixels across all images and timesteps, we

set δ = 0.50001 to prevent underflow1. After computing the probabilities, we then normalize

them so they sum to 1.

1Even in log-space, values would still periodically underflow with higher values for δ due to the large
quantity of pixels.

129

Open MAP Warp

Loop Filter Field

Cup 60.17% 73.38% 75.94%

Bottle 67.25% 77.12% 79.41%

30% 35.56% 65.22% 67.01%

60% 77.62% 79.85% 82.80%

90% 77.94% 80.69% 83.22%

Overall 65.66% 76.03% 78.41%

0 100 200 300 400

Timestep

0

0.2

0.4

0.6

0.8

IO
U

Open Loop
MAP Filter
Warp Field

Figure 7.5: The table shows the IOU for each method. The graph shows the IOU at every

timestep across one of the pouring experiments (bottle filled to 30%).

7.4 Experiments & Results

We ran three experiments to evaluate our simulators at tracking the state of real-world

liquids. The first utilized the pouring interactions and focused on quantitatively evaluating

the open and closed loop simulators. The second and third experiments test our simulation

methods at estimating the state of an unknown variable in the environment. This is an

important ability for a robot, as often liquids are occluded by containers or other objects,

forcing robots to reason about the hidden state of the liquids based on outcomes during an

interaction, something that is not always necessary during rigid object interactions. Our

second two experiments examine two different cases of hidden state estimation using liquids.

7.4.1 Comparing Open and Closed Loop Simulation Methods

To compare each of the three simulation methods (open loop, MAP filter, and warp field),

we simulated them on the data collected for each pouring interaction. At the start of each

interaction, we fill the 3D model of the container with the same amount of liquid as was filled

130

in the real container. To do this, we perform binary search on the initial number of particles,

running the simulation forward, holding the object poses constant, until each has settled and

then computing the level of the liquid in the container. We then simulate the liquid forward

in time, updating the object poses based on the tracked poses acquired using DART. We

evaluate each method by comparing their IOUs, computed as described in section 7.3.42.

The IOU for the three simulation methods is shown in the table in Figure 7.5. The upper

two rows show the IOU for the methods conditioned on the two types of containers used;

The middle rows show the IOU conditioned on the initial percent full of the container; and

the last row shows the overall IOU for each method. This table reveals some interesting

phenomena. It is not immediately clear why all the simulators seem to perform slightly

better on interactions where the robot poured from the bottle rather than the cup. However,

the middle of the table shows that all of the methods tend to perform better when more

liquid is involved. We notice that the bottle, while having a similar diameter as the cup, is

taller, meaning if they are filled to the same ratio full (e.g., 30%), then the bottle will have

more overall liquid. This explains the slight bump in performance from one container to the

other.

The most important revelation, however, is that both closed-loop simulation methods

outperform the open-loop simulation by a significant margin. This is illustrated graphically

by the graph on the right in Figure 7.5, which shows the IOU at every timestep over one

sequence, and clearly shows that the closed-loop methods are better able to match the

location of the real liquid than the open-loop method. Additionally, both the table and the

graph show that the warp field method outperforms the MAP filter method. This clearly

shows that closing the loop in liquid simulations can make the trajectory of the liquid better

match real world liquid dynamics.

131

*Empty 30% 60% 90%
0

20

40

60

80

100
Open Loop
MAP Filter
Warp Field

Empty *30% 60% 90%
0

20

40

60

80

100

Empty 30% *60% 90%
0

20

40

60

80

100

Empty 30% 60% *90%
0

20

40

60

80

100

Figure 7.6: Probability distribution over the estimated initial fill amounts. They are aggre-

gated by the true fill amounts. From left to right and top to bottom they are empty, 30%

full, 60% full, and 90% full (indicated by the *). The blue bars show results from the open

loop method, cyan for the MAP filter, and red for the warp field.

7.4.2 Estimating the Initial Amount of Liquid

We evaluated all three simulation methods on the same hidden state task. For each pouring

interaction, the initial amount of liquid in the container was not given to the robot. Instead,

the task of the robot was to estimate this amount based on the observations and its own liquid

simulations. To do this, the robot needs to run multiple simulations for each interaction,

one for each possible fill amount, and compare the predictions of each simulation to the

observation.

For each pouring interaction, the robot ran 4 simulations: one where the container was

left empty, one where the container was filled to 30% full, one where the container was filled

to 60% full, and one where it was filled to 90% full. For each simulation, the liquid particles

are simulated forward in time as the object poses are updated via their tracked poses. We

compute the probability of each simulation by evaluating the probability of their predicted

2The 4 pouring interactions where the container was left empty were not included in this analysis because
the union part of the IOU would be 0, resulting in a division by 0.

132

images as described in section 7.3.4.

Figure 7.6 shows the results of performing this for each of the pouring interactions,

aggregated by the ground truth fill amount (indicated by the * in the x-axis of each graph).

The blue bars show the probability distributions for the open-loop method, the cyan bars

show the distribution for the MAP filter method, and the red bars show the distribution for

the warp field method. All methods are easily able to correctly place the highest probability

on the empty simulation when there is in fact no liquid in the interaction, which follows

intuition as there are no observed liquid particles. Additionally, even though there is slightly

more confusion, all of the methods place the highest probability on the 90% simulation

when the containers start out 90% full. Again, this aligns with intuition as it is easy to

distinguish “a lot” of liquid from “almost no” liquid. The most confusion occurs when

trying to distinguish “a little” (30%) from “some” (60%). The open loop method is almost

completely unable to distinguish between the two, both distributions being very similar. The

MAP filter method is slightly better, but still gets confused when the true amount in the

container is 60%. Only the warp field method is able to correctly estimate the initial amount

of liquid, placing over 70% probability on the correct simulation in every case.

7.4.3 Solving the Pipe Junction Task

The final experiment we performed was the pipe junction task. Here the task is for the

robot to find the blockage in a pair of connected pipes simply by observing the liquid as it

exits the pipes, a situation the robot may find itself in if, say, trying to diagnose a broken

sink. We assume that the robot knows a priori the default, unblocked flow rate of liquid

through the pipes, and thus must use the change in flow to find the blockage. To test this,

a pipe T-junction was held inverted over two bowls such that the legs of the T emptied into

different bowls, both visible to the robot. However, the task is to find the blockage based

only on the output of the pipes, so the T-junction was held high enough so that the robot

could only see the openings on the bottom and not the top opening. To simulate a constant

flow into the pipes, a container with exactly 1 liter of water was tilted at a constant angular

133

velocity so that the liquid flowed into the top opening of the junction. The type of blockage

used (if any), unblocked, partially blocked, or blocked, was placed inside the pipe, not visible

to the robot. We used the data collected during the pipe junction interactions to evaluate

the robot on this task.

To solve this task, like in the previous experiment, the robot needs to run multiple

simulations with different values for the hidden state (the pipe blockages) and compare their

outcomes. For each interaction, the robot ran 5 simulations: one for both legs unblocked,

one for the right leg partially blocked, one for the right leg fully blocked, one for the left leg

partially blocked, and one for the left leg fully blocked. The probability of each simulation

is computed using the method described in section 7.3.4.

Figure 7.7 shows the probability for each of the simulated blockages over time for one of

the interactions using the best closed-loop method (warp field). The robot ran one simulation

for each blockage type, and the diagrams across the top of the figure indicate where the

blockage in that simulation was placed. The color bordering each diagram corresponds to

the color of the line indicating that simulation’s probability over time. After only a short

time window, the robot is able to place 100% probability on the correct blockage (partial-

left). Indeed, we ran this on all 5 pipe junction interactions, and by the end of each, the robot

had placed 100% on the correct blockage in every case. We also evaluated the 5 interactions

using the open-loop method. It was able to correctly estimate with 100% probability in the

simpler cases (no blockage or fully blocked) as would be expected. However, for the more

difficult interactions (partial blockage), it only picked the correct blockage type and location

in one case (when the true blockage was partial-left) and in the other case incorrectly placed

100% probability on there being no blockage. While the point of this experiment was to

show the possible type of reasoning that can be done with full physics-based liquid models,

even here the closed-loop methods outperform the open-loop methods, if only in 1 out of 5

cases. Regardless, by using the closed-loop liquid simulation methods developed here, the

robot is clearly able to robustly solve this task.

134

0 100 200 300 400 500 600

Timestep

0

20

40

60

80

100

L
ik
e
li
h
o
o
d

Water First Becomes Visible

Figure 7.7: Probability distribution over the blockage location over time for a single inter-

action. The 5 diagrams across the top correspond to the five different simulations the robot

ran, each color-coded to the corresponding line in the plot. The true blockage was placed in

the left leg and only partially blocked the leg (in the keys in the top row, second from right).

Best viewed in color.

135

7.5 Discussion

In this chapter, we proposed two methods for tracking the state of liquid with a closed-loop

simulator. The first, inspired by Bayes filter techniques in robotics, used a MAP filter to

correct errors in the simulator. The second, inspired by the physical forces underlying the

simulator, applied a warp field to the particles to correct the error. The results clearly

show that both our closed-loop methods are better at tracking the liquid than the open-loop

method. We also showed how these closed-loop simulations can be used to reason about and

infer the hidden variables of an interaction involving liquids. To our knowledge, this is the

first time real liquid observations have been combined with liquid simulations for robotics

tasks.

From the results in this chapter, there are several important insights to take away:

Reasoning about Liquids: So far, reasoning about liquids applied to real robots has

been limited to restricted tasks such as pouring in both prior work [127, 18] and in our

previous chapters. With our physics-based model, reasoning about liquids can be done

on a much wider variety of tasks. The last two experiments in this chapter both involve

completely different tasks, one reasoning about pouring, the other about blockages in pipes,

yet the same algorithm is able to solve both tasks, without any special knowledge aside from

generic 3D models. This is the kind of reasoning that is only enabled through full, physics-

based models. Another advantage of our method over our previous deep learning methods or

even a non-physics model-based approach [163] is that the persistence of a liquid is trivially

inferred. For example, a robot using this model could observe a pouring interaction, and it

would be immediately obvious that the new liquid in the target container originated in the

source container, and that the overall liquid is the same at the end of the pour as it was at

the beginning.

Generalizing to Other Liquids: Another advantage of a physics-based model is that it

can generalize to different types of liquid. Yamaguchi and Atkeson [163] developed a model-

based detector that could determine the location of liquids in a scene, and they showed that

136

it could generalize to a wide array of liquid types. This is unlike learning-based models,

which cannot generalize to liquids too different from their training set. With the alteration

of a few physical parameters, a physics-based model can generalize to liquids as diverse as

water, oil, honey, and even dough. It is currently an open challenge as to how to infer these

parameters efficiently from observation. We investigate this in a simulated setting in the

next chapter.

Predicting Liquid Behavior: While others have used physics-based models for liquids

[74], none have yet combined them with real perception. As a result, due to the quick

divergence of open-loop models with reality, there has been little prior work exploring the

possible action spaces around liquids. Closed-loop liquid simulations enable robots to use the

same model to interact with liquids in a wide variety of settings, such as carrying a container

across a room without spilling its contained liquid, scooping liquid with a spoon, and ejecting

liquid from a syringe in a controlled manner. Without closed-loop liquid simulations, each

of these tasks would require developing a separate model. Using an algorithm such as model

predictive control [19], the robot could plan for a short time horizon into the future using

the open-loop simulation, but track the current state using the closed-loop simulation, thus

preventing a fatal divergence from reality.

Overall, this chapter showed the power of physics-based models for 3D reasoning about

liquids. In previous chapters in this thesis, we showed how deep learning methods can be used

to interact with liquids. Our results up to this point in the thesis show that both methods

can be very useful for robots. In the next chapter, we focus on a method to combine them

into a single model.

7.5.1 Practical Takeaways

Implementing a liquid simulator to track real liquid poses several technical challenges not

often found in a pure simulation environment. One of those is the issue of particle clipping.

Particle clipping is when, at the start of a timestep, a particle is on one side of an object

137

mesh, and then after the update in the timestep is on the other. In this scenario, even

though the particle’s straight line path would put it in collision with the mesh, because it

moves quickly, at no point does the simulator detect a collision. The result of this is particles

that appear to move through meshes with thin walls, which are many of the objects used in

this chapter such as cups and bottles. This is of course not desirable, and so we employed

two primary strategies to combat it. First, we computed ray-plane intersections between

the movement vector of the particle and the triangles in the 3D mesh to catch potential

collisions. While in theory this should fix all issues relating to this problem, in practice with

highly triangulated meshes doing so can be extraordinarily slow. We used an approximate

solution to compute intersections for only nearby triangles, not all triangles, which caught

most issues. To ensure that no particle ever clipped through a mesh, we also broke any large

movements into smaller movements so we could check at each point along the vector. In pure

simulation environments, objects with thin walls are often not used for this explicit reason.

However here we could not get around the issue because the real objects the robot used were

containers with relatively thin walls. But this solution we developed was effective at fixing

the issue, although it did significantly decrease the speed of the simulation, which is a large

part why our simulations in this chapter do not necessarily all run at real-time.

Another challenge we encountered while developing the methodology in this chapter was

getting the particles to cover the entire perceived liquid. When developing the closed-loop

methodology, the robot has to deal with two types of mismatch between the liquid particles

and the perceived liquid pixels: 1) instances where a particle has no corresponding liquid

pixel, and 2) instances where a liquid pixel has no corresponding particle. For a method like

our warp field method, applying a force for each liquid pixel to attract particles to them works

well enough to fix mismatch due to 1. However, this often results in particles congregating

around a few liquid pixels, leaving plenty of other liquid pixels without any corresponding

particles. To solve this, we introduced the term Φ to measure how well “covered” any liquid

pixel was. This could then be used to encourage particles to better solve mismatch due to

2. In practice, by balancing the contribution of Φ to each of the closed loop methods, we

138

were able to encourage particles to spread out to cover the liquid pixels without creating

undesirable oscillations.

