
From data disparity to data harmony: A comprehensive pan-cancer omic data collection
   

Abstract 6209 Lea Meunier¹, Guillaume Appe¹, Abdelkader Behdenna¹, Valentin Bernu¹, Helia Brull Corretger¹, Prashant Dhillon¹, Eleonore Fox¹, Julien Haziza¹, Charles Lescure¹, 
Camille Marijon¹, Clemence Petit¹, Solene Weill¹,  Akpeli Nordor¹ - ¹Epigene Labs, Paris, France

Comparison with TCGA matching project

Cancer type # 
datasets

# 
samples

Proportion of samples 
compare to  TCGA

Expression correlation 
(Spearman)

Acute lymphoblastic leukemia 1 783 x x
Acute myeloid leukemia 5 875 5.79 0.74
Ovarian serous carcinoma 14 1006 2.39 0.76
Liver hepatocellular carcinoma 29 725 1.95 0.75
Breast invasive carcinoma 18 1146 1.05 0.78
Uterine corpus endometrioid 
carcinoma 10 469 0.84 0.72

Skin melanoma 23 388 0.83 0.74
Pancreas adenocarcinoma 9 108 0.61 0.75

● The exponential growth of omics datasets offers a significant opportunity for 
scientific advancement in cancer research. 

● However, though the lack of uniform standards, in both clinical and omic 
data, hinder the effective utilization of these datasets, thus impeding our 
understanding of cancer biology and the development of innovative therapies.

● We have created a novel collection of pan-cancer datasets with extensive 
clinical data harmonization and consistent omic data normalization. 

● This approach enhances data quality, and is also cost-effective, offering 
significant advantages in the realm of cancer research.

Here, we focused on patient-derived gene expression microarray datasets from 
the Gene Expression Omnibus1 (GEO) database. 

DATA COLLECTION PRESENTATION

Our data collection aims to encompass numerous cancer types alongside their 
corresponding non-tumoral tissue counterparts. Healthy tissue was favored over 
tumor adjacent tissue, to minimize the risk of introducing biases related to 
cancer patient background into downstream analyses. 

Samples by Major Biopsy Site
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CONCLUSIONS
● Leveraging diverse cohorts for target discovery: This study demonstrates the 

successful utilization of seven unique cohorts within a target discovery project. 
(see poster #1915)

● Cross-platform validation: The observed consistency between RNA-seq and 
microarray data from these cohorts underscores the reliability and 
complementary nature of these technologies.

● Future directions: Building upon this success, this project will continue to 
integrate microarray datasets alongside pan-cancer RNA-seq and single-cell 
data. This initiative paves the way for future expansion, incorporating a wider 
spectrum of omics datasets.

MATERIAL AND METHODS
Dataset prioritization 

Breast invasive carcinoma cohort - Molecular subtype composition

Data collection comparison with The Cancer Genome Atlas3  (TCGA)
Cohorts were constructed based on cancer types, and then aligned with the 
TCGA projects. On average, these cohorts comprise 4.2x more samples ([min 0.3; 
max 45.5], median 3.4). 
Detailed comparisons were conducted on 8 cancer types, involving on average 
19,129 shared genes. Notably, we observed a 100% overlap in gender-associated 
differentially expressed genes between TCGA and our cohort.
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Data Aggregation
To aggregate data and build larger cohort, we use pyComBat2 to rectify for 
batch effects on expression data. By including crucial covariables, such as 
phenotype, in the parameters, we ensure the preservation of the biological 
signal.

AI-powered clinical data harmonization

Transcriptomic data processing
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Figure 3: Molecular subtype composition of the breast invasive carcinoma cohort. 
Each barplot represents a dataset and its composition. The pie chart represents the composition of the 

aggregated cohort.

By consolidating diverse datasets, we create a cohort with a more comprehensive 
molecular subtype composition.
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On average, GEO individual datasets typically hold around 60 samples. However, 
by adjusting the expected outcome of a Kolmogorov-Smirnov test to a target 
p-value of 5%, we estimated the ideal cohort size to study sub-population 
composition (theoretically set at 5) to be 2,441 samples (Fig. 1). 
Surpassing the size of popular databases, 3 biopsy sites in our data meet the high 
cohort size limit. With ongoing data integration, we anticipate surpassing this 
limit for various biopsy sites, enhancing the robustness of our analyses.
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Figure 2: Principal component analysis on gene expression of breast invasive 
carcinoma cohort (n=1,146)
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Figure 1: Distribution of samples by major biopsy site (n>150) and sample type
Number of samples