139

Chapter 8

SPNETS: COMBINING DEEP LEARNING WITH LIQUID
SIMULATION

In previous chapters in this thesis, we have taken two distinct approaches to robotic

interaction with liquids. In chapters 3 to 6 we examined learning-based approaches using

deep neural networks to enable robots to perceive, reason about, and manipulate liquids.

In the previous chapter, chapter 7, we looked at how physics-based models can be used to

perform reasoning tasks with liquids. In all cases, our results showed that these methods

can be used by robots to solve tasks involving liquids. However, up to this point, they have

been largely separate.

In this chapter we propose to combine the structure of analytical fluid dynamics models

with the tools of deep neural networks to enable robots to interact with liquids. Specifically,

we propose Smooth Particle Networks (SPNets), which adds two new layers, the ConvSP

layer and the ConvSDF layer, to the deep learning toolbox. These layers allow networks to

interface directly with unordered sets of particles (our chosen representation for liquids). We

then show how we can use these two new layers, along with standard layers, to directly im-

plement fluid dynamics using Position Based Fluids (PBF) [90] inside the network, where the

parameters of the network are the fluid parameters themselves (e.g., viscosity or cohesion).

Because we implement fluid dynamics as a neural network, this allows us to compute full

analytical gradients. We evaluate our fully differentiable fluid model in the form of a deep

neural network on the tasks of learning fluid parameters from data, manipulating liquids,

and learning a policy to manipulate liquids. In this chapter, the final experimental chapter

of this thesis, we make the following contributions 1) a fluid dynamics model that can inter-

face directly with neural networks and is fully differentiable, 2) a method for learning fluid

140

1: function UpdateFluid(P, V)

2: V ′ = ApplyForces(V)

3: P ′ = P + V ′

∆t

4: while ¬ConstraintsSatisfied(P ′) do

5: ∆P ω = SolvePressure(P ′)

6: ∆P c = SolveCohesion(P ′)

7: ∆P s = SolveSurfaceTension(P ′)

8: P ′ = P ′ + ∆P ω + ∆P c + ∆P s

9: P ′ = SolveObjectCollisions(P ′)

10: end while

11: V ′ = P ′−P
∆T

12: V ′ = V ′ + ApplyViscosity(P ′, V ′)

13: return P ′, V ′

14: end function

Figure 8.1: The PBF algorithm. P is the list of particle locations, V is the list of particle

velocities, and ∆T is the timestep duration.

parameters from data using this model, and 3) a method for using this model to manipulate

liquid by specifying its target state rather than through auxiliary functions.

The rest of this chapter is laid out as follows. The next section describes Position Based

Fluids (PBF), the fluid dynamics algorithm we implement here. The section after that

describes Smooth Particle Networks (SPNets), our implementation of PBF using the deep

learning toolbox. Next we describe how we evaluate SPNets and the results we get, and

finally we end the chapter with a discussion of the insights we gained.

141

8.1 Position Based Fluids

In this chapter, we implement fluid dynamics using Position Based Fluids (PBF) [90]. PBF

is a Lagrangian approximation of the Navier-Stokes equations for incompressible fluids [2].

That is, PBF uses a large collection of particles to represent incompressible fluids such as

water, where each particle can be thought of as an individual “packet” of fluid. We chose a

particle-based representation for our fluids rather than a grid-based (Eulerian) representation

as for sparse fluids, particles have better resolution for fewer computational resources. We

briefly describe PBF here and direct the reader to [90] for details.

The key difference between PBF and Smoothed Particle Hydrodynamics (SPH) [37],

which is often used to do particle-based fluid simulations (and which we used in the previous

chapter), is that SPH only applies to compressible fluids. This is because SPH models

properties of the fluid, such as pressure, as forces (e.g., places of high pressure apply a force

pushing particles away), which necessarily means that fluids modeled with SPH can compress

so long as the compressing force exceeds the fluid’s internal forces. PBF instead treats these

properties as constraints (e.g., the pressure must remain constant throughout the fluid), and

then iteratively attempts to compute the “correction” ∆P to each particle’s position that

satisfies these constraints. In this way, PBF is designed to be used for incompressible fluids

such as water, which is why we chose to use it in this chapter.

Figure 8.1 shows a general outline of the PBF algorithm. At each timestep, the update

for each particle is computed as follows. First external forces are applied to the particles by

adding their accelerations to the velocities (line 2). For this paper, the only external force

is gravity. Then, on line 3, the particles are moved forward according to their velocities.

Next the inner loop (lines 5–9) solves the incompressibility constraints (pressure, cohesion,

and surface tension) and then fixes collisions with static objects. The constraints are solved

iteratively using a loop rather than in one-shot to facilitate convergence. After the loop,

the velocity of the particles is updated to reflect their actual change in position over time

given the constraints (line 11). Finally, the viscosity force is computed and applied to the

142

velocities of the particles (line 12). The result of all this is the new particle positions P ′ and

velocities V ′ after updating their dynamics for one timestep.

Figure 8.1 gives a high-level overview of the PBF algorithm. It relies on several external

functions, which we will describe in the following paragraphs. For the purposes of this paper,

the function ConstraintsSatisfied returns true after a fixed number of iterations, which

here we set to be 3. Furthermore, for the function SolveObjectCollisions, we determine

if the vector of movement for each particle collides with the mesh of an object, and if so we

simply adjust the vector so that the particle stops at the object boundary. The remaining

functions, SolvePressure, SolveCohesion, SolveSurfaceTension, and ApplyVis-

cosity, are used to apply the fundamental physical properties to the particles such as

pressure or surface tension.

The pressure correction δpωi for each particle i is computed by the function SolvePres-

sure to satisfy the constant pressure constraint. Intuitively, the pressure correction step

finds particles with pressure higher than the constraint allows (i.e., particles where the den-

sity is greater than the ambient density), then moves them along a vector away from other

high pressure particles, thus reducing the overall pressure and satisfying the constraint. The

pressure correction δpωi for each particle i is computed as follows

δpωi =
∑

j∈P−{i}

nji(ωi + ωj)Wω(dij, h) (8.1)

where nji is the normalized vector from particle j to particle i, ωk is the pressure at particle

k, Wω is a kernel function, dij is the distance from i to j, and h is the cutoff for Wω (that

is, for all particles further than h apart, Wω is 0). The pressure ωk at every particle k is

computed as

ωk = λω max (ρk − ρ0, 0) (8.2)

where λω is the pressure constant, ρk is the density of the fluid at particle k, and ρ0 is the

rest density of the fluid. The density ρk is computed the same in PBF and SPH as follows

ρk =
∑
j∈P

mjWρ(dkj, h) (8.3)

143

where mj is the mass of particle j and Wρ is a kernel function. For Wω we use 30
πh3

(
1− d

h

)
1
h

and for Wρ we use 15
πh3

(
1− d

h

)2
, the same as used in [90].

The cohesion correction δpci for each particle i as computed by SolveCohesion is

δpci =
∑

j∈P−{i}

λcnijWc(dij, h)

where λc is the cohesion constant and Wc is a kernel function. For Wc we use the same kernel

as [90]

Wc(d, h) =
−(1− d0)

d2
0

(
d

h

)3

+
d2

0 + d0 + 1

d2
0

(
d

h

)2

− 1

where d0 is the fluid rest distance as a fraction of h. For this paper we fix d0 to 0.5.

The surface tension correction δpsi for each particle i as computed by SolveSurfaceTen-

sion is computed using the following equation

δpci =
∑

j∈P−{i}

λs
ρ0

(nj − ni)I(dij ≤ h)

where λs is the surface tension constant, nk is the normal of the fluid surface at particle k,

and I is the indicator function. The normal nk is computed as

nk =
∑

j∈P−{i}

nijWc(dij, h)

where Wc is the same kernel function used for the cohesion constraint.

Finally, the viscosity update δvi for each particle i computed by ApplyViscosity is

δvi =
∑

j∈P−{i}

λv
ρ0

(vj − vi)Wρ(dij, h)

where λv is the viscosity constant, vk is the velocity of particle k, and Wρ is the same kernel

function used to compute the density.

To compute the next set of particle locations P ′ and velocities V ′ from the current

set P, V , these functions are applied as described in the equation in figure 8.1. For the

experiments in this paper, the constants are empirically determined and we set h to 0.1.

144

8.2 Smooth Particle Networks

In this chapter, we wish to implement Position Based Fluids (PBF) using deep learning

tools. However current standard neural networks lack the functionality to implement PBF

inside the network structure. While [118] developed PointNet layers which work on un-

ordered point sets, these were designed for object recognition and segmentation and are not

well suited for fluid dynamics. Thus, in order to implement PBF in a network, we need to

add new functionality. Specifically, we propose two new neural network layers for handling

unordered sets of particles. The first is the ConvSP layer, which computes particle-particle

pairwise interactions, and the second is the ConvSDF layer, which computes particle-static

object interactions1. We combine these two layers with standard operators (e.g., elementwise

addition) to reproduce the algorithm in figure 8.1 inside a deep network. Since we exactly re-

produce PBF inside the network, the parameters are the λ∗ constants descried in section 8.1.

We implemented both our layers with support for GPUs to enable efficient processing times

and with native support for analytical gradients. We used PyTorch [113] to construct the

fluid dynamics by combining our layers with standard network layers, which also enables us

to take advantage of its automatic differentiation for our PBF implementation.

8.2.1 ConvSP

The ConvSP layer is designed to compute particle to particle interactions. To do this,

we implement the layer as a smoothing kernel over the set of particles. That is, ConvSP

computes the following

ConvSP (X, Y) =

{∑
j∈X

yjW (dij, h)
∣∣∣ i ∈ X}

where X is the set of particle locations and Y is a corresponding set of feature vectors2, yj is

the feature vector in Y associated with j, W is a kernel function, dij is the distance between

1The code for SPNets is available at https://github.com/cschenck/SmoothParticleNets

2In general, these features can represent any arbitrary value, however for the purposes of this paper, we
use them to represent physical properties of the particles, e.g., mass or density.

https://github.com/cschenck/SmoothParticleNets

145

particles i and j, and h is the cutoff radius (i.e., for all dij > h, W (dij, h) = 0). This function

computes the smoothed values over Y for each particle using W .

While this function is relatively simple, it is enough to enable the network to compute the

solutions for pressure, cohesion, surface tension, and viscosity (lines 5–7 and 12 in figure 8.1).

In the following paragraphs we will describe how to compute the pressure solution using the

ConvSP layer. Computing the other 3 solutions is nearly identical.

To compute the pressure correction solution in equation (8.1) above, we must first com-

pute the density ρk at each particle k. Equation (8.3) describes how to compute the density.

This equation closely matches the ConvSP equation from above. To compute the density

at each particle, we can simply call ConvSP (P,M), where P is the set of particle locations

and M is the corresponding set of particle masses. Next, to compute the pressure ωk at each

particle k as described in equation (8.2), we can use an elementwise subtraction to compute

ρk−ρ0, a rectified linear unit to compute the max, and finally an elementwise multiplication

to multiply by λω. This results in Ω, the set containing the pressure for every particle.

Plugging these values into equation (8.1) is not as straightforward. It is not obvious how

the term nji(ωi + ωj) could be represented by Y from the ConvSP equation. However, by

unfolding the terms and distributing the sum we can represent equation (8.1) using ConvSP.

First, note that the vector nji is simply the difference in position between particles i and

j divided by their distance. Thus we can replace nji as follows

δpωi =
∑

j∈P−{i}

pi − pj
dij

(ωi + ωj)Wω(dij, h)

where pk is the location of particle k. For simplicity, let us incorporate the denominator dij

into Wω to get it out of the way. We define W ω(dij, h) = 1
dij
Wω(dij, h). This results in

δpωi =
∑

j∈P−{i}

(pi − pj)(ωi + ωj)W ω(dij, h).

Next we distribute the terms in the parentheses to get

δpωi =
∑

j∈P−{i}

(piωi + piωj − pjωi − pjωj)W ω(dij, h).

146

We can now rearrange the summation and distribute W ω to yield

δpωi = piωi
∑

W ω(dij, h) + pi
∑

ωjW ω(dij, h)− ωi
∑

pjW ω(dij, h)−
∑

pjωjW ω(dij, h).

Here we omitted the summation term j ∈ P − {i} from our notation for clarity. We can

compute this over all i using the ConvSP layer as follows

∆P ω = P ∗Ω∗ConvSP (P, {1})+P ∗ConvSP (P,Ω)−Ω∗ConvSP (P, P)−ConvSP (P, P ∗Ω)

where ∗ represents elementwise multiplication and + and − are elementwise addition and

subtraction respectively. {1} is a set containing all 1s.

8.2.2 ConvSDF

The second layer we add is the ConvSDF layer. This layer is designed specifically to compute

interactions between the particles and static objects in the scene (line 9 in figure 8.1). We

represent these static objects using signed distance functions (SDFs). The value SDF (p),

where p is a point in space, is defined as the distance from p to the closest point on the

object’s surface. If p is inside the object, then SDF (p) is negative.

We define K to be the set of offsets for a given convolutional kernel. For example, for a

1×3 kernel in 2D, K = {(0,−1), (0, 0), (0, 1)}. ConvSDF is defined as

ConvSDF (X) =

{∑
k∈K

wk min
j
SDFj(pi + k ∗ d)

∣∣∣∣ i ∈ X
}

where wk is the weight associated with kernel cell k, pi is the location of particle i, SDFj is

the jth SDF in the scene (one per rigid object), and d is the dilation of the kernel (i.e., how

far apart the kernel cells are from each other). Intuitively, ConvSDF places a convolutional

kernel around each particle, evaluates the SDFs at each kernel cell, and then convolves those

values with the kernel. The result is a single value for each particle.

We can use ConvSDF to solve object collisions as follows. First, we construct ConvSDFR

which uses a size 1 kernel (that is, a convolutional kernel with exactly 1 cell). We set the

weight for the single cell in that kernel to be 1. With a size 1 kernel and a weight wk of 1,

147

the summation, the kernel weight wk, and the term k ∗ d fall out of the ConvSDF equation

(above). The result is the SDF value at each particle location, i.e., the distance to the closest

surface, where negative values indicate particles that have penetrated inside an object. We

can compute that penetration R of the particles inside objects as

R = ReLU(−ConvSDFR(P))

where ReLU is a rectified linear unit. R now contains the minimum distance each particle

would need to move to be placed outside an object, or 0 if the particle is already outside

the object. Next, to determine which direction to “push” penetrating particles so they

no longer penetrate, we need to find the direction to the surface of the object. Without

loss of generality, we describe how to do this in 3D, but this method is applicable to any

dimensionality. We construct ConvSDFX , which uses a 3×1×1 kernel, i.e., 3 kernel cells all

placed in a line along the X-axis. We set the kernel cell weights wk to -1 for the cell towards

the negative X-axis, +1 for the cell towards the positive X-axis, and 0 for the center cell. We

construct ConvSDFY and ConvSDFZ similarly for the Y and Z axes. By convolving each

of these 3 layers, we use local differencing in each of the X, Y, and Z dimensions to compute

the normal of the surface of the object nSDF , i.e., the direction to “push” the particle in.

We can then update the particle positions P ′ as follows

P ′ = P ′ +R ∗ nSDF .

That is, we multiply the distance each particle is penetrating an object (R) by the direction

to move it in (nSDF) and add that to the particle positions.

8.2.3 Smooth Particle Networks (SPNets)

Using the ConvSP and ConvSDF layers described in the previous sections and standard

network layers, we design SPNets to exactly replicate the PBF algorithm in figure 8.1. That

is, at each timestep, the network takes in the current particle positions P and velocities V

and computes the fluid dynamics by applying the algorithm line-by-line, resulting in new

positions P ′ and velocities V ′. We show an SPNet layout diagram figure 8.2.

148

ApplyViscosity

PV

X +
ᵂt

ApplyForces

+
Gravity

X

ᵂt

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

SolveConstraints

SolvePressure SolveCohesion SolveSurfaceTension

+
SolveObjectCollisions

-
X 1

ᵂt

ConvSP
Positions Features

ConvSP
Positions Features

1

X

-
(ᵂt)(λv)
ρ0

X +

P’ V’

(a) SPNet

ConvSDF
XxYxZ kernel

X

ReLU

Concatenate
K dimension

+

ConvSP
Positions Features

-

P

V

P’

V’

Input particle positions

Input particle velocities

Output particle positions

Output particle velocities

Element-wise addition

Element-wise subtraction

Element-wise multiplication

ConvSP(Positions, Features) layer

ConvSDF layer with a kernel of size XxYxZ

Concatenation layer that
concatenates along the kth dimension

Rectified Linear Layer

(b) Legend

SolvePressure

ConvSP
Positions Features

ConvSP
Positions Features

ConvSP
Positions Features

ConvSP
Positions Features

ConvSP
Positions Features

1

-ρ0

ReLU

Xλω

1

X X

X

X

+ - -

(c) SolvePressure

SolveObjectCollisions

ConvSDF
1x1x1 kernel

ConvSDF
3x1x1 kernel

ConvSDF
1x3x1 kernel

ConvSDF
1x1x3 kernel

Concatenate
Last dimensionX-1

ReLU X +

(d) SolveObjectCollisions

Figure 8.2: The layout for SPNet. The upper-left shows the overall layout of the network. The functions

SolvePressure, SolveCohesion, SolveSurfaceTension, and SolveObjectCollisions are collapsed

for readability. The lower-right shows the expansion of the SolveObjectCollisions function, with the

line in the top of the box being the input to the SolveObjectCollisions in the upper-left diagram and

the line out of the bottom of the box being the line out of the box. The lower-left shows the expansion of

the SolvePressure function. For clarity, the input line (which represents the particle positions) is colored

green and the line representing the particle pressures is colored pink.

149

The first operation the network performs is to apply the external forces to the particles,

line 2 of the PBF algorithm (shown in figure 8.1) and the lavender box in the upper-left of

figure 8.2a. Next the network updates the particle positions according to their velocities,

line 3 of PBF and the element-wise multiplication and addition immediately to the right

of ApplyForces in the diagram. After this, the network iteratively solves the fluid con-

straints (lines 5–9), shown by the SolveConstraints boxes in figure 8.2a. Here we show

3 constraint solve iterations, however in principle the network could have any number. Each

constraint solve partially updates the particle positions to better satisfy the given constraints.

We consider 3 constraints in this paper: pressure (line 5), cohesion (line 6), and surface

tension (line 7). Each is shown as an individual box in figure 8.2a. Figure 8.2c shows the full

network layout for the pressure constraint. This exactly computes the solutions to equations

8.1–8.3 from the previous section on PBF. Note the column under the leftmost ConvSP layer

in figure 8.2a; it computes the pressure set Ω. This is then used to compute the result of

the other 4 ConvSP layers. The final step of each constraint solve iteration is to solve the

object collisions. The expansion of this box is shown in figure 8.2d. The ConvSDF layer on

the left computes the particle penetration R into the SDFs, and the 3 on the right compute

the normal nSDF of the SDFs. Note that in this diagram we show the layout for particles

in 3D (there are 3 ConvSDF layers on the right of figure 8.2d, one to compute the normal

direction in each dimension), however this can applied to particles in any dimensionality.

After finishing the constraint solve iterations, the network computes the adjusted particle

velocities based on how the positions were adjusted (line 11 of the PBF algorithm), shown in

figure 8.2a as the element-wise subtraction and multiplication above the ApplyViscosity

box. Finally, the network computes the viscosity, shown in the tan box in the bottom-right

of figure 8.2a. Viscosity only affects the particles velocities, so the output positions of the

particles are the same as computed by the constraint solver.

There are several parameters and constants in this network. In the ApplyForces box

in the upper-left of figure 8.2a, Gravity is set to be −9.8m
s2

and ∆t is set to be 1
60

. The rest

density ρ0, shown in the ApplyViscosity box in the lower-right of figure 8.2a and in the

150

SolvePressure box in figure 8.2c, is set empirically based on the rest density of water.

The fluid parameters λω and λv are shown in figure 8.2c and the lower-right of figure 8.2a

respectively.

By repeatedly applying the network to the new positions and velocities at each timestep,

we can simulate the flow of liquid over time. We utilize elementwise layers, rectified linear

layers (ReLU), and our two particle layers ConvSP and ConvSDF to compute each line in

figure 8.1. Since elementwise and ReLU layers are differentiable, and because we implement

analytical gradients for ConvSP and ConvSDF, we can use backpropagation through the

whole network to compute the gradients. Additionally, our layers are implemented with

graphics processor support, which means that a forward pass through our network takes

approximately 1
15

of a second for about 9,000 particles running on an Nvidia Titan Xp

graphics card.

8.3 Evaluation & Results

To demonstrate the utility of SPNets, we evaluated it on four types of tasks, described in the

following sections. First, we verify the correctness of our implementation of fluid dynamics

by comparing it to a commercial fluid simulator. Then, we show how our model can learn

fluid parameters from data. Next, we show how we can use the analytical gradients of our

model to do liquid control. Finally, we show how we can use SPNets to train a reinforcement

learning policy to solve a liquid manipulation task using policy gradients.

8.3.1 Model Comparison

We compare our model to Nvidia FleX [91], a commercially available physics simulation

engine which implements fluid dynamics using Position Based Fluids (PBF). For this com-

parison, we set all the model parameters (e.g., the pressure parameter λω) to be the same for

both FleX and SPNets, we initialize the particle poses and velocities to the same values, and

all rigid objects follow the same trajectory. We compare FleX and SPNets on two scenes.

In the scooping scene, the liquid rests at the bottom of a large basin as a cup moves in a

151

circle, scooping liquid and then dumping it into the air. In the ladle, the liquid rests in

a rectangular container as a ladle scoops some from the container and then pours it back

into it. Images from the ladle scene are shown in figure 8.3a. We simulate each scene 9

times, once for each combination of values for the cohesion parameter λc ∈ {0.01, 0.1, 0.2}

and viscosity parameter λv ∈ {0.001, 10, 120} (we fix all other constants).

To compare FleX and SPNets, we compute the intersection over union (IOU) of the two

particle sets at each point in time. To compute the intersection between two particle sets

with real valued cartesian coordinates, we relax the “identical” constraint to be within a

small ε, i.e., the intersection is the set of all particles from each set that have at least one

neighbor in the opposing set that is within ε units away. For this comparison we set ε to

be 2.5cm. For the scooping scene, the IOU was 91.0%, and for the ladle scene, the IOU was

97.1%. Given this, it is clear that while SPNets is not identical to FleX, it matches closely

and produces stable fluid dynamics.

8.3.2 Estimating Fluid Parameters

We evaluate SPNets on the task of learning, or estimating, some of the λ∗ fluid parameters

from data. This experiment illustrates how one can perform system identification on liquids

using gradient-based optimization. Here we frame this system identification problem as a

learning problem so that we can apply learning techniques to discover the parameters. We use

Nvidia FleX [91] to generate ground truth data, and then use backpropagation and gradient

descent to iteratively update the parameter values until convergence. FleX is a commercially

available physics simulation engine which implements fluid dynamics using Position Based

Fluids (PBF).

Given sequences P = {Pt} and V = {Vt} of particle positions and velocities over time

generated by FleX, at each iteration we do the following. First we randomly sample B

particle positions P and velocities V from P ,V to make a training batch PB, VB. Next,

SPNet is used to roll out the dynamics T timesteps forward in time to generate P̃B+T , ṼB+T ,

the predicted particle positions and velocities after T timesteps. We then compute the loss

152

(a) Ladle Scene

0 50 100 150 200

Iteration

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
if
fe

re
n

c
e

Cohesion Difference

0 50 100 150 200

Iteration

-30

-20

-10

0

10

20

30

40

50

D
if
fe

re
n
c
e

Viscosity Difference

(b) L1-Loss

Legend

Ground Truth

λc, λv

0.05, 30

0.05, 60

0.05, 90

0.10, 30

0.10, 60

0.10, 90

0.15, 30

0.15, 60

0.15, 90

0 50 100 150 200 250

Iteration

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
if
fe

re
n

c
e

Cohesion Difference

0 50 100 150 200 250

Iteration

-30

-20

-10

0

10

20

30

40

50

D
if
fe

re
n
c
e

Viscosity Difference

(c) Projection-Loss

Figure 8.3: (Top) The ladle scene. The left two images are before and after snapshots, the

right image shows the particles projected onto a virtual camera image (with the objects

shown in dark gray for reference). (Bottom) The difference between the estimated and

ground truth fluid parameter values for cohesion λc and viscosity λv after each iteration of

training for both the L1 loss and the projection loss. The color of the lines indicates the

ground truth λc and λv values. The cohesion parameter λc was initialized to 0.1 in all cases

except when the ground truth was 0.1, in which case it was initialized to 0.05. The viscosity

parameter λv was initialized to 60 in all cases except when the ground truth was 60, in which

case it was initialized to 30.

153

l(P̃B+T , ṼB+T ,PB+T ,VB+T) between the predicted positions and velocities and the ground

truth positions and velocities. Since our model is differentiable, we can use backpropagation

to compute the gradient of the loss with respect to each of the fluid parameters. We then

take a gradient step to update the parameters. This process is repeated until the parameters

converge.

We used the ladle scene shown in Figure 8.3a to test our method. Here, the liquid rests

in a rectangular container as a ladle scoops some liquid from the container and then pours it

back into the container. We generated 9 sequences, one for each combination of the cohesion

parameter λc ∈ {0.05, 0.1, 0.15} and viscosity parameter λv ∈ {30, 60, 90} (we fixed all other

fluid parameters). Each sequence lasted exactly 620 frames. We set our batch size to 8, T to

2, and use Adam [62] with default parameter values and a learning rate of 1e−2 to update

the fluid parameters at each iteration. We evaluate using 2 different loss functions. The

first is an L1 loss between the predicted and ground truth particle positions and velocities.

This is possible because we know which particle in Flex corresponds to which particle in the

SPNet prediction. In real world settings, however, such a data association is not known,

so we evaluate a second loss function that eschews the need for it. We use the projection

loss, which simulates a camera observing the scene and generating binary pixel labels as the

observation (similar to the heatmaps generated by our method in chapter 4). We compute

the projection loss between the predicted and ground truth states by projecting the visible

particles onto a virtual camera image, adding a small Gaussian around the projected pixel-

positions of each particle, and then passing the entire image through a sigmoid function to

flatten the pixel values. The loss is then the L1 difference between the projected image of the

predicted particles and the ground truth particles. Projecting the particles as a Gaussian

allows us to compute smooth gradients backwards through the projection. For the ladle

scene, the camera is placed horizontally from the ladle, looking at it from the side.

Figures 8.3b and 8.3c show the difference between the ground truth and estimated values

for the cohesion λc and viscosity λv parameters when training the model on each of the

9 sequences. In all 9 cases and for both losses, the network converges to the ground truth

154

(a) Plate (b) Pouring (c) Catching

Figure 8.4: The control scenes used in the evaluations in this chapter. The top row shows

the initial scene; the bottom row shows the scene after several seconds.

parameter values after only a couple hundred iterations. While the L1 loss tended to converge

slightly faster (which is to be expected with a more dense loss signal), the projection loss

was equally able to converge to the correct parameter values, indicating that the gradients

computed by our model through the camera projection are able to correctly capture the

changes in the liquid due to its parameters. Note that for the projection loss the camera

position is important to provide the silhouette information necessary to infer the liquid

parameters.

8.3.3 Liquid Control

To test the efficacy of the gradients produced by our models, we evaluate SPNets on 3 liquid

control problems. The goal in each is to find the set of controls U = {ut} that minimize the

155

cost

L =
∑
t

l(Pt, Vt, ut) (8.4)

where l is the cost function, Pt is the set of particle positions at time t, and Vt is the set of

particle velocities at time t. Pt and Vt are defined by the dynamics as follows

Pt, Vt = SPN(Pt−1, Vt−1, OP (ut)) (8.5)

where SPN is the fluid dynamics computed by SPNets, and OP transforms the control ut

to the poses of the rigid objects in the scene at time t. The initial positions P0 and velocities

V0 of the particles, the loss function l, and the control function OP are fixed for each specific

control task.

To optimize the controls U , we utilize Model Predictive Control (MPC) [19]. MPC

optimizes the controls for a short, finite time horizon, and then re-optimizes at every timestep.

Specifically, given the current particle positions Pt and velocities Vt and the set of controls U

computed at the previous timestep, MPC first computes the future positions Pt+1, ..., Pt+T

and velocities Vt+1, ..., Vt+T by repeatedly applying the SPNet for some fixed horizon T .

Then, MPC sums the loss over this horizon as described in equation (8.4) and computes the

gradient of the loss L with respect to each control ∆ut via our differentiable model. Finally,

the updated controls U ′ are computed as follows

U ′ =

{
ui − s

∆ui
‖∆ui‖

∣∣∣∣∣ i ∈ [t, t+ T]

}
where s is a fixed step size. The first control u′t ∈ U ′ is executed, the next particle positions

Pt+1 and velocities Vt+1 are computed, and this process is repeated to update all controls

again. Note that this process updates not only the current control ut but also all controls

in the horizon, so that by the time control ut+T is executed, it has been updated T times.

Figure 8.5 shows a diagram of this process. We set T to 10 and use velocity controls on our 3

test scenes. The controls u are initialized to 0 and T is set to a fixed horizon for each scene.

The Plate Scene: Figure 8.4a shows the plate scene. It consists of a plate surrounded

by 8 bowls. A small amount of liquid is placed on the center of the plate, and the plate must

156

SPNetsApply control
to object SPNets Apply control

to object SPNets Apply control
to object

ut ut+1
ut+

2

LossLoss Loss

dut

dL
dut+1

dL
dut+2

dL

Initial
State

Figure 8.5: Diagram of the rollout procedure for optimizing the controls u. The dynamics

are computed forward (black arrows) for a fixed number of timesteps into the future (shown

here are 3). Then gradients of the loss are computed with respect to the controls backwards

(blue arrows) through the rollout using backpropagation.

be tilted such that the liquid falls into a given target bowl. The controls for this task are

the rotation of the plate about the x (left-right) and z (forward-backward) axes3. We set the

loss function for this scene to be the L2 (i.e., Euclidean) distance between the positions of

the particles and a point in the direction of the target bowl. We ran 8 evaluations on this

scene, once with each bowl as the target.

Figure 8.6a shows the results of each of the evaluations on the plate scene. In every

case, the optimization produced a trajectory where the plate would “dip” in the direction

of the target bowl, wait until the liquid had gained sufficient momentum, and then return

upright, which allowed the liquid to travel further off the edge of the plate. Note that simply

“dipping” the plate would result in the liquid falling short of the bowl. For all bowls except

one, this resulted in 100% of the liquid being placed into the correct bowl. For the one bowl,

when it was set as the target, all but a small number of the liquid particles were placed

in the bowl. Those particles landed on the lip of the bowl, eventually rolling off onto the

ground. Nonetheless, it is clear that our method is able to effectively solve this task in the

vast majority of cases.

The Pouring Scene: We also evaluated our method on the pouring scene, shown in

Figure 8.4b. The goal of this task is to pour liquid from the cup into the bowl. The control is

3In all our scenes, the y axis points up

157

88.9%

100%

100%

100%

100%

100%

100%

100%

(a) Plate Scene

100 150 200 250

Target (g)

100

150

200

250

A
c
tu

a
l
(g

)

(b) Pouring Scene

Initial Policy Policy

Movement MPC Train Test

Right 97.9% 98.3% 99.2%

Left 99.7% 99.5% 93.8%

Both 98.8% 98.9% 96.5%

(c) Catching Scene

Figure 8.6: Results from the liquid control task. From left to right and top to bottom: The

plate scene. The numbers in each bowl indicate the percent of particles that were successfully

placed in that bowl when that bowl was the target. The pouring scene. The x axis is the

targeted pour amount and the y axis is the amount of liquid that was actually poured where

the red marks indicate each of the 11 pours. The catching scene. Shown is the percent of

liquid caught by the target cup where the rows indicate the initial direction of movement of

the source.

158

the rotation of the cup about the z (forward-backward) axis, starting from vertical. Note that

there is no limit on the rotation; the cup may rotate freely clockwise or counter-clockwise.

Since the cup needs to perform a two part motion (turning towards the bowl to allow liquid

to flow out, then turning back upright to stop the liquid flow), we use a two part piecewise

loss function. For the first part, we set the loss to be the L2 distance between all the liquid

particles and a point on the lip of the cup closest to the bowl. Once a desired amount of

liquid has left the cup, we switch to the second part, which is a standard regularization loss,

i.e., the loss is the rotation of the cup squared, which encourages it to return upright.

We ran 11 evaluations of this scene, varying the desired amount of poured liquid between

75g and 275g. In every case, all liquid either remained in the cup or was poured into the

bowl; no liquid was spilled on the ground. For that reason, in figure 8.6b we show how close

each evaluation was to the given desired pour amount. In every case, the amount poured

was within 11g of the desired amount, and the average difference across all 11 runs between

actual and desired was 5g. Note that the initial rotation of the cup happens implicitly; our

loss function only specifies a desired target for the liquid, not any explicit motion. This shows

that physical reasoning about fluids using our model enables solving fine-grained reasoning

tasks like this.

The Catching Scene: The final scene we evaluated on was the catching scene, shown in

Figure 8.4c. The scene consisted of two cups, a source cup in the air filled with liquid and a

target cup on the ground. The source cup moved arbitrarily while dumping the liquid in a

stream. The goal of this scene is to shift the target cup along the ground to catch the stream

of liquid and prevent it from hitting the ground. The control is the x (left-right) position of

the cup. In order to ensure smooth gradients, we set the loss to be the x distance between

each particle and the centerline of the target cup inversely weighted by that particle’s distance

to the top of the cup. The source cup always rotated counter-clockwise (CCW), i.e., always

poured out its left side.

We ran 8 evaluations of our model, varying the movement of the source cup. In every

case, the source cup would initially move left/right, then after a fixed amount of time, would

159

SPNetsApply control
to object SPNets Apply control

to object SPNets Apply control
to object

LossLoss Loss

P
roject S

tate
to Im

age

Policy

P
roject S

tate
to Im

age

Policy

P
roject S

tate
to Im

age

Policy

Initial
State

ᶊ dᶊ
dL

Figure 8.7: Diagram of the rollout procedure for optimizing the policy parameters θ. This

is very similar to the procedure shown in Figure 8.5. The dynamics are computed forward

(black arrows) for a fixed number of timesteps into the future (shown here are 3). Then

gradients of the loss are computed with respect to θ backwards (blue arrows) through the

rollout using backpropagation.

switch directions. Half the evaluations started with left movement, the other half right. We

vary the switch time between 3.3s, 4.4s, 5.6s, and 6.7s. The first column of the table in

Figure 8.6c shows the percentage of liquid caught by the cup. In all cases, the vast majority

of the liquid was caught, with only a small amount dropped due largely to the time it took

the target cup to initially move under the stream. It is clear from these results and the liquid

control results on the previous two scenes that our model can enable fine-grained reasoning

about fluid dynamics.

8.3.4 Learning a Liquid Control Policy via Reinforcement Learning

Finally, we evaluate our model on the task of learning a policy in a reinforcement learning

setting. That is, the control ut at timestep t is computed as

ut = π(ot, θ)

where ot is the observation at time t, θ are the policy parameters, and π is a function mapping

the observation (and policy parameters) to controls. Since we have access to the full state,

160

we compute the observation ot as a function of the particle positions Pt and velocities Vt.

The goal is to learn the parameters θ∗ that best optimize a given loss function l.

To do this, we can use a technique very similar to the MPC technique which we described

in the previous section. The main difference is that because the controls ut are a function

of the policy, we optimize instead the policy parameters θ. We rollout the policy for a fixed

number of timesteps, compute the gradient of the policy parameters with respect to the loss,

and then update the parameters. This is possible because our model is fully differentiable,

so we can use backpropagation to compute the gradients backwards through the rollout.

Figure 8.7 shows a diagram of this process.

We test our methodology on the catching scene. To train our policy, we use the data

generated by the 8 control sequences from the previous section using MPC on the catching

Scene. At each iteration of training, we randomly sample a different timestep t for each of

the 8 sequences, then rollout the policy starting from the particle positions Pt and velocities

Vt. We initialize the target cup X position by adding Gaussian noise to the X position of the

target cup at time t in the training sequences. The observation is computed by projecting the

particles onto a virtual camera image as described in section 8.3.2. The camera is positioned

so that both cups are in its field of view. Its X position is set to be the same as the X

position of the target cup, that is, the camera moves with the target cup.

Since the observation is effectively binary pixel labels, we use a relatively simple model

to learn the policy. We use a convolutional neural network with 1 convolutional layer (10

3×3 kernels with stride of 2) followed by a rectified linear layer, followed by a linear layer

with 100 hidden units, followed by another rectified linear layer, and finally a linear layer

with 1 hidden unit. We feed the output through a hyperbolic tangent function to ensure it

stays within a fixed range. We trained the policy for 1200 iterations using the Adam [62]

optimizer with a learning rate of 2.5e−5. The input to the network is a 160×120 image and

the output is the control.

The middle column of the table in figure 8.4c shows the percent of liquid caught by the

target cup when using the policy to generate the controls for the same 8 sequences as were

161

used in section 8.3.3 on the catching scene. In all 8 cases, the vast majority of the liquid

was caught by the target cup. However, these were the same 8 sequences that the policy

was trained on. To test the generalization ability of the policy, we modified the sequences

as follows. For all the training sequences, the source cup rotated counter-clockwise (CCW)

when pouring. To test the policy, we had the source cup follow the same X movement, but

rotated clockwise (CW) instead, i.e., in training the liquid always poured from the left side of

the source, but for testing it poured out of the right side. The percent of liquid caught by the

target cup when using the policy for the CW case is shown in the third column of the table in

figure 8.4c. Once again the policy is able to catch the vast majority of the liquid. The main

point of failure is when the source cup initially moves to the left. In this case, as the source

cup rotates, the liquid initially only appears in the upper-left of the image. It’s not until the

liquid has traveled downward several centimeters that the policy begins to move the target

cup under the stream, causing it to fail to catch the initial liquid. This behavior makes sense,

given that during training the policy only ever encountered the source cup rotating CCW,

resulting in liquid never appearing in the upper-left of the image. Nonetheless, these results

show that, at least in this case, our method enables us to train robust policies for solving

liquid control tasks.

8.4 Combining Perception and SPNets

While the focus in this chapter has been on introducing SPNets as a platform for differentiable

fluid dynamics, we also wish to show an example of how it can be combined with real

perception. So in this section we show some results on a liquid state tracking task. Similar to

the last chapter, we use SPNets to simulate liquid alongside real liquid and we use perception

to close the loop. We combine SPNets with the perception methodology from chapter 4 to

create a full deep network architecture for simulating and tracking liquids. We evaluate this

on a set of pouring sequences collected on a real robot.

162

8.4.1 Task Definition

We task the robot with tracking the 3D state of liquid over time (this is the same task as in

the previous chapter, chapter 7). We assume the robot has 3D mesh models of all the rigid

objects in the scene and knows their pose at all points in time. We further assume that the

robot knows the initial state of the liquid (e.g., the amount of liquid in a container). The

robot then interacts with the objects and observes the scene with its RGBD camera. The

task of the robot is to use its observations from its camera to track the changes in the 3D

liquid state over time.

8.4.2 Methodology

To track the liquid state, the robot takes advantage of its knowledge of fluid dynamics built-

in to SPNets. In an ideal world, knowing the initial state of the liquid and the changes

in poses of the rigid objects, it should be possible to simulate the liquid alongside the real

liquid, where the simulated liquid would perfectly track the real liquid. However, no model

is perfect and there is inevitably going to be mismatch between the simulation and the real

liquid. Furthermore, due to the temporal nature of this problem, a small error can quickly

compound to a large deviation. The solution in this case is to “close the loop,” i.e., use the

robot’s perception of the real liquid to correct the state of the simulation to prevent errors

from compounding and better match the real liquid.

The methodology we adopt here is very similar to that of chapter 7 where the robot

simulates the liquid forward in time alongside the real liquid while using perception to

correct the state at each timestep. In this section, we use only pouring interactions, so

we simulate each as follows. Each interaction starts with a known amount of liquid in the

source container. The robot initializes the liquid state by placing a corresponding amount

of liquid particles in the 3D mesh of the source container. Then, at each timestep, the robot

updates the poses of the rigid objects and simulates the liquid forward for 1 timestep. During

the simulation step, the robot uses its perception to correct the particle positions (described

163

in the next paragraph). Each timestep corresponds to 1
30

of a second in simulation time.

The robot repeats this simulation process until the interaction is over.

The main difference between the methodology here and that in chapter 7 is that instead

of assuming the robot has access to an expensive thermographic camera (and is using heated

water), we assume the robot has access only to an inexpensive RGB camera. Thus we must

use a different methodology than in chapter 7 to integrate the perception into the simulation.

In chapter 4 we developed several deep network architectures for producing pixel-wise liquid

labels from RGB images. Here we use the LSTM-FCN with RGB input to convert raw RGB

images to pixel-wise liquid labels. We refer the reader to that chapter for more details on

that network. We treat the perception correction as a constraint, similar to the pressure or

cohesion constraints, allowing us to add it to the inner loop of the PBF algorithm (lines 5–9

in Figure 8.1). We define the function SolvePerception that takes as input the current set

of particle locations P ′ and the RGB image R and produces ∆PR, the vector to move each

particle by to better satisfy the perception constraint. We insert this function immediately

after line 7 and append ∆PR to the summation on the following line of the algorithm. This

adds the perception correction to be computed alongside the other corrections in the inner-

loop of PBF. Note that because this is added as part of the inner loop in PBF, the velocity

is automatically updated based on this correction on line 11.

Figure 8.8 shows a diagram of how we implement the SolvePerception function. We

first apply the LSTM-FCN to the RGB image to generate pixel-wise liquid labels, which we

refer to as observed labels. Next we compute the observed distance field over the observed

labels, i.e., the distance from each pixel to the closest positive liquid pixel. We use this and

a 2D convolution with fixed parameters to compute the observed distance field gradient, i.e.,

for every pixel the direction to the closest positive liquid pixel. In parallel, we project the

state of the particles onto a 2D image using the camera’s intrinsic and extrinsic parameters.

This also generates a pixel-wise label image, which we refer to as the model labels. We then

subtract the model labels from the observed labels to generate the disparity image, i.e., the

pixels for which the model and observation disagree. We then generate the disparity distance

164

SolvePerception

LSTM-FCN

3D
 →

 2D
 P

rojection

-

2D
 D

istance Field
2D

 D
istance Field

2D
 C

onv
2@

3x3 w
ith fixed w

eights
2D

 C
onv

2@
3x3 w

ith fixed w
eights

2D
 C

onv
20@

3x3 kernels

2D
 C

onv
20@

3x3 kernels

2D
 C

onv
20@

3x3 kernels

2D
 C

onv
1@

1x1 kernel

Sigmoid

X

X

+

2D
 →

 3D
 P

rojection

Distance Field Gradient

Distance Field Gradient

Figure 8.8: A diagram of the SolvePerception method. It takes as input the current

particle state (center-left) and the current RGB image (lower-left). The RGB image is

passed through the LSTM-FCN to generate pixel labels, the particle state is projected onto

2D. From this, 2 gradient fields are computed, where the gradient points in the direction of

the closest liquid pixel. These fields are then blended and projected onto the particles in 3D.

field gradient in the same manner as for the observed distance field gradient. Furthermore, we

feed the disparity image through 4 2D convolutions (the first three of which are followed by a

ReLU) and a sigmoid function. The output of this is a blending value for each pixel. These

blending values determine how to combine the two distance field gradients. We multiply

the observed distance field gradient by the blending values, and the disparity distance field

gradient by 1 minus the blending values and add them together. This results in a blended

gradient field. We project this back onto the particles in 3D, adjusting the gradient by the

camera parameters. The result is the set ∆PR, the distance to move each particle to better

match the perception. Note that for both projections (projecting 3D particles onto the 2D

image plane and projecting the 2D gradient field onto the 3D particles), we ignore particles

that are blocked from view of the camera by an object (e.g., particles in a container).

To train the parameters of the network, we do the following. We train the parameters of

the LSTM-FCN part of the network using the same training data (holding out our test data

165

from the next section) and methodology as in chapter 4 and we refer the reader there for

details. We then fix those parameters for the remainder of the training. We pre-train the

entire network in Figure 8.8 by randomly selecting frames from our dataset and randomly

placing particles in the scene. To compute the loss, we use the ground truth pixel labels

collected from the thermal camera as described in chapter 4. The loss is computed as

L(L, P) =

(∑
p∈P

min
l∈L
||PROJ(p)− l||2

)
+

(∑
l∈L

min
p∈P
||l − PROJ(p)||2

)

where L is the set of positive liquid pixels in the ground truth image, P is the set of par-

ticle positions, and PROJ projects a particle location from 3D onto the 2D image plane.

Intuitively, this loss computes 2 terms: the accuracy, i.e., how far each particle is from a

liquid pixel, and the coverage, i.e., how far each liquid pixel is from a particle or how well

the particles cover the liquid pixels. We pre-train this network for 48,000 iterations using

ADAM [62] with a learning rate of 0.0001, default momentum values, and a batch size of 4.

Finally, we train the network from end-to-end by adding SolvePerception into SPNets,

unrolling it over time, and computing the same loss. Again, this is possible because SPNets

can propagate the gradient backwards in time from one timestep to the previous, allowing

us to use those gradients to update the learned weights. We trained the network this way

for 3,500 iterations also using ADAM with the same learning rate and momentum values, a

batch size of 1, and unrolling for 30 timesteps4. A diagram showing this training process is

shown in Figure 8.9.

8.4.3 Evaluation & Results

We evaluated SPNets combined with perception on the data from the pouring test set in

chapter 7. That is, the robot executed 12 pouring sequences following a fixed trajectory,

half with the cup and half with the bottle. One third of the sequences the container started

30% full, one third 60% full, and one third 90% full. We tracked the liquid state using

4Unrolling the network for training here is the same unrolling technique we used to train the LSTM-FCN
in chapter 4.

166

SPNets
Inner Loop

Apply control
to object

Apply control
to object

Apply control
to object

ut ut+1
ut+

2

LossLoss Loss

Initial
State

SPNets
Inner Loop

SPNets
Inner Loop

Perception
Correction

Perception
Correction

Perception
Correction

ᶊ dᶊ
dL

Figure 8.9: Diagram of the rollout procedure for optimizing the parameters of the perception

network θ. This is very similar to the procedures shown in Figures 8.5 and 8.7. The dynamics

are computed forward (black arrows) for a fixed number of timesteps into the future (shown

here are 3). In this case the controls u are fixed. The gradients of the loss are computed

with respect to θ backwards (blue arrows) through the rollout using backpropagation. The

box “Perception Correction” corresponds to the network shown in Figure 8.8 and θ are its

parameters. Note that here the inner loop of the PBF algorithm in SPNets is shown (with

3 iterations) since this is how the perception correction is intergrated into the dynamics.

167

RGB SPNets SPNets + Perception

(a) Example Frame for the bottle

RGB SPNets SPNets + Perception

(b) Example Frame for the cup

Figure 8.10: Results when combining SPNets with perception. The images in the top and

bottom rows show 2 example frames. From left-to-right: the RGB image (for reference),

the RGB image with SPNets overlayed, and the RGB image with SPNets with perception

overlayed. In the overlays, the blue color indicates ground truth liquid pixels, green indicates

the liquid particles, and yellow indicates where they overlap.

168

both SPNets with perception and SPNets alone for comparison. For each sequence, the

known amount of liquid was placed in the source container at the start, and as the object

poses were updated at each timestep, the liquid was also updated via SPNets. For SPNets

with perception, SolvePerception was added to the PBF algorithm as described in the

previous section and the RGB image from the robot’s camera was used at each timestep as

input to that function. For SPNets alone, SolvePerception was not added and the liquid

state was tracked open-loop instead.

Figure 8.10 shows 2 example frames from the test set and the result of both SPNets and

SPNets with perception. The yellow pixels indicate where the model and ground truth agree;

the blue and green where they disagree. From this it is apparent that SPNets with perception

is significantly better at matching the real liquid state than SPNets without perception. We

evaluate the intersection-over-union (IOU) across all frames of the 12 pouring sequences. To

compute the IOU, we compare the true pixel labels from the ground truth with the model

pixel labels. To get the model pixel labels, we project each particle in the simulation onto

the 2D image plane. However, since there are far fewer particles than pixels, we draw a

circle of radius 5 around each particle’s projected location. The result is a set of pixel labels

corresponding to the state of the model. To compute the IOU, we divide the number of

pixels where the model and true labels agree by the number of pixels that are positive in

either set of labels.

SPNets alone achieved an IOU of 36.1%. SPNets with perception achieved an IOU of

56.8%. Note that unlike in chapter 7, we did not spend a significant amount of time fine-

tuning the simulation parameters for either SPNets with or without perception. Thus these

results clearly show that perception is capable of greatly improving performance even when

there is significant model mismatch. Here we can see that SPNets with perception increased

performance by 20%, and from the images in Figure 8.10 it is clear that this increase in

performance is significant. This shows that our framework can be very useful for combining

real perceptual input with fluid dynamics.

169

8.5 Discussion

In this chapter we presented SPNets, a method for computing differentiable fluid dynamics

and their interactions with rigid objects inside a deep network. To do this, we developed

the ConvSP and ConvSDF layers, which allow the model to compute particle-particle and

particle-rigid object interactions. We then showed how these layers can be combined with

standard neural network layers to compute fluid dynamics. Our evaluation in Section 8.3

showed how a fully differentiable fluid model can be used to 1) learn, or identify, fluid

parameters from data, 2) control liquids to accomplish a task, and 3) learn a policy to

control liquids. This is the power of model-based methods: they are widely applicable to a

variety of tasks. Combining this with the adaptability of deep networks, we can enable robots

to robustly reason about and manipulate liquids. Importantly, SPNets make it possible to

specify liquid identification and control tasks in terms of the desired state of the liquid ; the

resulting controls follow from the physical interaction between the liquid and the controllable

objects. This is in contrast to prior approaches to pouring liquids, for instance, where the

relationships between controls and liquid states have to be specified via manually designed

functions.

In this chapter, we proposed a method for combining the deep learning techniques used

in earlier chapters of this thesis with the physics-based model of the prior chapter. Both

methods proved to be powerful tools for enabling robots to interact intelligently with liquids.

With SPNets, we showed how it can be applied to a variety of different tasks like the model-

based methods of the previous chapter and how it can be used to adapt the model similar

to the learning-based methods earlier in this thesis. This can enable robots to manipulate

liquids robustly and precisely.

8.5.1 Practical Takeaways

While implementing SPNets, there were many practical implementation details that gave

us interesting technical insights. One technical issue that we dealt with was the issue of

170

particle clipping, which we also had to deal with in chapter 7. This is the issue where when

object’s have thin walls (such as a cup or a bottle), a particle’s update vector from one

timestep to the next may move it directly through that wall without ever stopping inside it,

resulting in no detection of the particle-object interaction that should have occurred. Since

SPNets represents rigid objects as SDFs and not triangle meshes like in chapter 7, we had

to develop a new methodology to handle this. To fix this issue, anytime a particle’s position

is updated, we split the update vector into smaller pieces and check for collision at each

position along that vector. Assuming the length of each piece is small enough, this means

that we can determine if a particle will collide with a rigid object and prevent them from

clipping through the sides of the objects.

Another technical issue we encountered was computing the particle-particle interactions

via the ConvSP layer efficiently. The naive way to compute the ConvSP equation is to

iterate over every pair of particles and test if they are close enough to interact with each

other. However the run time for this is quadratic in the number of particles. To make these

pairwise tests more efficient, we utilize a hashgrid. The hashgrid divides up the 3D space

into a grid and then makes a list of all particles that fall in each cell. Now to compute the

ConvSP equation, we only need to test the particles in nearby grid cells to each particle,

rather than iterate over every pair. This algorithm is linear time in the number of particles,

assuming that the number of particles in each grid cell is relatively constant. However,

when we implemented this hashgrid in our ConvSP code, for approximately 10k particles,

it was slower than the naive method! After careful analysis, we discovered the reason. Our

ConvSP layer is implemented on a graphics card using Cuda. The graphics card has both

global memory, similar to system memory on a computer, and a cache for each Cuda core,

similar to the CPU cache on most processors. Importantly, accessing data stored in global

memory is slow, but accessing data stored in the cache is much faster, so efficient Cuda code

attempts to maximize the number of cache hits. However, when iterating over the particles

in a grid cell, their data would be stored in the original particle list in global memory, and

so the particles in the same grid cell would essentially be randomly spread in the data for all

171

particles. Thus many of the data accesses for the particles in a grid cell would cause a cache

miss, requiring the computation to halt while slower global memory was accessed. To fix this,

after computing the hashgrid, we reorder all the data such that all particles in the same cell

are contiguous in memory. This resulted in many fewer cache misses, and made our hashgrid

method much faster, even faster than the naive method. This is the kind of insight that is

often not stated in research like this, however it turned out to be fundamentally important

to the efficiency of our ConvSP layer.

172

Chapter 9

CONCLUSION

9.1 Summary

In this thesis we investigated methods for robots to perceive, reason about, and manipulate

liquids. In chapter 1 we motivated our investigation with an example of a household task:

baking a cake. There, we noted how many of the prerequisite skills for solving that task

and other similar household tasks are already under investigation, but missing from this is

an investigation into how to handle the liquids required for such a task. So we focused this

thesis on looking at ways to fill this knowledge gap. In chapter 2 we discussed what work

had already been done in this area, and how our work related.

We began our investigation in chapter 3 by starting with a common liquid task: pour-

ing. To focus on the task at hand, we simplified the problem by placing a real-time scale

underneath the target container. The robot was then given a source container containing an

unknown amount of liquid and tasked with pouring a specific amount out into the target.

Using Guided Policy Search, the robot was able to learn an effective policy to pour precise

amounts of liquid. We found that in all cases, the robot was able to achieve less than 10ml

of error, an amount on par with what would be expected of a human performing the same

task. This showed that with the right state information, it is possible for a robot to precisely

control liquids.

In the following chapter, chapter 4, we relaxed one of the simplifying assumptions from

chapter 3. We removed the real-time scale and focused on perceiving the liquid from raw

sensor data, in this case a color camera. We trained several different deep neural networks

to examine their performance on solving the detection task, i.e., labelling pixels in an image

as containing liquid or not containing liquid. Our results showed that integrating temporal

173

information alongside image features was necessary to solve this task with a high degree of

accuracy. This aligned well with our intuition as clear liquids, like the water used in these

experiments, is difficult to see from still images, but can more readily be seen by monitoring

changes in reflections and refractions over time.

In chapter 5 we combined work from the previous two chapters to revisit the pouring task.

However, this time we removed the real-time scale and instead required the robot to rely on

its color camera to perceive the state of the liquid. We trained a deep network to convert

the pixel-wise liquid detections of the network from the previous chapter into an estimate

of the volume contained in the target container. By combining the two networks together,

the robot was able to pour precise amounts of liquid. Using only RGB feedback, the robot

achieved an average error of 38ml, which is on par with what a human would be expected

to do under similar circumstances. This showed that precise control tasks are feasible even

when done from raw perceptual data.

In the following chapter, chapter 6, we examined a reasoning task. Specifically, we looked

at the task of tracking, which tasks the robot with finding all the liquid in a scene (visible

and occluded), given a perceptual system capable of producing semantic labels for visible

objects. We again tested several deep network architectures on this task, and similar to the

perception results from chapter 4, we found that recurrent networks performed the best at

this task. Not only could they learn basic liquid rules (e.g., liquid exiting from the lip of a

container meant that the container was full below that point) but they could also remember

where liquid had been seen previously (e.g., liquid disappeared into a container, so now that

container has liquid in it).

However, the limitation of this methodology was that it was restricted to reasoning in

2D. So in chapter 7 we shifted to a fully 3D methodology. We investigated methods for using

physics-based fluid dynamics models to perform reasoning tasks with liquids. We looked at

how simple perceptual models could be used to “close the loop” between a robot’s internal

simulation of the liquid and the real liquid. Using this, the robot was able to reason about

unknown state variables in the environment, such as how much liquid was contained in a

174

container or where a potential obstacle was. The use of generic physics models showed

the power of model-based methods: they could easily generalize from one task to another

completely different task.

In chapter 8 we introduced SPNets, an implementation of fluid dynamics using deep

learning tools. This allowed for not only a differentiable fluid simulator, but also easy

integration with deep networks. We showed how this model could be used to learn fluid

parameters such as cohesion or viscosity. We also showed how it can be used to solve

different liquid control tasks and to train a reinforcement learning policy directly using policy

gradients. Finally, we showed how SPNets can be combined with the perception network

from chapter 4 to track the state of the real liquid accurately.

9.2 Discussion

In chapter 1 we laid out the problem statement for this thesis. We described 3 subproblems

necessary to solve for robots to intelligently interact with liquids: perceiving liquids, reasoning

about liquids, and manipulating liquids. Let us examine here what we learned about them

in this thesis.

Perceiving Liquids: The perception of liquids was the primary focus of chapter 4. In

that chapter, we discovered that perceiving transparent liquids like water required some abil-

ity to integrate information over time; it wasn’t enough to simply look at static images, the

robot needed to see the motion of the liquid to really perceive it. This aligns with intuition.

Due to their non-rigidity, liquids can appear in an exponential number of configurations,

making it difficult to deduce the location of liquid from only a few features. Additionally,

the transparency of the liquids can further decrease the amount of information that can be

gathered about the liquid from a single image. Thus by adding more images with motion,

and thus more information, it becomes possible to perceive liquids accurately. Our recurrent

neural network performed the best at this task. It could pass information forward in time,

incrementally updating its perception from one frame to the next, making the problem much

easier than solving it from scratch each frame. This shows that passing forward in time some

175

notion of state can make perceiving high dimensional substances such as liquids easier.

Reasoning About Liquids: In chapters 6 and 7 we examined ways for a robot to reason

about liquids. The results of chapter 6 showed how a robot could use deep neural networks to

learn basic, intuitive physical rules about liquids from data, such as if liquid is unsupported

it falls or if liquid exits from the lip of a container then that container is full up to the lip.

Interestingly, even the non-recurrent networks, that did not contain any state information,

were able to learn some of these rules, albeit not ones that requires memory such as if liquid

disappears from sight into a container, it remains in the container. This showed that some

liquid physics can be inferred from the relationships between liquid and objects around it.

We extended our methodology to 3D in chapter 7. There we showed how our physics-based

model could be applied to two entirely different tasks. This really exemplified the power of

model-based methods: they can easily generalize between tasks. What this showed was that

model-based methods like this can be applied to a wide variety of tasks, something which

may be difficult for a model-free method to do. Due to the high-dimensionality of liquids,

it is easy for model-free methods to overfit to their training data, making generalization

difficult. In contrast, our results show that our model-based method can counteract this

tendency to overfit by incorporating physics knowledge into the model.

Manipulating Liquids: We examined manipulating liquids in chapters 3, 5, and 8. In

chapters 3 and 5, we found that the robot could pour specific amounts of liquid with precision

given a good, task-relevant summarization of the liquid state (e.g., the estimate of volume

of liquid in the target container). This showed that precise control of liquids is possible,

and that learning-based methods are well-suited to learning a specific task. In chapter 8 we

used our model SPNets to examine several control tasks. Our model was able to control the

liquid using the full state representation. This shows that while liquid control may present a

high-dimensional, challenging task, the use of physics-based models can make the task more

feasible. Liquid control is challenging, and using end-to-end model-free methods may not

be feasible to do so in a general setting. Our results here show that this is not the case for

methods that use strong physics priors; they are able to accomplish this challenge in at least

176

a limited sense without requiring huge amounts of training data.

In this thesis we also developed several systems that helped our robot to interact with

liquids:

• Acquiring Ground Truth Labels with a Thermographic Camera: One system

we developed in this thesis was a method for acquiring ground truth labels in a real

robot environment. We used a thermographic camera calibrated to an RGB camera

combined with heated water. The heated water, being much warmer than its sur-

roundings, appeared very bright in the thermal image, making it simple to threshold

the values and acquire pixel-wise liquid labels. To the best of our knowledge, we are

the first to use this method.

• Application of Deep Learning to Liquid Perception: In chapter 4 we developed

3 deep neural network architectures for perceiving liquids, one that saw only static

images of the scene, one that saw short windows of movement, and one with an ex-

plicit memory. For all of them one challenge we dealt with was the large imbalance

between liquid and not-liquid pixels. We overcame this by first pre-training the net-

works on crops of images focused around liquid, alleviating some of the imbalance,

and also by weighting the loss of not-liquid pixels by 0.1. Furthermore, we overcame

the exploding/vanishing gradient problem by introducing an LSTM layer into our re-

current network, which then enabled it to integrate information over time, making the

perception task more feasible. The LSTM-FCN that we developed was able to perceive

liquids with a high degree of accuracy.

• Creation of a Closed-Loop Liquid Simulator: In chapter 7 we developed a closed-

loop liquid simulator. We implemented fluid dynamics on top of a particle interaction

library, incorporated rigid object tracking from depth cameras, and created 2 methods

for using perceptual feedback to correct deviations in the liquid state. Furthermore, the

system was implemented with graphics processor support, allowing it to run efficiently

177

even with a high-dimensional liquid state. With this system, the robot was able to

reason effectively about liquid in its environment. It could track the state of the

liquid and then use that to infer unknown variables, such as the location of a hidden

obstruction or the amount of liquid in a container.

• Development of SPNets: Finally, in chapter 8, we created SPNets, an implemen-

tation of fluid dynamics using the deep learning toolbox. This resulted in a fully

differentiable fluid dynamics model. We showed how this differentiability can be used

to infer liquid parameters from data, perform control tasks, and even train policies.

We implemented it in the common deep learning library PyTorch, which makes it easy

to incorporate it into other deep networks, which we did when we combined it with

our perception network. We also released the code to allow other researchers to use it

for research on liquids.

In this thesis, we investigated ways for robots to perceive, reason about, and manipulate

liquids. We found that perception requires temporal integration, reasoning can be done

robustly using physics-based models, and control can be done precisely given a precise state

representation. We developed several systems from deep neural network architectures to

differentiable fluid dynamics. The insights we gained from our investigation here shed light

on how robots can intelligently interact with liquids, and the tools developed can enable

robots to execute some of those insights. While there will always be more work to be done,

in this thesis we help to bridge the gap in knowledge, bringing us one step closer to the cake

baking robot that motivated this work to begin with.

9.3 Future Work

This thesis was an initial investigation into how robots can interact with liquids intelligently.

However there are still plenty of avenues for continued work in this area. One such area is

examining granular media such as flour or sand. Granular media have many of the same

problems as liquids (high-dimensional state space, non-rigidity) and behave in similar ways,

178

so it is a natural extension of this work. In fact, we have already done some work in this

area [134]. But there is still more work that can be done, such as learning low-level action

controllers or even incorporating granular media physics models into SPNets.

Another avenue for future work is to examine liquids other than water. For most of

the work in this thesis, we use water in our liquid experiments. This is largely due to the

ubiquity of water in human environments and due to it exemplifying many of the perception

challenges that are common amongst liquids (e.g., transparency). We briefly examined other

liquids in chapter 8 when we looked at finding liquid parameters from data, however this

was entirely in simulation. Other liquids, such as oil or dough, appear frequently in common

tasks in human environments, and it would be useful to investigate how our methods here

would extend to those liquids. One challenge in doing so, though, would be acquiring ground

truth labels. In chapters 4, 5, and 7 we used a thermal camera with hot water to acquire

pixel-wise labels. However with other liquids, such as oil, heating them may cause them to

behave differently than they would at room temperature. Thus in order to extend to other

liquids, other methods of acquiring ground truth must be devised.

Finally, another avenue for future work is to examine how to apply long-horizon planning

algorithms to liquid manipulation tasks. One difficulty in doing so is the high-dimensional

state space. In chapters 3 and 5 we reduced the dimensionality of the state space by extracting

task specific variables (the volume of liquid in the target container), which made the control

tasks more feasible. This is not suitable for general-purpose planning though as it limits

the tasks that can be performed. In chapter 8 we evaluated control tasks using the full

dimensionality of the liquid, although in that case the tasks were short-horizon tasks. Future

work will likely need to develop a method to summarize the state of the liquid that both

captures enough information to accurately represent it in a relatively general manner but is

also low-dimensional enough to allow for efficient planning.

179

BIBLIOGRAPHY

[1] Matlab statistics and machine learning toolbox. http://www.mathworks.com/help/

stats/index.html. Accessed: 2015-12-31.

[2] David J Acheson. Elementary fluid dynamics. Oxford University Press, 1990.

[3] Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias
Teschner. Versatile rigid-fluid coupling for incompressible sph. ACM Transactions
on Graphics (TOG), 31(4):62, 2012.

[4] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two manipulation planning
algorithms. In WAFR Proceedings of the workshop on Algorithmic foundations of
robotics, pages 109–125. AK Peters, Ltd. Natick, MA, USA, 1994.

[5] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. Switching model predictive
attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control
Engineering Practice, 19(10):1195–1207, 2011.

[6] Ethem Alpaydin. Reinforcement learning. In Introduction to machine learning, chap-
ter 18, pages 517–290. MIT Press, 2014.

[7] Jeffrey L Bada. How life began on earth: a status report. Earth and Planetary Science
Letters, 226(1-2):1–15, 2004.

[8] Christopher J Bates, Ilker Yildirim, Joshua B Tenenbaum, and Peter W Battaglia.
Humans predict liquid dynamics using probabilistic simulation. In Proceedings of the
37th annual conference of the cognitive science society, 2015.

[9] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as
an engine of physical scene understanding. Proceedings of the National Academy of
Sciences, page 201306572, 2013.

[10] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner. Ma-
nipulation planning on constraint manifolds. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 625–632. IEEE, 2009.

http://www.mathworks.com/help/stats/index.html
http://www.mathworks.com/help/stats/index.html

180

[11] Blender Online Community. Blender - A 3D modelling and rendering package. Blender
Foundation, Blender Institute, Amsterdam, 2016.

[12] Phil Blunsom. Hidden markov models. Lecture notes, August, 15:18–19, 2004.

[13] Kenneth Bodin, Claude Lacoursiere, and Martin Servin. Constraint fluids. IEEE
Transactions on Visualization and Computer Graphics, 18(3):516–526, 2012.

[14] Mario Bollini, Jennifer Barry, and Daniela Rus. Bakebot: Baking cookies with the pr2.
In The PR2 Workshop: Results, Challenges and Lessons Learned in Advancing Robots
with a Common Platform, IROS, 2011.

[15] Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136(2):215 – 250, 2002.

[16] Robert Bridson. Fluid simulation for computer graphics. CRC Press, 2015.

[17] Roxana Bujack and Kenneth I Joy. Lagrangian representations of flow fields with
parameter curves. In Large Data Analysis and Visualization (LDAV), 2015 IEEE 5th
Symposium on, pages 41–48. IEEE, 2015.

[18] Maya Cakmak and Andrea L Thomaz. Designing robot learners that ask good ques-
tions. In ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 17–24, 2012.

[19] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
Science & Business Media, 2013.

[20] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. Real-time scalable 6dof pose
estimation for textureless objects. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 2441–2448. IEEE, 2016.

[21] Nilanjan Chakraborty, Stephen Berard, Srinivas Akella, and Jeffrey C Trinkle. A
geometrically implicit time-stepping method for multibody systems with intermittent
contact. The International Journal of Robotics Research, 33(3):426–445, 2014.

[22] Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. Mathematics
of computation, 22(104):745–762, 1968.

[23] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based viscoelastic fluid
simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 219–228. ACM, 2005.

181

[24] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML), pages 465–472, 2011.

[25] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes
for data-efficient learning in robotics and control. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 37(2):408–423, 2015.

[26] Chau Do, Tobias Schubert, and Wolfram Burgard. A probabilistic approach to liquid
level detection in cups using an rgb-d camera. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), pages 2075–2080, 2016.

[27] Christof Elbrechter, Jonathan Maycock, Robert Haschke, and Helge Ritter. Discrim-
inating liquids using a robotic kitchen assistant. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), pages 703–708, 2015.

[28] Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and Emanuel
Todorov. An integrated system for real-time model predictive control of humanoid
robots. In Humanoid Robots (Humanoids), 2013 13th IEEE-RAS International Con-
ference on, pages 292–299. IEEE, 2013.

[29] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1915–1929, 2013.

[30] Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. Beating the world’s
best at super smash bros. with deep reinforcement learning. arXiv preprint
arXiv:1702.06230, 2017.

[31] David A Forsyth and Jean Ponce. Computer vision: a modern approach. Prentice Hall
Professional Technical Reference, 2002.

[32] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[33] Felix Franks. Water: a matrix of life. Royal Society of Chemistry, 2007.

[34] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning to fly by crashing. In
International Conference on Intelligent Robots and Systems (IROS), pages 3948–3955.
IEEE, 2017.

182

[35] Cristina Garcia Cifuentes, Jan Issac, Manuel Wüthrich, Stefan Schaal, and Jean-
nette Bohg. Probabilistic articulated real-time tracking for robot manipulation. IEEE
Robotics and Automation Letters (RA-L), 2016.

[36] Xiaoyu Ge, Jae Hee Lee, Jochen Renz, and Peng Zhang. Hole in one: Using qualitative
reasoning for solving hard physical puzzle problems. In ECAI, pages 1762–1763, 2016.

[37] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: the-
ory and application to non-spherical stars. Monthly notices of the royal astronomical
society, 181(3):375–389, 1977.

[38] Ross Girshick, Jamie Shotton, Pushmeet Kohli, Antonio Criminisi, and Andrew
Fitzgibbon. Efficient regression of general-activity human poses from depth images.
In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 415–422.
IEEE, 2011.

[39] Hoover William Graham. Smooth Particle Applied Mechanics: The State Of The Art,
volume 25. World Scientific, 2006.

[40] Fabien Gravot, Atsushi Haneda, Kei Okada, and Masayuki Inaba. Cooking for hu-
manoid robot, a task that needs symbolic and geometric reasonings. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on,
pages 462–467. IEEE, 2006.

[41] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks
and learning systems, 2016.

[42] S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev. A behavior-grounded approach
to forming object categories: Separating containers from noncontainers. IEEE Trans-
actions on Autonomous Mental Development, 4(1):54–69, 2012.

[43] S. Griffith, V. Sukhoy, and A. Stoytchev. Using sequences of movement dependency
graphs to form object categories. In 11th IEEE-RAS International Conference on
Humanoid Robots, pages 715–720, 2011.

[44] Shane Griffith, Vladimir Sukhoy, Todd Wegter, and Alexander Stoytchev. Object
categorization in the sink: Learning behavior–grounded object categories with water.
In Proceedings of the 2012 ICRA Workshop on Semantic Perception, Mapping and
Exploration. Citeseer, 2012.

183

[45] Tatiana López Guevara, Rita Pucci, Nicholas K Taylor, Michael Gutmann, Subrama-
nian Ramamoorthy, and Kartic Subr. To stir or not to stir: Online estimation of liquid
properties for pouring actions. In Proceedings of Robotics: Science and Systems (RSS)
Workshop on Learning and Inference in Robotics: Integrating Structure, Priors and
Models, 2018.

[46] Tatiana López Guevara, Nicholas K Taylor, Michael U Gutmann, Subramanian Ra-
mamoorthy, and Kartic Subr. Adaptable pouring: Teaching robots not to spill using
fast but approximate fluid simulation. In Proceedings of the Conference on Robot
Learning (CoRL), 2017.

[47] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep
learning for real-time atari game play using offline monte-carlo tree search planning.
In International Conference on Neural Information Processing Systems (NIPS), pages
3338–3346, 2014.

[48] Joshua A Haustein, Jennifer King, Siddhartha S Srinivasa, and Tamim Asfour. Kinody-
namic randomized rearrangement planning via dynamic transitions between statically
stable states. In Robotics and Automation (ICRA), 2015 IEEE International Confer-
ence on, pages 3075–3082. IEEE, 2015.

[49] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor
segmentation with deep neural networks. Medical image analysis, 35:18–31, 2017.

[50] Susan J Hespos, Alissa L Ferry, Erin M Anderson, Emily N Hollenbeck, and Lance J
Rips. Five-month-old infants have general knowledge of how nonsolid substances be-
have and interact. Psychological science, 27(2):244–256, 2016.

[51] Susan J Hespos and Kristy VanMarle. Physics for infants: Characterizing the origins
of knowledge about objects, substances, and number. Wiley Interdisciplinary Reviews:
Cognitive Science, 3(1):19–27, 2012.

[52] Philip G Hill and Carl R Peterson. Mechanics and thermodynamics of propulsion.
Reading, MA, Addison-Wesley Publishing Co., 1992, 764 p., 1, 1992.

[53] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski,
Kurt Konolige, and Nassir Navab. Model based training, detection and pose estimation
of texture-less 3d objects in heavily cluttered scenes. In Asian conference on computer
vision, pages 548–562. Springer, 2012.

184

[54] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[55] Jamshed Iqbal, Zeashan Hameed Khan, and Azfar Khalid. Prospects of robotics in
food industry. Food Science and Technology, 37(2):159–165, 2017.

[56] Scott C James, Yushan Zhang, and Fearghal O’Donncha. A machine learning frame-
work to forecast wave conditions. Coastal Engineering, 137:1–10, 2018.

[57] Eric Jang, Sudheendra Vijaynarasimhan, Peter Pastor, Julian Ibarz, and Sergey
Levine. End-to-end learning of semantic grasping. In Conference on Robot Learn-
ing (CoRL), 2017.

[58] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678, 2014.

[59] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab.
Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again. In Pro-
ceedings of the International Conference on Computer Vision (ICCV 2017), Venice,
Italy, pages 22–29, 2017.

[60] Monroe Kennedy, Kendall Queen, Dinesh Thakur, Kostas Daniilidis, and Vijay Kumar.
Precise dispensing of liquids using visual feedback. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), pages 1260–1266, 2017.

[61] Jennifer E King, Joshua A Haustein, Siddhartha S Srinivasa, and Tamim Asfour.
Nonprehensile whole arm rearrangement planning on physics manifolds. In Robotics
and Automation (ICRA), 2015 IEEE International Conference on, pages 2508–2515.
IEEE, 2015.

[62] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Pro-
ceedings of the 3rd International Conference for Learning Representations, San Diego,
CA, USA, 2015.

[63] Reinhard Klapfer, Lars Kunze, and Michael Beetz. Pouring and mixing liquidsunder-
standing the physical effects of everyday robot manipulation actions. Human Reasoning
and Automated Deduction, 2012.

[64] Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel. Gaussian processes
and reinforcement learning for identification and control of an autonomous blimp. In

185

International Conference on Robotics and Automation (ICRA), pages 742–747. IEEE,
2007.

[65] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2619–2624, 2004.

[66] GD Konidaris. Autonomous Robot Skill Acquisition. PhD thesis, University of Mas-
sachusetts, Amherst, 2011.

[67] George Konidaris and Andre S. Barreto. Skill discovery in continuous reinforcement
learning domains using skill chaining. In Advances in Neural Information Processing
Systems 22, pages 1015–1023, 2009.

[68] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andre S. Barreto. Con-
structing skill trees for reinforcement learning agents from demonstration trajectories.
In Advances in Neural Information Processing Systems 23, pages 1162–1170, 2010.

[69] Carolin Körner, Thomas Pohl, Ulrich Rüde, Nils Thürey, and Thomas Zeiser. Paral-
lel lattice boltzmann methods for cfd applications. In Numerical Solution of Partial
Differential Equations on Parallel Computers, pages 439–466. Springer, 2006.

[70] Michael C Koval, Jennifer E King, Nancy S Pollard, and Siddhartha S Srinivasa. Ro-
bust trajectory selection for rearrangement planning as a multi-armed bandit problem.
In IROS, pages 2678–2685, 2015.

[71] Tibor Kozek and Tamás Roska. A double timescale cnn for solving two-dimensional
navierstokes equations. International Journal of Circuit Theory and Applications,
24(1):49–55, 1996.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[73] Lars Kunze. Näıve Physics and Commonsense Reasoning for Everyday Robot Manip-
ulation. PhD thesis, Technische Universität München, 2014.

[74] Lars Kunze and Michael Beetz. Envisioning the qualitative effects of robot manipula-
tion actions using simulation-based projections. Artificial Intelligence, 2015.

[75] Yoshifumi Kuriyama, Ken’ichi Yano, and Masafumi Hamaguchi. Trajectory planning
for meal assist robot considering spilling avoidance. In Proceedings of the International
Conference on Control Applications (CCA), pages 1220–1225, 2008.

186

[76] Jonathan P Kyle and Elon J Terrell. Application of smoothed particle hydrodynamics
to full-film lubrication. Journal of Tribology, 135(4):041705, 2013.

[77] L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus
Gross. Data-driven fluid simulations using regression forests. ACM Transactions on
Graphics (TOG), 34(6):199:1–199:9, 2015.

[78] Matthew Lanaro, David P Forrestal, Stefan Scheurer, Damien J Slinger, Sam Liao,
Sean K Powell, and Maria A Woodruff. 3d printing complex chocolate objects: Plat-
form design, optimization and evaluation. Journal of Food Engineering, 215:13–22,
2017.

[79] Joshua D Langsfeld, Krishnanand N Kaipa, Rodolphe J Gentili, James A Reggia, and
Satyandra K Gupta. Incorporating failure-to-success transitions in imitation learning
for a dynamic pouring task. In IEEE International Conference on Intelligent Robots
and Systems (IROS) Workshop on Compliant Manipulation, 2014.

[80] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The
international journal of robotics research, 20(5):378–400, 2001.

[81] Vincent Lepetit, Pascal Fua, et al. Monocular model-based 3d tracking of rigid objects:
A survey. Foundations and Trends R© in Computer Graphics and Vision, 1(1):1–89,
2005.

[82] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

[83] Sergey Levine and Vladlen Koltun. Guided policy search. In Proceedings of The 30th
International Conference on Machine Learning, pages 1–9, 2013.

[84] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep iterative
matching for 6d pose estimation. In European Conference Computer Vision (ECCV),
2018.

[85] Sai-Ho Ling, Herbert Ho-Ching Iu, Frank Hung-Fat Leung, and Kit Yan Chan. Im-
proved hybrid particle swarm optimized wavelet neural network for modeling the de-
velopment of fluid dispensing for electronic packaging. IEEE transactions on industrial
electronics, 55(9):3447–3460, 2008.

[86] Song Liu, De Xu, You-Fu Li, Fei Shen, and Da-Peng Zhang. Nanoliter fluid dispensing
based on microscopic vision and laser range sensor. IEEE Transactions on Industrial
Electronics, 64(2):1292–1302, 2017.

187

[87] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015.

[88] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. Hybridnet: Integrating model-
based and data-driven learning to predict evolution of dynamical systems. arXiv
preprint arXiv:1806.07439, 2018.

[89] Adam Macdonald. Fluidix. OneZero Software, Canada, 2017.

[90] Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions on
Graphics (TOG), 32(4):104:1–104:12, 2013.

[91] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified
particle physics for real-time applications. ACM Transactions on Graphics (TOG),
33(4):104, 2014.

[92] Aleka McAdams, Eftychios Sifakis, and Joseph Teran. A parallel multigrid poisson
solver for fluids simulation on large grids. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 65–74. Eurograph-
ics Association, 2010.

[93] Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforce-
ment learning using diverse density. In Proceedings of the 18th International Conference
on Machine Learning (ICML), 2001.

[94] Geoffrey McLachlan and David Peel. Finite mixture models. John Wiley & Sons, 2004.

[95] Heinrich Mellmann, Benjamin Schlotter, and Christian Blum. Simulation based se-
lection of actions for a humanoid soccer-robot. In Robot World Cup, pages 193–205.
Springer, 2016.

[96] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
In Proceedings of the 27th International Conference on Neural Information Processing
Systems (NIPS) Workshop on Deep Learning, 2013.

[97] Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-cio: Full-body dy-
namic motion planning that transfers to physical humanoids. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 5307–5314.
IEEE, 2015.

188

[98] Toshio Morita, Hiroyasu Iwata, and Shigeki Sugano. Development of human symbiotic
robot: Wendy. In Robotics and Automation, 1999. Proceedings. 1999 IEEE Interna-
tional Conference on, volume 4, pages 3183–3188. IEEE, 1999.

[99] Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi.
Newtonian image understanding: Unfolding the dynamics of objects in static images.
In Proceedings of the Conference of Computer Vision and Pattern Recognition (CVPR),
2016.

[100] Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. “what
happens if...” learning to predict the effect of forces in images. In Proceedings of the
European Conference on Computer Vision (ECCV), 2016.

[101] Roozbeh Mottaghi, Connor Schenck, Dieter Fox, and Ali Farhadi. See the glass half
full: Reasoning about liquid containers, their volume and content. In Proceedings of
the International Conference on Computer Vision (ICCV), 2017.

[102] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B
Tenenbaum, and Daniel LK Yamins. Flexible neural representation for physics predic-
tion. arXiv preprint arXiv:1806.08047, 2018.

[103] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation
for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 154–159. Eurographics Association, 2003.

[104] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Posi-
tion based dynamics. Journal of Visual Communication and Image Representation,
18(2):109–118, 2007.

[105] Bruce Roy Munson, Theodore Hisao Okiishi, Wade W Huebsch, and Alric P Roth-
mayer. Fluid mechanics. Wiley Singapore, 2013.

[106] S Niekum. Semantically Grounded Learning from Unstructured Demonstrations. PhD
thesis, University of Massachusetts, Amherst, 2013.

[107] Scott Niekum. An integrated system for learning multi-step robotic tasks from un-
structured demonstrations. In AAAI Spring Symposium: Designing Intelligent Robots,
2013.

[108] Kei Okada, Mitsuharu Kojima, Yuichi Sagawa, Toshiyuki Ichino, Kenji Sato, and
Masayuki Inaba. Vision based behavior verification system of humanoid robot for daily
environment tasks. In IEEE-RAS International Conference on Humanoid Robotics
(Humanoids), pages 7–12, 2006.

189

[109] Federico Pallottino, Liisa Hakola, Corrado Costa, Francesca Antonucci, Simone Fig-
orilli, Anu Seisto, and Paolo Menesatti. Printing on food or food printing: a review.
Food and Bioprocess Technology, 9(5):725–733, 2016.

[110] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots. Agile off-road autonomous driving using end-to-end
deep imitation learning. In Robotics: Science and Systems (RSS), 2018.

[111] Zherong Pan and Dinesh Manocha. Motion planning for fluid manipulation using
simplified dynamics. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), pages 4224–4231, 2016.

[112] Zherong Pan and Dinesh Manocha. Feedback motion planning for liquid pouring us-
ing supervised learning. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), pages 1252–1259, 2017.

[113] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In In Proceedings of the Conference on Neural Information
Processing Systems (NIPS) Workshop on Automatic Differentiation, 2017.

[114] Vivian C Paulun, Takahiro Kawabe, Shinya Nishida, and Roland W Fleming. Seeing
liquids from static snapshots. Vision research, 115:163–174, 2015.

[115] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstantinos G Derpanis, and Kostas
Daniilidis. 6-dof object pose from semantic keypoints. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 2011–2018. IEEE, 2017.

[116] Peter Pinggera, Toby Breckon, and Horst Bischof. On cross-spectral stereo matching
using dense gradient features. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[117] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory op-
timization of rigid bodies through contact. The International Journal of Robotics
Research, 33(1):69–81, 2014.

[118] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, pages 5105–5114, 2017.

[119] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate, robust to partial occlusion
method for predicting the 3d poses of challenging objects without using depth. In
International Conference on Computer Vision, volume 1, page 5, 2017.

190

[120] Arturo Rankin and Larry Matthies. Daytime water detection based on color variation.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 215–221, 2010.

[121] Arturo L Rankin, Larry H Matthies, and Paolo Bellutta. Daytime water detection
based on sky reflections. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5329–5336, 2011.

[122] Junuthula Narasimha Reddy. An Introduction to Nonlinear Finite Element Analysis:
with applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford,
2014.

[123] Martin Riedmiller. Neural fitted Q iteration–First experiences with a data efficient
neural reinforcement learning method. In Proceedings of the 16th European Conference
on Machine Learning (ECML), pages 317–328. Springer, 2005.

[124] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave,
Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg.
Learning by playing-solving sparse reward tasks from scratch. In International Con-
ference on Machine Learning (ICML), 2018.

[125] Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent instance segmen-
tation. In European Conference on Computer Vision, pages 312–329, 2016.

[126] Stephan Rosswog. Astrophysical smooth particle hydrodynamics. New Astronomy
Reviews, 53(4-6):78–104, 2009.

[127] Leonel Rozo, Pedro Jimenez, and Carme Torras. Force-based robot learning of pouring
skills using parametric hidden markov models. In IEEE-RAS International Workshop
on Robot Motion and Control (RoMoCo), pages 227–232, 2013.

[128] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In ICRA,
2011.

[129] Connor Schenck and Dieter Fox. Guided policy search with delayed senor measure-
ments. Technical report, University of Washington, Paul G. Allen School of Computer
Science & Engineering, 2016.

[130] Connor Schenck and Dieter Fox. Towards learning to perceive and reason about liquids.
In Proceedings of the International Symposium on Experimental Robotics (ISER), 2016.

191

[131] Connor Schenck and Dieter Fox. Reasoning about liquids via closed-loop simulation.
In Robotics: Science & Systems (RSS), 2017.

[132] Connor Schenck and Dieter Fox. Visual closed-loop control for pouring liquids. In
Proceedings of the International Conference on Experimental Robotics (ICRA), 2017.

[133] Connor Schenck and Dieter Fox. Perceiving and reasoning about liquids using fully
convolutional networks. The International Journal of Robotics Research, 37(4–5):452–
471, 2018.

[134] Connor Schenck, Jonathan Tompson, Dieter Fox, and Sergey Levine. Learning robotic
manipulation of granular media. In Proceedings of the First Conference on Robotic
Learning (CoRL), 2017.

[135] Tanner Schmidt, Katharina Hertkorn, Richard Newcombe, Zoltan Marton, Michael
Suppa, and Dieter Fox. Depth-based tracking with physical constraints for robot ma-
nipulation. In Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pages 119–126. IEEE, 2015.

[136] Tanner Schmidt, Richard A Newcombe, and Dieter Fox. Dart: Dense articulated
real-time tracking. In Robotics: Science and Systems, 2014.

[137] John Schulman, Alex Lee, Jonathan Ho, and Pieter Abbeel. Tracking deformable ob-
jects with point clouds. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 1130–1137. IEEE, 2013.

[138] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. In Pro-
ceedings of the International Conference on Learning Representations (ICLR), 2016.

[139] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Manipulation
planning with probabilistic roadmaps. The International Journal of Robotics Research,
23(7-8):729–746, 2004.

[140] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-
augmented predictive modeling of turbulent separated flows over airfoils. AIAA Jour-
nal, pages 2215–2227, 2017.

[141] William D Smart and Leslie Pack Kaelbling. Effective reinforcement learning for mo-
bile robots. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3404–3410, 2002.

192

[142] Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. In
ACM transactions on graphics (TOG), volume 28, page 40. ACM, 2009.

[143] Yu Sugimoto, Ken’ichi Yano, and Kazuhiko Terashima. Liquid level control of au-
tomatic pouring robot by two-degrees-of-freedom control. In Proceedings of the 15th
IFAC World Congress, 2002.

[144] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter. Learning
to pour with a robot arm combining goal and shape learning for dynamic movement
primitives. Robotics and Autonomous Systems, 59(11):910–922, 2011.

[145] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 4906–4913. IEEE, 2012.

[146] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic
programming. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1168–1175, 2014.

[147] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time seamless single shot 6d
object pose prediction. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 292–301, 2018.

[148] Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343.
American Mathematical Soc., 2001.

[149] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simula-
tion to the real world. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 23–30. IEEE, 2017.

[150] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, pages 5026–5033. IEEE, 2012.

[151] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accel-
erating eulerian fluid simulation with convolutional networks. In Proceedings of the
International Conference on Machine Learning (ICML), 2017.

[152] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao Peng, Sergey Levine,
Kate Saenko, and Trevor Darrell. Towards adapting deep visuomotor representations
from simulated to real environments. arXiv preprint arXiv:1511.07111, 2015.

193

[153] Abhinav Valada, Gabriel Oliveira, Thomas Brox, and Wolfram Burgard. Deep multi-
spectral semantic scene understanding of forested environments using multimodal fu-
sion. In Proceedings of the International Symposium on Experimental Robotics (ISER),
2016.

[154] Kristy VanMarle and Karen Wynn. Tracking and quantifying objects and non-cohesive
substances. Developmental science, 14(3):502–515, 2011.

[155] Damien Violeau. Fluid Mechanics and the SPH method: theory and applications. Ox-
ford University Press, 2012.

[156] Doug Walker, Laura Smarandescu, and Brian Wansink. Half full or empty: Cues that
lead wine drinkers to unintentionally overpour. Substance Use & Misuse, 49(3), 2014.

[157] Mike Wilson. Developments in robot applications for food manufacturing. Industrial
Robot: An International Journal, 37(6):498–502, 2010.

[158] Jay M Wong, Vincent Kee, Tiffany Le, Syler Wagner, Gian-Luca Mariottini, Abraham
Schneider, Lei Hamilton, Rahul Chipalkatty, Mitchell Hebert, David MS Johnson,
et al. Segicp: Integrated deep semantic segmentation and pose estimation. In Intelli-
gent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages
5784–5789. IEEE, 2017.

[159] Yu Xiang and Dieter Fox. Da-rnn: Semantic mapping with data associated recurrent
neural networks. In Robots: Science & Systems, 2017.

[160] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A con-
volutional neural network for 6d object pose estimation in cluttered scenes. Robotics:
Science and Systems (RSS), 2018.

[161] Zhe Xu and Maya Cakmak. Enhanced robotic cleaning with a low-cost tool attach-
ment. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 2595–2601. IEEE, 2014.

[162] Akihiko Yamaguchi and Christopher Atkeson. Differential dynamic programming for
graph-structured dynamical systems: Generalization of pouring behavior with differ-
ent skills. In Proceedings of the International Conference on Humanoid Robotics (Hu-
manoids), 2016.

[163] Akihiko Yamaguchi and Christopher Atkeson. Stereo vision of liquid and particle
flow for robot pouring. In Proceedings of the International Conference on Humanoid
Robotics (Humanoids), 2016.

194

[164] Akihiko Yamaguchi and Christopher G Atkeson. Differential dynamic programming
with temporally decomposed dynamics. In IEEE-RAS International Conference on
Humanoid Robotics (Humanoids), pages 696–703, 2015.

[165] Akihiko Yamaguchi and Christopher G Atkeson. Neural networks and differential
dynamic programming for reinforcement learning problems. In IEEE International
Conference on Robotics and Automation (ICRA), pages 5434–5441, 2016.

[166] K Yano, T Toda, and K Terashima. Sloshing suppression control of automatic pouring
robot by hybrid shape approach. In Proceedings of the 40th IEEE Conference on
Decision and Control (CDC), pages 1328–1333, 2001.

[167] Cha Zhang and Tsuhan Chen. Efficient feature extraction for 2d/3d objects in mesh
representation. In Image Processing, 2001. Proceedings. 2001 International Conference
on, volume 3, pages 935–938. IEEE, 2001.

[168] David Zheng, Vinson Luo, Jiajun Wu, and Joshua B Tenenbaum. Unsupervised learn-
ing of latent physical properties using perception-prediction networks. arXiv preprint
arXiv:1807.09244, 2018.

[169] Wen-Hong Zhu and Joris De Schutter. Control of two industrial manipulators rigidly
holding an egg. IEEE control systems, 19(2):24–30, 1999.

	List of Figures
	Introduction
	Motivation
	Problem Statement
	Contributions
	Overview

	Related Work
	Robotics
	Computational Fluids

	Learning-Based Methods
	Learning to Pour: A First Look at Liquid Manipulation
	Experimental Setup
	Methodology
	Evaluation
	Results
	Discussion

	Learning to See: Teaching Robots to Perceive Liquids
	Task Overview
	Simulated Data Set
	Robot Data Set
	Learning Methodology
	Evaluation
	Results
	Discussion

	Learning to See & Pour: Combining Manipulation and Perception
	Technical Approach
	Experiments & Results
	Conclusion and Future Work

	Learning to See Through Objects: Reasoning about Occluded Liquid
	Task Overview
	Data Set
	Learning Methodology
	Evaluation
	Results
	Discussion

	Incorporating Fluid Physics Models
	From 2D to 3D: Reasoning About Liquids Using Liquid simulators
	Open-Loop Liquid Simulator
	Closed-Loop Liquid Simulators
	Experimental Setup
	Experiments & Results
	Discussion

	SPNets: Combining Deep Learning with Liquid Simulation
	Position Based Fluids
	Smooth Particle Networks
	Evaluation & Results
	Combining Perception and SPNets
	Discussion

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography

